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by the lower-energy line to rt' in (33) for the higher
energy line is large and negative.

The assumptions which have been made to obtain the
theory of the dielectric constant were discussed as they
were made. The least satisfying of these is probably
the assumption that the general theory is valid for
actual crystals which do not Gt either extreme exciton
model. The theory as constructed in Secs. III through
V is a more precise theory than the usual one outlined
in Sec. II. The division of the crystal into sub-blocks,
the use of semiclassical radiation theory, the assumption
that e—1 is a small quantity, and an appeal to a group
velocity were all avoided.

The formulation given of the complex dielectric
constant problem makes it possible, in principle, to
compute the complex dielectric constant from Grst
principles. Although it is impossible to make really

satisfying calculations on the basis of this theory
without much more knowledge of exciton wave functions
and the exciton-lattice interaction than is available at
present, nevertheless the theory can be of use in provid-
ing a framework in which to interpret the optical
absorption associated with exciton states.
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The problem of hot electrons in a nonpolar crystal is reconsidered using the Lorentzian gas model more
accurately. Scattering by acoustical phonons alone is considered first. The new results are (1) an asymptotic
formula for the moments of the velocity distribution which permits calculation of the deviation from the
square root law at high fields, and (2) a recursion system allowing the calculation of any velocity polynomial
in terms of the average energy, random velocity, and mobility of the electrons. Scattering by ionized im-
purities in addition to acoustical phonons is considered next and the distribution function is derived. The
proportionality constant relating the change in the low-field mobility to 8' is shown to be highly sensitive
to ionized impurity scattering. Thus, appreciable changes from its value for pure lattice scattering occur for
tse/tsr as low as 10 '. (E is the field strength and t40 and pr are the low-field lattice and impurity mobilities,
respectively. ) It is pointed out that substantial deviations from results obtained using a Maxwellian dis-
tribution do occur.

1. INTRODUCTION

'HIS paper concerns the motion of electrons (or
holes) in nonpolar semiconductors or insulators

in strong electrostatic Gelds. We consider a crystal with
spherical energy bands and at a high enough tempera-
ture so that the equipartition law is valid for the
acoustical lattice oscillators with which an electron
interacts. With these two assumptions, Shockley' shows
that the scattering cross section' and the average energy
losses for an electron interacting with acoustical
phonons, remain, to a good approximation, the same
if we replace the phonon Geld by a classical gas of hard
spheres of mass' KT/c' (where c is the longitudinal
speed of sound and KT is the thermal energy) and of

' W. Shockley, Bell System Tech. J. 30, 990 (1951).' See also F. Seitz, Phys. Rev. 73, 549 (1948); A. H. Wilson,
The Theory of Metals (Cambridge University Press, Cambridge,
1953), second edition, Chap. 9.

'The validity of equipartition implies that ET/c' is much
greater than the electron eGective mass.

such a density as to make the mean free path (mfp) the
same in both cases. This is the Lorentzian4 ' gas model
or the gaseous discharge analogy. Indeed, the velocity
distribution function is the same in both cases. (See
Sec. 2.)

In Sec. 2 we shall give accurate calculations for the
physical properties of hot electrons in Shockley's model.
In particular, we wish to emphasize deviations from the
square root law in the current voltage characteristics
at intemediate Gelds.

In Sec. 3 we shall consider scatterings by ionized
impurities, in addition to acoustical phonons, derive
the proper distribution function and obtain deviations
from Ohm's law at low Gelds. The results will be com-

pared to those obtained using a Maxwellian distri-

4 H. A. Lorentz, Theory of Etectrorts (Stechert and Company,
New York, 1923), p. 267.

~ S. Chapman and T. G. Cowling, The M'athensatical Theory of
37ortttwtform Gases (Cambridge University Press, Cambridge,
1953), second edition, p. 187.



bution. ' The major di6'erence is that in our calculations
ionized impurity scattering is important for rather low
densities of ionized impurities. It should be made clear,
however, that we assume that electron-phonon collision
dominates electron-electron collision, while a Max-
wellian distribution represents the other extreme. ~

2. ACOUSTICAL PHONONS

tively. Thus
I /f 3= 3~'f(y, 0)/f(y, s),
slee= l~'f(y, 1)/fb, l),

es ——(8K'/rrrN, )~,

e/es 3f(y 3)/f(y, s),
op=-,'ET.

(2.6)

For yc(1, f(y,r) is approximated by its tangent at
the origin which is equivalent to the Davydov' ap-
proximation, f'cc e *x", and

In the diGusion approximation, the velocity dis-
tribution function of electrons, f, is written as
f=f'+f'cos8, where t) is the angle between the di-
rections of the electric field E and the electron velocity
ci. The functions f' and f' satisfy the Lorentzian gas
equations

1/fio=1 —2(1—In2) y,

e/us= 1+(2 ln2 —1)y,

e/ee= 1+ssy.
(2.1)

For y))1, an asymptotic expansion gives'p

fb, )- ""-"y""+"ILl(+1)]F(),
F(r) =1+-;(2/y)'rt:-,"+2j/I'L=,'(r+1)j

+ (1/18) (r+ is) (r+1)(r+3)y ',

(2.7)

f' =—(qE//rltei) 8f'/Bc„

mi 8 ci' KT cif'
f+ &i

m2c~' Bc~ l m~l Bc~
( eft')=

3mycj Bcy
(2.2)

(2.8)

f /l o-1o8y *F(0)/F(3),./. 3-0.86y&F(1)/F(-,'),
e/«-0 70y'F(3)/F (3),

F(0)= 1+0.53y—&+0.083y—',

F(-,') =1+0.87y '*+0.29y '

F(1)= 1+1.25y '*+0.67y-'

F(-', )=1+1.67y 1+1.25y '.

(2.3)f'=e (1+x/y-)"/fb, l),

where x= mtcP/2KT, y= 3rr(freE/4c)', ps= 3/i
X (23.miKT) &, the zero-field mobility, and

(2.9)

f (y,r) = e *(1+x/y) &x"dx.
p

(2 4)

where q, l, and mj are the electron charge, mean free
and

path, and effective mass, respectively, and ms KT/es. ——
Since L is energy independent, the above equations give

Thus, f' is normalized to unity.
To evaluate the average of any velocity polynomia1

we need to know f(y, r) for integral and half-integral
values of r Apart. ial integration of (2.4) gives the
recursion system,

f(y, r+1)= (r+1)f (y, r)+ry f(y, r—1)+yb„s,
r~& 0. (2.5)

It is clear from (2.5) that a calculation of f(y, r) for
r=0, —,', —,

' is sufficient to generate other integral or
half-integral moments. These basic moments have been
calculated and used in calculating the mobility, average
energy, and random velocity given by p, ~, v, respec-

3 M. S. Sodha, Phys. Rev. 107, 1266 (1957).
V See H. Frohlich and B. V. Paranjape, Proc. Phys. Soc.

(London) 869, 21 (1956).
8 See Chapman and Cowling, reference 4, p. 346. These classical

equations cin be obtained directly by expanding the collision term
in a Taylor's series in terms of the energy transfer or change in the
velocity magnitude; I. Adawi, Bull. Am. Phys. Soc. Ser. II, 3, 13
(1958). The transport equation for the quantum-mechanical
problem of electrons and acoustical phonons can be treated
similarly. A Taylor's expansion in terms of the energy transfer is
possible as has been done by J. Vamashita and M. Watanabe,
Progr. Theoret. Phys. (Japan) 12, 443 (1954); or in terms of
change in the electron wave number k, either directly, or indirectly
by applying the method of Chapman and Cowling, and equations
identical to (2.1)and (2.2) are obtained P.Adawi (unpublished) j.
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Fze. 1. Reduced mobility, random velocity, and energy as a
function of the reduced 6eld parameter y.

3 B.Davydov, Physik. Z. Sowietunion 8, 59 (1935).
i' In the Druyvesteyn approximation, @~exp(—3'/2y),

F(r)=1.

The set of equations (2.9) give the deviations from the
well-known simple laws, IJ~E ', v~E&, and e~E.
For y=100 these deviations are about 4% in li and 3

but about 8% in e. The results of the calculations are
presented graphically in Figs. 1—3.

3. IONIZED IMPURITIES

We wish now to include impurity scattering in
addition to lattice scattering. Consider 6xed and
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randomly distributed centers of density S; per unit
volume and differential cross section o;(8,ct), where the
index i runs over the different types of impurities, such
as ionized, neutral, etc. Such a scattering will not
involve any energy loss (at least not within our ap-
proximations) and consequently (2.2) will remain
unimpaired. The only change is that in (2.1) l will be
replaced by an effective mean free path, L given by

l =9./(I+X),

100

4e
10

)t—'=g 2rrX; o.,(1—cos8) sin8d8. (3 1)
I
I02 Ios

E volt /cm
IO4 IO'

The resulting f' will be given by:

y ) "—1

f'=const exp — ' dx 1+—
x l+X

For ionized impurities, ) is proportional to the square
of the energy (aside from a logarithmic term which we
shall treat as a constant") and can be related to the
lattice vibrations mean free path, /, through the
equation,

X=lx'n ', ns=6po/pr, (3.3)

foer exp — dxL 1+yx/(x'+ns)P'

where po and pl are the zero-field mobilities of the
lattice and ionized impurities, respectively. Using (3.3)
in (3.2), we have

Fro. 3. Electron energy vs Geld strength, for values of po/c
ranging from 0.5X10 to 10)&10

therefore, in general,

p= (1/2)rr j o(x &d/dx—$x n'xs(—x'+n') ')) — (3 5)

where the average is taken with respect to f' nor-
malized to unity. From (3.4) and (3.5) we have for
small fields, y«1,

r/f o=1+Py
ro= r(y=O) = (1 nS, )&o,—
p= LSt—(1/8)n'L s'+ (1/2)+(So—St)j/

(1 n'St)—rr fL—gt,
- (3.6)

fo~ e-*(1+x'n-')», y&&2n

-e-*(1+x/y)s, y)&2n. (3.4)

Replacing l by L in (2.1), we obtain that the com-
bined mobility p is given by

where the functions S and L, are defined by

IO

IO

S„= I x"e-*(ns+x')—'dx,
Jo

x"e-
L
ln(1+n —'x')$ dx

(3.7)

2
Io ~

IO I I ~ I ~ ~ I I

Io Io
K —VOLT/'CNI

io4 IO'

Fro. 2. Drift velocity/vo ss Geld strength, for values of yo/c
ranging from O.SX10 ' to 10)&10

"E.Conwell and V. F. Weisskopf, Phys. Rev. 77, 388 (1950),
see also, for example, P. P. Debye and E. M. Conwell, Phys. Rev.
93, 693 (1954).

The integrals So and Si are well known, "while I.2' and
I.&& have to be evaluated numerically. For large n

(n 20) we can develop the asymptotic expansion,

P (33/8)n-'(1 —81.875n—')/(1 —20n-'). (3.8)

It is found that P(0 for Own&1 02 and P)0 .for
n&1.02. Ke can say that in the former range of n
lattice scattering is dominant and in the latter range
ionized impurity scattering dominates. p assumes a
maximum value of 0.072 at n=2.8. . Figure 4 shows

p versus n.
In Table I, our values of the parameter P are com-

pared with those obtained by Sodha' using a Max-

'~ The values of S0 and S& tabulated by R. B. Dingle et al.,
Appl. Sci. Research II6, 155 (1956), can be used for a(10. More
accuracy is needed for larger a to obtain P to thoro signi6cant
Ggures.
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.08 distribution, the actual value of P is expected to lie
between the extreme values of P and P' given in Table I.

TABLE I. A comparison of P and P' for diferent a's.

-P2

.2 .4 l

0 rr

r
r

I I I I 1 I I

10 20
a

I I I I I

40 IOO

0
0.1
1
2
3

8
10
15
20

—0.61—0.44—0.003
+0.065

0.072
0.065
0.036
0.027
0.015
0.009

—0.25—0.23—0.01
+0.077

0.083
0.078
0.059
0.043
0.022
0.010

Fro. 4. The coefBcient P es a. The ordinate scale on the right
is to be taken with the dotted curve.

wellian distribution for f' instead of that given by Kq.
(3.4). Sodha's values are denoted by P', where
P'=4 fi(ai) in Sodha's Eq (15..1).From this table we see
that both P and P' change sign when n is slightly greater
than 1, and assume a maximum for about the same value
of a (n= 2.8) although the maximum value of P' is about
15% larger than that of P. For n))1, we have P' 4.5n
which is about 9% higher than the leading term of Eq.
(3.8). For n(1, P and P' differ in general by a factor of
two to three.

A major difI'erence between our results and those
based on a Maxwellian distribution lies in the sensitivity
of the parameter P to ionized impurity scattering. From
the first two rows of Table~I, we observe that for pure
lattice scattering (n=0), P= —0.61, and that for a
slight ionized impurity scattering corresponding to
n=0. 1 or (po/hz=1/600), P= —0.44 which is a sub-
stantial change of about 28%. The corresponding
change in P' is less than 10%. At the same time po,
which is Ohm's law mobility, changes only by 2%. We
recall from Eqs. (3.3) and (3.6) that n' measures the
ratio of scattering by ionized impurities to that of
lattice vibrations and P measures deviations from Ohm's

law, or the field-dependent part in the mobility, at
small fields. Thus a change in Ohm's law mobility of

2% due to ionized impurity scattering is accompanied

by a change of 28% in the 6eld-dependent part of the
mobility at low fields, if electron-electron collision can
be ignored. In case that electron-electron interaction
is not suKciently strong to impose a Maxwellian

Pote added t'rt proof. We ha—ve recently developed a
variational method, particularly suited for calculating P
under general scattering mechanisms. If we select the

representation, f ~ e '(1++ b„x"), then the coefficients

b„can be determined by variational methods. If we take
m=1, then bi (1/2)8——3y, and this distribution is iden-
tical to the Maxwellian distribution to order y (or E')
and reproduces Sodha's results. If we take two terms,
m=2, and let n&)1; then to order n ', b~=0 and
b2 (1/2)a 'y—,—and the distribution is identical to that
obtained from (3.4) by writing (1+n 'x') &'t2» 1

+(1/2)yn 'x'. Indeed, this distribution gives the same
leading term as the asymptotic formula (3.8). For small
o,, a large number of terms is needed. Using three terms,
we obtain for n=0, P= —0.41 as compared to —0.61.
A function involving lnx, or in@ itself which is exact. ,
should be added to the series as a trial solution. Thus,
for example, if f'~ e *(1+by J,"dte '/t), then b= ——,

'
and P= —0.52 for n=0.

We have proved in general that to order E2, a Max-
wellian distribution is a solution in a variational sense,
(although it could be a poor one in certain instances as
has been illustrated here), provided the collision opera-
tor is linear.
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