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Theory of the Contribution of Excitons to the Complex Dielectric
Constant of Crystals*t
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It is shown that the ordinary semiclassical theory of the absorption of light by exciton states is not
completely satisfactory (in contrast to the case of absorption due to interband transitions). A more complete
theory is developed. It is shown that excitons are approximate bosons, and, in interaction with the
electromagnetic field, the exciton field plays the role ef the classical polarization field. The eigenstates of
the system of crystal and radiation field are mixtures of photons and excitons. The ordinary one-quantum
optical lifetime of an excitation is infinite. Absorption occurs only when "three-body" processes are
introduced. The theory includes "local field" effects, leading to the Lorentz local field correction when it
is applicable. A Smakula equation for the oscillator strength in terms of the integrated absorption constant
is derived.

for which the wavelength of light is much greater than
a lattice constant. '

In Sec.III the quantum theory of a classical dielectric
is developed. This problem reduces to the interaction
of the radiation field with a second boson field, the
polarization field. Some possible generalizations of
the classical dielectric theory are brieQy discussed.
Section IV is devoted to constructing an approximate
exciton Hamiltonian and to finding the interaction
between excitons and photons for this approximate
Hamiltonian. It is shown that excitons are approximate
bosons and, in interactions with the electromagnetic
6eld, play the role of the quantized polarization field
of Sec. III.

In Sec. V the interactions which cause true absorption
in crystals are introduced. These interactions result in
finite lifetimes for the mixed eigenstates constructed in
Sec. IV, and can be treated in terms of a complex
dielectric constant. The final section is a summary of
the theory, with emphasis on the application to
experiments.

I. INTRODUCTION

'HE lowest energy excited states of insulating
crystals are usually states of an electron in the

conduction band bound to a hole in the valence band.
These bound states, called excitons, were first intro-
duced by Frenkel' in 1931. The existence of such
nonconducting excited states has been tentatively veri-
fied in both extremes of exciton models, the Frenkel
(tight-bonding) model and the Wannier (weak-bonding)
model, by means of optical absorption experiments in
the visible and near ultraviolet regions. '

The usual method of calculating the optical properties
due to exciton states is by use of the semiclassical
theory of radiation. This method is satisfactory for
the calculation of the dielectric constant in frequency
regions of no absorption. The use of this method to
treat optical absorption by exciton states raises
difhculties perculiar to sets of energy states for which
there is but one crystal state having a given wave
number k in a 6nite energy interval. The problem of
the description of the fundamental absorption process
is the subject of Sec. II. This problem was the motiva-
tion for the investigation of the exciton-photon system.

The purpose of the present work is to formulate the
problem of the optical properties of excitons in a more
rigorous manner than the semiclassical theory through
the use of a quantum-electrodynamical formalism
and to present a more complete view of the absorption
process. The theory, as developed here, is applicable
only to crystals exhibiting optical isotropy. The
frequency region considered is limited to frequencies

*Based on a Ph.D. thesis submitted to Cornell University.
t A summary of this work was given at the March meeting of

the American Physical Society LJ. J. Hopfield, BulL Am. Phys.
Soc. Ser. II, 3, 125 (1958)j.

$ Present address: Bell Telephone Laboratories, Murray Hill,
New Jersey.' J. Frenkel, Phys. Rev. 37, 17 (1931).' For experimental evidence of tight-binding excitons, see
L. Apker and E. Taft, Phys. Rev. 79, 964 (1950);81, 698 (1951)
87, 814 (1951).For experimental work on weak-binding exciton
see Gross, Zakharchenya, and Reinov, Doklady Akad. Na
S.S.S.R. 92, 265 (1953); 97, 57, 221 (1954). J. H. Apfel an
L. N. Hadley, Phys. Rev. 100, 1689 (1955).

II. PROBLEMS IN THE TREATMENT OF THE
OPTICAL PROPERTIES OF EKCITONS

The general theory of the interaction of radiation with
insulating crystals is well known. 4 In order to show why
the theory as it exists is not complete, the nature of
the fundamental absorption process for exciton states
will be discussed in detail. The usual description of the
absorption process will be shown to be unsound. The
inappropriateness of the usual description was the
incentive for developing a more complete theory of
the optical properties of exciton states.

Unessential complications in the discussion can be
avoided by choosing a very simple model of an insulating
crystal. The model used here is a simple cubic array of

~The general mathematical approach is the same as that of
s, U. Fano, Phys. Rev. 103, 1202 (1956).

4For a brief review of the semiclassical theory and further
d references, see F.Seitz, The 3IoderN Theory of Solsds (McGraw-Hill

Book Company, Inc., New York, 1940), pp. 647 ff.
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nonoverlapping identical atoms. For simplicity, the
atoms are assumed to have S-type ground states fs
and three (degenerate) P-type excited states P„. The
atomic positions are denoted by L. The zero-order
ground state of the crystal is a state with every atom
in its ground state (i.e., 4'o=gLfo, L). The elemen-
tary excitations of this crystal are states in which
one atom at L is excited and all other atoms are in
their ground states. Interactions between the atoms
prevent these elementary excitations from being
suitable zero-order excited state wave functions.
Instead, the zero-order excited state wave functions of
this model are linear combinations of the elementary
excitations chosen so that the resultant wave functions
have translational symmetry. The zero-order excited
state (exciton) wave functions are

P exp(ik. L)P„,L g fs, L,
L'gL

where E is the total number of atoms in the crystal,
and k is an allowed wave vector in the Erst Brillouin
zone. The lattice points are understood to be fixed in
space.

The simplest calculation which can be made having
anything to do with optical absorption is the calculation
of the optical lifetime of an exciton state. The matrix
element for t.he transition to the crystal ground state
with emission of a photon of wave vector k' is given by
the atomic matrix element for this process times the
factor

P exp(i(k —k') L].

If the box in which the radiation Geld is given periodic
boundary conditions is the same size as the crystal,
then the factor (2) is zero unless k—k'= 2s.G, where G is
a vector of the reciprocal lattice. (This is the well-known
wave-vector conservation rule. )

The excitons of interest in the optical properties of
solids are those for which

~

k
~

is in the optical wave-vector
region. It is these excitons which are coupled to photons
having about the same energy as the excitons. Umklapp
processes (GWO) couple excitons having optical-region
wave vectors with photons of x-ray energy and can be
neglected in transition calculations. For optical cases, the
wave-number conservation rule is k= k'. Each exciton k
is coupled to only one radiation mode for radiative single-
photon emission. Since transitions, in the framework of

~ Similar atomic models have been treated in detail by W. R.
Heller and A. Marcus, Phys. Rev. 84, 809 (1951), and also in
Peierls' early work on the absorption of Hght by solids: R. Peierls,
Ann. Physik 13, 905 (1932).

6 The results obtained are not correct when the wavelength of
light having the same energy as the exciton is less than or equal
to a lattice constant. In this case, umklapp processes dominate.
This is the reason why there is no conflict between the results
obtained and the intuitive idea that in the limit of large lattice
constants, an exciton must decay with the same radiative lifetime
as an isolated atom.

second-order perturbation theory, occur only when there
is a density of final states to which the initial state is
coupled (and the coupling matrix element must not
change rapidly over this set of final states), no real
transitions take place in the exciton system, contrary to
the usual view. Instead, energy oscillates back and forth
between the exciton and the photon. ' This mutual
exchange of energy can be described by constructing new
eigenstates of the complete Hamiltonian (crystal plus
radiation field plus interaction) as is done in Sec. IV.

This lack of one-quantum radiative decay of exciton
states is, of course, related to the use of the same
periodic boundary conditions for the radiation Geld
as for the crystal. A finite crystal in an infinitely large
box containing the radiation Geld has a finite lifetime
for one-photon exciton decay. The ordinary transition
probability argument cannot be used to compute the
decay behavior, ' but a calculation based on general
damping theory could be made. The form of the
optical lifetime of excitons for large crystals is clear on
physical grounds. For large crystals, the energy of
excitation is shared between excitons and internal
photons. Decay takes place when these photons leak
out of the crystal. The rate at which the energy leaks
out of the crystal is proportional to the energy density
in the crystal, some propagation velocity, and the area
of the crystal. The decay rate must then be proportional
to A' & (the surface to volume ratio) and vanishes for
large crystals.

With an understanding of the inGnite optical lifetime
for one-quantum decay for large crystals, a discussion
of the fundamental absorption process for exciton
states is possible. For an isolated atom, the absorption
of light should be treated as a problem of resonance
Quorescence. The simplest such process is the two-step
process

photon k+atom in ground state
~ no photon+atom in excited state
~ photon k'+atom in ground state.

The photon k' can be emitted in virtually any direction,
so this process represents the scattering of a photon
out of the initial state.

For absorption of light by exciton states, the res-
onance Quorescence process does not represent a
scattering process (neglecting surface scattering). The
wave-number conservation rule restrains the inter-
mediate-state exciton and the final-state photon to
the same wave vector as the incident photon. Again,
there is no density of Gnal states to which to make

7 This phenomenon can be understood from the point of view
of the elementary excitations. If two atoms, one of them in an
excited state, are separated by a distance small compared to a
wavelength, energy transfer by the transfer of a virtual photon
is an important process. The use of exciton states avoids the
problem of keeping track of phase memory as energy is trans-
ported from one atom to another.

For large but 6nite crystals, the matrix element is not a
slowly varying function of energy.
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transitions. Energy is again shared between the exciton
state and the photon just as it was in the calculation of
exciton radiative decay. Thus the fundamental absorp-
tion process should not be considered as

photon —+ exciton,
but rather as

photon ~ exciton (intermediate state)
—& final energy-absorbing states.

In passing through a crystal, a beam of photons gives
up a net amount of energy to the crystal. This energy
absorbed by the crystal is not stored in the exciton
states (i.e., those exciton states directly coupled to
the photon beam). Jnstead, the energy is stored in
those crystal states which, through their coupling with
the excitons, cause finite exciton lifetimes. From the
point of view of perturbation theory, the so-called
"direct" optical absorption processes must in reality
be second-order processes. This diQ'erence in point of
view makes a new attack on the exciton-photon
interaction problem seem desirable. It is the exciton-to-
energy sink coupling rather than the exciton-to-photon
coupling which causes true optical absorption. Sections
III and IV are devoted to the diagonalization of the
exciton-photon interaction. This approach makes it
possible to treat the second-order absorption process by
calculating the lifetime due to other interactions of the
eigenstates of the exciton-photon system.

The semiclassical theory of the optical properties
determines the constitutive relations between P and E
and between J and E for use in Maxwell's equations.
This can be done by dividing the crystal into sub-blocks
small compared to the wavelength of the incident
radiation but large compared to the lattice constant.
The constitutive relations are then found for these
small blocks and used as point relations in Maxwell's
equations. This procedure is not really satisfactory
because the wave number conservation rule is lost.
The procedure, if properly used, works for absorption
processes whose absorption cross sections do not depend
on the volume of the sub-block (e.g. , photon-exciton
processes which also involve phonons). The method is
not satisfactory for the treatment of Quorescence
processes, for it leads in this case to a dependence of
the radiative widths on the dimensions of the sub-blocks
used.

A better method of treatment is to use the Fourier
decomposition of the radiation and polarization fields.
Pekar has recently used this method to treat the
dielectric tensors of insulators when no absorption is
present. This method should be readily extensible to
include the case of absorption by computing in addition
the relation between Js and the perturbing electro-
magnetic 6eld (although to the author's knowledge

' S. I. Pekar, J. Exptl. Theoret. Phys. U.S.S.R. 33, 1022 (195/}
Ltranslation: Soviet Phys. JETP 6, 785 (1958}j;J. Phys. Chem.
Solids 5, 11 (1958}.

such an extension has not been made in the treatment
of excitons). Such an extension must be based on
smearing out the exciton states over a finite energy
interval. Otherwise there are no real transitions, and
Ja cannot be computed (unless higher order processes
are directly taken into account).

The interaction between the radiation field and a
crystal for interband electronic transitions is quite
diGerent from the exciton-photon interaction just
described. In the treatment of interband coupling with
photons, there are S electron-hole pair states having a
given total wave number k. These 1V states form an
energy continuum (in the limit of large Ã), and absorp-
tion transitions can be described in terms of ordinary
time-dependent perturbation theory. For a tight-
binding model of a crystal, the matrix element coupling
the crystal ground state plus one photon with wave
number k to a particular electron-hole pair state of
total wave number k is the order of the atomic matrix
element for this transition. Thus, whereas the interac-
tion matrix element is proportional to V ' for interband
transitions, and E electron-hole pairs interact with
each photon, the interaction matrix element is propor-
tional to (X/V)'* for exciton states, and but one (or a
small number in the case of several exciton bands)
exciton state is coupled to each photon state.

H the semiclassical theory is used to describe the
optical properties of interband transitions, no diKculty
is encountered, because real transitions can be computed.
In order to justify the use of the semiclassical theory,
the tacit assumption must be made that the electrons
and holes created in an absorption process are scattered
by the lattice and eventually return to the thermal
equilibrium distribution. To treat this electron scatter-
ing as independent of the electromagnetic interaction is
probably justifiable, because each electron-hole pair is
very weakly coupled to the electromagnetic field. The
qualitative difference between the result of an applica-
tion of the semiclassical theory to absorption due to
interband transitions and absorption due to excitons
can be summed up brieQy as follows. For the case of
interband transitions, energy band structure and the
weak electromagnetic field coupling with electron-hole
pairs permit the use of semiclassical theory. The gross
features of the absorption are independent of the
coupling to the lattice. For the case of absorption due
to exciton states, the form of the coupling between
excitons and the electromagnetic field does not permit
the direct application of the semiclassical method.
The exciton-lattice collision mechanism is completely
responsible for the shape of the absorption line. (The
integrated absorption is, however, essentially independ-
ent of the absorption mechanism. )

The calculation of the optical properties of exciton
states when absorption occurs cannot be carried out by
the usual methods without an artificial broadening of
the exciton states. Assigning to the exciton lines an
energy shape function in order to compute the optical
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The classical theory of light propagating in a simple
isotropic dielectric with dispersion can be characterized
by the frequency dependence of the dielectric constant
c(co). Since the exciton contribution to the complex
dielectric constant can be most easily understood
through comparison to a classical dielectric, it is useful
to begin by developing the quantized form of a classical
dielectric. The role of boundary conditions and
deviations from simple classical behavior are brieQy
discussed.

The Lagrangian density for an infinite classical
dielectric in interaction with the electromagnetic field

may be taken to be

1 (1 BA y' 1 1 (&Py'
+vq i

——(vxA)'+
8~ & c Bt ] Ss 2(oo'p( Bt)

1 1 BP——(P)'+ (& P)+—A (3)
2p 8t

This is the Lagrangian density for an oscillating
polarization density P with a restoring force, as can be
seen by comparing (3) with the Lagrangian for a
moving charged particle. The equations of motion for
the field variables of (3), in conjunction with the usual
definitions of B, E, and D, are equivalent to the usual
Maxwell's equations plus the constitutive equation

1 O'P
+P=pE.

Gop BP
(4)

'0 The chief objection to the shape-function approach is that
phase averages are taken at the wrong point in the calculation.
Matrix elements between initial and intermediate states are
squared and summed, whereas in a second-order process it is
actuallly the compound matrix elements to the anal states which
should be squared and summed. This can give rise to a dependence
of calculated results on the method of describing the intermediate
states.

properties is not a really satisfactory procedure. There
are technical difhculties" involved in the shape-function
approach. More important, the semiclassical approach
treats excitons as independent entities, whereas in
reality an exciton which interacts with the radiation
field does not exist as an independent entity. Such
excitons are always accompanied by a photon compo-
nent. The separation of the exciton from its photon
component as is done in the semiclassical method
produces a misleading interpretation of the absorption
process.

In the following sections, a field-theoretic (rather
than a semiclassical) method is developed for treating
the mixed state of excitons and photons. The funda-
mental absorption process in the interpretation to be
developed is the scattering of the mixed states. A
complex dielectric constant will be derived from the
properties of these states.

IIL QUANTUM THEORY OF A CLASSICAL
DIELECTRIC

If the equations of motion are solved for solutions
periodic in time, with angular frequency or, the dielectric
dispersion law determined by (4) is simply

1 GP/Cg0

Equation (3) is thus a suitable Lagrangian density for
a classical dielectric.

In order to quantize the fields, the Coulomb gauge
(v A=O) and Born-von Karman periodic boundary
conditions in a rectangular parallelepiped box of
volume V are used to expand A, P, and y in plane
waves. The Lagrangian and Hamiltonian of the system
can then be expressed in terms of the Fourier components
of the fields and their conjugate momenta. The
longitudinal modes are not of interest for radiation
problems, and can be omitted.

The resultant Hamiltonian represents a system of
coupled harmonic oscillators. It is, of course, possible to
find the normal modes of these oscillators before
quantizing the system. This will not be done, because
the Hamiltonian of the coupled oscillators is the
analog of the exciton-phonton Hamiltonian of Sec. IV.
We therefore quantize the coupled system. The
Hamiltonian for the system is

&= & I
&clkl (ak, k*ak, k+-,')+a, (bk, ,*bk, ,y-', )

iA 0'(4 p)~
XL(akk bkk akkbkk )

2(clkl~o)'

+ (a k) bkk —a—k'k bkk )$+irp~o
c/k[

X Lakkakk +akk akk+akk a—kk +a kgakk)
~

(6)

where the a's and b's are those combinations of
coordinate and momentum which, when quantum-
mechanical commutation rules are applied, are boson
creation and destruction operators. ai,),

*is the Hermitian
conjugate operator to a&)„etc., and

Lak'k ak'k $ =Lakk, bkq, j= t akk, bk k.*1=Lbkk, bk I, )=0,

La», a'k j—Lb», b'k *3=&kk bkk.

The operators ai,)* are exactly the photon creation
operators of the usual Maxwell field while the bi,y* are
creation operators for the polarization field. The
polarization field "particles" analogous to photons will
be called "polaritons. " (Excitons will be shown to be
one kind of polariton in Sec. IU. Optical phonons are
another example of polaritons. ) The sum is taken over
all k space and over polarizations perpendicular to k.
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(2orch ) &

I p ak(~kke'k'+~kk*e "'),

The field operators are given in terms of a's and b's by wave number k and polarization li, since B is invariant
under translation and diGerent polarizations are not
coupled. Define

ctk=w~k+*hk+y~ k*+» k*. (9)
fhMop) k

P=
( ~ P ek(bkke"'+bkk*e —'"').
&2p'g

If 0.1, is to be a normal-mode annihilation operator, then

(10)[rrk +] Ek&k
The normal modes of the Hamiltonian will be

expressed in terms of a, new set of creation and annihila- Using definition (9) and Eqs. (6) and (7), the eigenvalue
tion operators. It is sufficient to work with a single problem (10) may be written in matrix form,

x x,
=jV

+2D iC——hc~ k~ —2D iC y-
+iC 0 +iC —htco. .s.

y

hc
~
h ~+2D iC— —2D —iC w

+iC htco —iC 0

where

hoop'(orp) & h
D =orPcco'

(c[k[~,)&'
'

c)k)

There are two normal modes for a given wave vector.
The second subscript labels these modes. Let C be
the four-by-four matrix between the coupled and
uncoupled systems of oscillators:

k2
=1

E2

4orp

1—E'/(co'

In units of h=c=1, the eigenvalues of (11) are
determined by the equation

Cia «~4

«21 «22 «2& «24 bk

«3& C32 «33 «34

.«4g C42 C43 «44. .b g*.

(14)

(In the present units, os=index of refraction= ~k~/E,
and e=to'=k'/E'. ) The same relation exists between
frequency and wave number for the quantum-mechanical
normal modes as for the classical ones.

If the Hamiltonian in the uncoupled system is to be
that of uncoupled harmonic oscillators, the new
oscillator operators will have the usual commutator
relations

«2i*

C *
—«3g*

—«32*

«41

(15)

The combination of the commutation rules for the n
representation and for the a, b representation yield
relations between the c;;, which are sufhcient to show
that

1.50

[&k'crk'f]= [&k' 4'k ~ ]=0~

[&kO&k'j ] ~kk'~ij

«14 C34* «4*.

A plot of E(k) and some useful combinations of c;;(k)
are given in Figs. 1 and 2 for the particular case
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4rrP=0. 1. The transformation" C is given in detail in (16).

~ti ( &i)
I l&lail ' |' ~i')'

c =I 1——
II +—

II 1+—
l

~ 2
I

1— I+4prP
(pp) & rpp Cdp) E (dp) Mp E Cop )

( Kl & litl R't (—
II 1+—

I

ppp& E tpp rdp) E rdp)

jV& q
C = s(wP—) I

1——
I

'I+4 p
+o — &o

(16)

The quantities C;i, C,2, C;3, C,4 may be obtained from
the above expressions by replacing E& by E; and
multiplying by (i)'. Here E& is the smaller positive
root of Eq. (12), Es the larger positive root, and
E3= —E&, E4= —E2. The arbitrary constants in C
have been so chosen that for Ikl(rpp and P,—+0,
~k 0'kl bk &k2 ~—k &-kl ~—k &—k2

The ground state in the n, or uncoupled, system can
now be written in terms of the wave functions for the
unperturbed system. The conditions

a .t. a .f, cx s]. ~—A
Crklpground rik2$'ground —&—klFground Cr—ks'y'ground —0

generate recursion relations for the expansion coeS-
cients of the new ground-state wave functions in the
photon-polariton occupation-number representation.
The result is free of the infrared divergence which
would occur if ordinary perturbation theory were used
to find the ground-state wave function.

Although it will prove advantageous to work in the
0. system with "clothed" photons and polaritons,
nevertheless for the problems to be worked out it is not
necessary to calculate the "clothed" wave functions in
terms of the original basis. The operator transformation
C is sufficient to calculate the most useful observables.

It is of interest to ask to what extent such a quantum-
mechanical dielectric may be treated as a classical
system when interactions of the dielectric with a
subsystem which is coupled to electromagnetic radiation
are considered. In treating radiative problems in a
nondispersive dielectric, one may simply start from
the Lagrangian (3) with P=O and multiply the first
term by e, the dielectric constant. By using the trans-
formation (14), it can be directly shown that outside
the region of strong dispersion, the vector potential

» C is not unitary; the "Hamiltonian" matrix of (11) is not
Hermitian. This does not imply that the wave-function trans-
formation represented by C is not unitary. C is not a wave-
function transformation but rather defines a particular linear
combination of operators. The matrix of (11) is not the Hamil-
tonian, but rather defines a useful commutator relation. lt can,
however, easily be shown (by making use of the fact that C has
an inverse) that the transformation on Hilbert space from the
representation in which the number operators a*kuk, bk*,bk, etc.
are diagonal to the representation in which the number operators
ak~uk are diagonal is a unitary transformation.

operator involves only one set of normal-mode operators.
In the low-frequency region, the electrodynamics is
equivalent to that obtained in the simple nondispersive
treatment outlined above. In the high-frequency region,
ordinary vacuum electrodynamics results. In the
dispersive region, both sets of normal modes are
important, and no simplification of this more compli-
cated electrodynamics is possible.

It is not necessary to treat the case of a finite
dielectric medium in detail. One can show that the
analytic extension of the quantum-mechanical disper-
sion relation of an infinite medium to include all
frequencies, in conjunction with the classical boundary
conditions, describes properly a dielectric of finite
extent. It is sufhcient, then, to compute the dielectric
constant only for infinite geometry.

So far we have considered the usual classical model
of a dielectric. There are only a few modifications which
can be made to this model in the realm of linear
isotropic dielectric theory. " In the classical model the
polarization P(r) depends only on the electric field E
at the point r. A generalization of this dependence
would allow P(r, t) to depend on FE(r', f'), where p is
a linear operator. " Another generalization which
might be made would be to replace the classical
restoring force proportional to P in the equation of
motion of P by a more general linear restoring force.
Both of these modifications will be present to some
extent in a real physical dielectric. '4

A more general restoring force allows a dependence of
the polarization frequency on wave number, and is
equivalent to using a 6nite effective mass for excitons.
Estimates based on parameters suitable to the alkali
halides indicate that the finite-mass eGects are small,
although they technically introduce a second mode
for any given frequency (compare with Fig. 1) and an

"One trivial modification which will not be discussed now is
the addition of more polarization fields.

"There are restrictions on the form of 0' if there is to exist a
causal relation between R and P.

'4 Pekar (reference 9) has derived these effects from the semi-
classical theory of radiation in the case of no damping (no true
absorption). The existence of these eBects will be mentioned, but
neglected, in the present treatment of absorption.
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additional boundary condition at the surface of the
crystal. Since the inclusion of such eGects- would
complicate the mathematics, while at the same time
should lead to no appreciable physical eGects, they will
be ignored in the theory to follow.

IV. INTERACTION OF PHOTONS WITH EXCITONS

An exciton band in an insulating or semiconducting
crystal is thought of as a band of nonconducting
excited electronic states of the entire crystal. There
are two extreme sets of basis functions for describing
electronic wave functions in crystals: the Heitler-
London scheme of localized atomic wave functions and
the Hund-Mulliken-Hloch scheme of electrons spread
throughout the entire crystal. Corresponding to these
extremes are two models of excitons: the Frenkel or
tight-binding exciton and the Wannier or weak-binding
exciton. A useful approximate exciton Hamiltonian and
the interaction of photons with excitons can be derived
for simpliied cases of both models.

It will be shown that excitons are approximate
bosons (to the same degree that spin waves are bosons)
for the tight-binding model. The proof of the validity
of the derived Hamiltonian for the weak-binding model
will be omitted here. "Terms which can cause absorp-
tion will be dropped from the approximate Hamiltonian
until Sec.V where they will be treated as a perturbation.
The approximate exciton-photon Hamiltonian derived
(for one exciton band) will be exactly the same as the
photon-polariton Hamiltonian (6) of Sec. III.

The extreme tight-binding crystal that is treated
here consists of a cubic array of identical atoms
separated by distances large enough that the overlap
of wave functions of nearest-neighbor atoms can be
neglected. If the lattice sites of the atoms are L and
the atomic number of the atoms is Z, then the Hamil-
tonian for the electrons in the absence of radiation is,
in dipole approximation,

The zero-order lowest-energy excited states of the
crystal should not be taken as @g=lbLtgL ~Lt)'rL s, f»
there are matrix elements of the dipole interaction of
such states between degenerate states having the same
excitation on diferent atoms. If instead the states

0 ttg — Q lPz, g exp[(ik L)] Q fL o

gX z, L' &L

are used, where k is an allowed wave vector of the first
Brillouin zone and periodic boundary conditions are
applied in a volume V with number of atoms E, the
4'~& are orthonormal wave functions for which matrix
elements of H between states tk and fk' vanish. For
these states, (H) can be shown' to have the form given
by (») «r ~kli»»,

%8m
(H)sg E,+ ——

i Xogi Ps(cose)
V 3

&&[Jo(lklr)+Js(lklr) j (»)
where 8 is the angle between k and Qo~ X~lfg), and

og = o g' s . 0 ~

It is convenient to de6ne a set of operators d~~ and
dLte (for f/0) which operate on the wave function and
obey the following rules":

dL fgL't'=PLtjftLL'fttt't

dLt 4'L't' PLtbLL'bvst (19)
dL(dL~s~ —dL~v dLt =o.

Operator dz, ~* acts only on the wave function of atom
L, raising the atom to state f if the atom was previously
in state fs, and giving a zero result otherwise. Operator
dLg acts only on the wave function of atom L and
yields zero unless the atom was in state t, in which
case dL& produces the ground state function. Particularly
useful linear combinations of the raising and lowering
operators are

N 2 p 'L2 Zffs2

H=E 2 — +-', E
&~' lx'L-x LI-

i
bg,*= Q exp(ik L)dLge,

(20)

Xz, Xz,
+ ZE

L&L'

3[XL (L—L')j[XL (L—L')

(L—L') 5

where XL=p zzxtL and S is the number of atoms
in the crystal.

A suitable set of (—1)th order wave functions for
describing the electronic state of the crystal is
+=gzfLg, where if'Lg is the wave function of atomic
state t on atom L, having atomic energy eigenvalue Et.
The ground-state wave function is iso=—+L/Ls. All

energies will be considered to be measured from imp.
"See J. J. Hopfield, Ph. D. thesis, Cornell University (un-

published).

Q exp( —ik L)dLg.
g r,

/

In terms of these operators, fst=bts*+o,' +o=bttPt t

The Hamiltonian (17) can be exactly expressed in
terms of the operators dL, . The operator Xz, can be
written as

( XL)operator= p g (0
~

Xz ( f)tiLt+Qt (f ( XL (
0)gfLt*

+ P P (ti XLit')tELg*gELg. (21)

"That dqt and dL t should commute (rather than anticommute)
can easily be shown if the atomic wave functions are written in
terms of one-particle functions. Then dLg involves the product of
one electron creation operator and one electron destruction
operator. Since individual electron creation and destruction
operaters (referring to different states) anticommute, pairs of
such operators (referring to different states) commute.



1562 J. J. HOPF I ELD

3(k X,)(k X, )
X -X, X,.

XPtk*f t'—k +f tkf t'—k+f tkf t'k +btk f t'k]t (23)

where we have, for convenience, assumed that the
matrix elements X,=—(Ol XI t) are real.

The commutator of b~i, and b~ ~
* is given by

I btk, bt k*7=—P exp[i(k k—)L']
Q x,

XLdztdzt *—dz, g *dz,t], (24)
Pt k*Pt '7=0

The number operator for the state Lt is dz, t~dz, t,' dz, tdz, t*
is a number operator for the ground state LO (there are
many number operators for the ground state). If
matrix elements for the commutator are considered
only for states of the crystal in which the total number
of excited atoms is at most M', then the number of
nonzero matrix elements of dL~*dL~ is less than M while

the number of atoms in the state zero is greater than
Q—3E. Thus for the states of excitation less than M,
and t = t',

I btk, btk *7=tgkk to order M/X, where X is the
total number of atoms in the crystal. Similarly for
t/t', dz, ~*dL~ has a nonzero value for the order of 3f
atoms, zero for the rest, while dL~dL~* is zero for
tWt'. To order M/X,

Ptk, f t k ']=4k tgtt' (25)

In the approximation (25), the Hamiltonian (23)
represents a set of coupled harmonic oscillators. The
Hamiltonian (23) can in principle be diagonalized by a
unitary transformation of the type used in Sec. III and
can be expressed in terms of a new set of uncoupled
harmonic oscillators.

It is now possible to give a physical interpretation of
b&~ and b&~*. The operator b~i,

* is so constructed that
acting on the ground state it produces an exciton of
wave-number k and atomic state t. The operator b;k "'

The atomic part of the Hamiltonian is

2 t-fL 2 ~td«d«Z @tf tk fttk (22)
L k', t

The complete Hamiltonian will not be written out,
but instead only the terms of XLXL which involve
the least number of operators will be retained in an
approximate Hamiltonian. The physical interpretation
of the omitted terms will be given after the formalism
developed for the approximate Hamiltonian is com-
pleted. Then the reasons why the dropping of higher
powers of operators can often be justified will be more
readily apparent. The approximate Hamiltonian, for
small (I kl r«1) but nonzero k, is

kr Se'
II= Q &tfttk'f tk+—

R, t 3

applied to the exciton state t,k produces a crystalline
state in which tzgto atoms are excited. (This may be
verified by direct recourse to the definitions of b& &*
and btk. ) Such double excitations a,re correctly generated
by the b&k* but for one detail. There are S atoms in
the crystal and only E(lV 1) pa—irs of atoms taken in
either order. Using boson operators produces an error
in the normalization of the double-excitation wave
functions of 1/N. The zero-order wave functions for
multiple-wave functions can then be represented by
boson operators in a manner analogous to spin waves
in a lattice, '7 with the same restriction to states with
numbers of excited atoms much less than E.

The terms which were omitted from the model
Hamiltonian (23) have two physical interpretations.
Firstly, the b~~* produces multiple excitations in which
the excited atoms are not spatially correlated. Correlated
multiple excitations could be constructed which would
have diGerent energies from the uncorrelated multiple
excitations. Since the correlation energy of M dipoles
vanishes as the dipoles are separated, the number of
correlated states of appreciably diGerent energy from
the uncorrelated states should again be of order 3II/g.
Secondly, the dipole interaction of single excitations
depends on the presence or possibility of other excita-
tions. These eGects have atomic analogies. If an atom
in its ground state is placed in an electric field, not only
the states which are coupled to the ground state by
the perturbation are mixed in with the ground-state
wave function, but all accessible states are mixed in
through higher-order perturbations. If a gas of atoms
contains some atoms in an excited state, its dielectric
constant will be diGerent from that of a gas of atoms all
in their ground states. Both of these atomic effects are
omitted in the linearization of the model.

The perturbation Hamiltonian for the interaction of
an atom with the radiation field (in dipole approxima-
tion) can be written as

ie (2trhc ) &

Z Zl
gN t'ggo, mo, t'w k, k & Jt'Ikl &

Xgdt'dL' dzt(t I
Xlt)'e»

XI ak&,*exp( ik L)+—ak&, exp(ik L)]
'L8 f 2trkc ) *

+—P I loot
gN t,k, k (Vlkl &

Xl (Ol Xl»d« —(tl Xlo)d. ,*].e „
XLakk exp( ik —L)+akk exp(ik L)]

2xkc
+ Q z

2m k..Vlkl

XLakk a—kk +akka —kk+akk akk+akkakk 7. (26)
'~ For a discussion of the conversion to boson operators for the

spin wave case, see F. J. Dyson, Phys. Rev. 102, 1217 (19S6).
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The first term of this perturbation Hamiltonian couples
the diGerent excited states of the atom to each other,
but does not couple any excited states to the ground
state. The eBect of this term will be omitted from the
radiative interaction Hamiltonian and will be treated
as a perturbation on the last two terms. The model
radiation Hamiltonian will be expressed in terms of the
exciton and photon creation and annihilation operators.
Umklapp processes will be omitted for the usual
reasons. It is assumed that the ground state of the
atoms under consideration is an 8 state (all electrons
being considered). There will then exist matrix elements
of X from the ground state only to P states. The three
degenerate P states may be always so arranged that
the state created by bkt* has matrix elements of X for
a single atom only in directions perpendicular or
parallel to k. Such an arrangement divides the excitons
into two categories: transverse excitons with (OI XI t)
perpendicular to k and longitudinal excitons with

(OI XI t) parallel to k. There is no interaction between
the longitudinal excitons and photons since ekk (0 I

X
I t)

= 0 for longitudinal excitons of wave number k.
Similarly there is no interaction between any of the
three exciton modes in the Hamiltonian (23). For
consideration of optical interactions, the longitudinal
excitons can be omitted. In (23) and (26) only P-states
have interactions with each other or with the radiation
6eld, so all other exciton states will be omitted from the
6nal Hamiltonian. The transverse P-states will be
labeled by a principal quantum number e and a
polarization ) . By utilizing the atomic f-sum rule, "we

obtain the exciton photon interaction in the form

H'= ~ I ~ I I I I«lxl')
t &k,k EvIkI) E c )

X (f'kktakk —bkkt~akk+bkkta kk —f'kkt a kk )

2xe'Ã
~„I(0IXIf) Is

cIkIV

x (akk akk+akkakk +akk a—kk +akka —kk) I. (27)

This is the approximate exciton-photon interaction
Hamiltonian of the tight-binding excitons.

The total model Hamiltonian for the excitons and
photons which interact is

H= Hexciton+H photoo+Hexciton photon+Hexciton -exciton&-
where

Hphoton

= p AcIkI (akk*akk),

' The f-sum rule was used by Neamtan in his perturbation
treatment of the dielectric properties (neglecting absorption) of
a dilute gas to divide the A2 term into contributions from the
individual dispersion oscillators. See S. M. Neamtan, Phys, Rev.
92, 1362 (1953);94, 327 (1954).

+exciton

= Z Et(&t, k, k*bt, k.k),
h, t,X

+exciton-exciton

2~ Xe'
E (Xt Xt &tkk*bt, —kk*

3 I/ t' t,k,)

+ Xt" Xt *btkk&t. -kk+ Xt* Xt btkkbt k)*

+Xi Xt*btkk'&tkk)

(Xt=—(OI XIt)), (2s)

and Hexciton photon -is given by (27).
A comparison of (27) with (6) shows that each

exciton type t interacts with radiation exactly as the
quantized polarization field interacts with radiation.
In the absence of interaction between the excitons, the
system of excitons in interaction with radiation in the
model under consideration can be represented as a
quantized set of classical polarization fields, one for
each exciton band which interacts with radiation. Thus
excitons are a physical example of the general polaritons
of Sec. III.

The dipole interaction term of the exciton Hamil-
tonian is the quantum-mechanical expression of the
classical "local field" correction to the polarizability
of a density of atoms. For the case of only one exciton
mode (transverse) with dipole matrix element IXI
and atomic energy level E, the relation between the
energy and wave number can be determined by using
the diagonalization method of Sec. III. Direct applica-
tion of the diagonalization procedure yields the secular
equation

ks—=1+ (29)
QP

s~(x/v)et IxI'E
Es—(8'/3) (N/V) O'

I
XI'E—oi

k' 4n (E/V)n
e=—=1+ or

ois 1—(4rr/3)n(X/V)

e—1 AX
n (30)——.

c+2 3 V

The energy of the coupled excitons is

s~x IXIsi&
Ecoupiee=EI. 1 e

3 V E

The expansion of the square root to 6rst order yields
E—(4rr/3) (Ee'/V) I XI', which agrees with the expres-
sion obtained by Dexter" from perturbation theory.
"D. L. Dexter, Phys. Rev. 101, 52 (1956).

It is seen that the dipole coupling has two effects: it
reduces the frequency of the excitons from that of the
free atom and it increases the oscillator strength.
Since 2e'

I
X

I
'E/(E' —tos) is the polarizability' of a

free atom, (29) can be rewritten in the more familiar
Lorenz-Lorentz form
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H the radiation 6eld is omitted from the problem, and
the coupled exciton problem is solved, the shift in
zero-point energy corresponds to the van der Waals
fol ces.

There are two points of view which can be adopted
for treating the "local field" eGects in the extreme
tight-binding model. The semiclassical treatment
assigns to each atom in the crystal a polarizability.
The dielectric constant of the crystal is then computed
by taking into account the dipole interactions between
diferent polarized atoms. In the quantum-mechanical
treatment, there are terms in the crystal Hamiltonian
representing pairs of atoms. This interaction makes the
crystal wave functions and energy levels dÃerent from
the wave functions and energy levels of a collection of
noninteracting atoms. Since the dipole interactions of
the various atoms have, in this view, been properly
taken into account in the quantum mechanics, it is
not necessary to speci6cally include "local field" e6'ects
in the electrodynamics of the crystal.

The quantum-mechanical point of view is used
throughout the present work. It is simpler to work in
terms of an assumed set of entire crystal eigenfunctions
than to work directly with the atomic wave functions.
In addition, interpretation is easier on an entire-crystal
basis. An example is the occurrence of the 4rr/3 catas-
trophe of the semiclassical theory at a 6nite frequency
co not the same as any atomic transition frequency.
This occurrence is easily understood in the quantum-
mechanical description in terms of the diGerence
between the energy levels of an atom and the crystal
energy levels. Finally, the "Lorentz local 6eld correc-
tion" is only a 6rst approximation to the exact result
which would be obtained by using the exact Hamil-
tonian. ' A formalism written in terms of whole-
crystal states (in which it is assumed that the entire
crystal Hamiltonian has been diagonalized) can be
valid whether or not the semiclassical local 6eld
correction is an adequate description of interactions
between atoms.

For the theory of absorption it will be assumed that
the exciton-exciton interaction Hamiltonian has been
unscrambled so that the exciton creation and annihila-
tion operators for diGerent bands are no longer coupled.
The Hamiltonian for either the weak- or the tight-bind-

i ~ There is a simple classical analogy which points out why the
Lorentz-Lorenz equation is a linear approximation. Classically,
there is a large and rapidly varying field near an atom in an
S-state due to the instantaneous value of its dipole moment. Thus
an atom in a crystal feels the applied Geld, the mean interaction
field of all induced dipoles, and a large, randomly varying field
having an average value of zero. If the polarization of the atom
is given by P=nE+bE& (there will be no E term for spherically
symmetric atoms), then the time-averaged polarization P in
the presence of an applied field E, (small) and a large fluctuating
field Ee(t) will be approximately P=La+8'LEe(t)g'E where 8'
can be computed from 6 and the details of the large, rapidly
varying Geld. The observed polarization is proportional to R,
but the observed polarizability is not n. This eBect is not included
n dassical local Geld formulas.

V. COMPLEX DIELECTRIC CONSTANT

Absorption, from the point of view of the present
paper, is due to terms which have been left out of the
approximate Hamiltonian. In Sec. IV, the "many-
body" interactions of excitons with all other energy
modes of the crystal were omitted. The simplest of
these interactions are the three-body interactions
(in an "unclothed" notation):

exciton ~ exciton' jphoton, (a)

exciton+-+ 2 photons,

exciton ~ exciton'+ phonon,

exciton ~ 2 phonons,

(b)

exciton ~ phonon+ photon, (e)

and their variations. 2' The fact that Quorescence is
not usually observed in pure materials implies that
(a), (b), and (e) are probably not the dominant decay
processes. The possibility of a sizeable energy shift in
the exciton states due to interaction (c), the exciton
polaron problem, is not expected to invalidate the
general results of this paper. The author sees no reason
why the qualitative conclusions to be derived would be
altered in form by the use of excitons clothed in phonons,
although the physical parameters would in any partic-
ular instance, of course, be altered by the inclusion of
lattice polarization sects.

Order of magnitude estimates of the transition
probabilities of diGerent possible processes leading to
exciton decay also indicate that process (c) should be
the dominant decay process. The scattering lifetime
for process (c) should be of the same order as free
carrier scattering lifetimes for carriers having the

"If the phonons are coupled to the electromagnetic Geld, a
second type of process is possible. The mixed states of photon
and phonon (for which the formalism of Sec. III is also applicable)
can decay into exciton states. This gives rise to a kind of indirect
absorption process.

ing model will be taken to be

+exciton++photon+ +exciton-Photon

plus a perturbing term which will induce transitions.
The exciton energies and oscillator- strengths which
belong in this Hamiltonian can in principle be obtained
from the diagonalization of the exciton-exciton
interaction.

In the absence of absorption, the role of exciton states
in dielectric phenomena is clear from the comparison
of the Hamiltonian derived here and the generalization
of Sec. III to include more polarization modes. The
exciton states simply represent the quantized form of
the classical polarization field. The eigenstates (normal
modes) of the total Hamiltonian represent those
combinations of polarization waves and electromagnetic
waves which propagate in an ideal classical dielectric
medium.
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same kinetic energy as the exciton, and thus be about
10—"to 10 "second. All the other processes are much
slower. Process (e), for instance, has a lifetime greater
than (but of the same order as) tx 'To, where n is the
exciton-lattice coupling constant, and Tg is the lifetime
of decay of a localized exciton for photon decay neglect-
ing the resonant sharing of energy. To thus lies between
10 4 and 10 ' second, depending upon the exciton
oscillator strength, whole 0, for most excitons will be
of the same order as n for free carriers, lying between
0.1 and 5. Processes (a), (b), and (d) are also slow
relative to (c).

Any of these three-body interactions which produce
transitions represent a sink from the optical point of
view, for a three-body transition is a method of trans-
ferring energy from a mode of wave vector k into modes
of wave vectors not equal to k. From a physical point
of view this represents a scattering, whereas two-body
interactions which conserve wave number do not in
general cause a process which can be viewed as scatter-
ing or an "absorption" because the restriction of
wave-vector conservation usually prohibits real transi-
tions. On the other hand, any of the three-body
processes listed have an energy continuum of 6nal
states of the same wave number as the initial exciton
state, producing the possibility of real transitions if
the exciton energy overlaps this continuum.

Observed exciton absorption lines are virtually
always broad compared to atomic line widths and the
widths are strongly temperature dependent. An
inference which may be draw'n from this fact is that
the exciton-lattice interaction is dominant in exciton
decay processes. It would then seem to be the exciton
part of the clothed exciton which causes clothed
excitons to scatter and produces the eGect of optical
absorption.

In order to represent the coherent propagation of
the primary beam, it is sufhcient to take into account
the attenuation of the primary beam, without calcula-

ing explicitly the 6nal history of the scattered waves.
We follow the treatment of the complex dielectric
constant given by Fano" to derive a complex dielectric
constant which expresses the e6ects of higher-order

couplings. We therefore assume that each of the normal
modes of the approximate exciton-photon Hamiltonian
is coupled weakly to a continuum of states through the
three-body (and higher-order) processes described. This
coupling is assumed to be weak (the transition probabil-
ity for decay- is much less than the reciprocal of the
normal-mode frequency). It must be further assumed
that the matrix elements and density of 6nal states for
normal-mode decay are slowly varying functions.
Neglecting the energy shift due to the "dissipative"
interaction, Pano shows that a suitable complex

~ Fano, reference 3, Appendix A.

dielectric constant is

where p; is the transition probability for decay of the
jth normal mode, and P; is the polarizability of the
jth mode.

The y; can in turn be expressed in terms of bare
exciton lifetimes if the decay process is su%ciently
simple. For example, if the exciton ~ exciton +phonon
process is assumed to be the decay-causing interaction,
and the exciton' is assumed not to interact with
radiation, then the relation between p; and thedecay
lifetime for a bare exciton is determined by writing
the exciton —+ exciton'+phonon interaction in terms
of the normal mode operators. In the simple case of only
one exciton band, the transformation is described by Eq.
(16). In the simple one-band case,

~
Cqo

~

' = 1 for E =coo,

and y is the bare exciton lifetime. For more compli-
cated cases, the relation is not necessarily so simple,
for there can exist interference eGects between diferent
exciton components in normal-mode decay.

If the density of states into which the normal modes
decay is not smooth, additional structure reQecting
this fact may be observable. This can be the case when
an optically accessible exciton band is coupled through
phonons to other energy bands not available to direct
optical transitions. In this case y will be a function of
frequency. Indirect absorption of light by exciton states
in a phonon process (photon~optical phonon~exciton
+phonon') is an example of such a process. Here, the
absorption is associated with oscillators (optical
phonons) of very low energy. There is a sudden change
in the lifetime Ly(co)g of the phonon-photon state as
the frequency increases to a value which allows exciton
formation, even though the frequency region is far
removed from optical phonon frequencies, and the
exciton band is not directly accessible to optical
tl ansltlons.

VI. SUMMARY AND APPLICATIONS TO
EXPERIMENTAL WORK

The qualitative difference between the absorption of
light by exciton states in the theory developed here and
the usual point of view must be strongly emphasized.
In the usual view, light propagating through the crystal
directly creates excitons, and the energy Qux of the
incident beam is reduced by the amount of energy given
up in creating excitons. The incorrectness of this point
of view was discussed in Sec. II. In the point of view
developed here, light inside a crystal mixes strongly
with excitons in the crystal, producing a propagating
mode of mixed exciton and photon. True absorption
takes place when other crystal states are excited by the
exciton part of this propagating mode. The energy
absorbed by a crystal does not lie in the exciton modes
to which the light was directly coupled. Instead, it.
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lies in the crystal energy modes to which the excitons
coupled to the light can make transitions. This qualita-
tive diGerence, in conjunction with the fact that excitons
do not undergo pure radiative decay, can produce
large changes in the interpretation of optical phenomena
in crystals. "

A qualitative distinction between two diGerent types
of absorption can be made in order to understand
more clearly the absorption process. The kind of
absorption usually considered might be called "true
absorption. " In true absorption, the intensity of a
light wave propagating through a crystal is diminished
because of the absorption of energy from the light wave

by the crystal. The measure of true absorption is
classically the spatial rate of attenuation of the Poynt-
ing vector. A second kind of absorption might be termed
"penetration absorption. " A classical dielectric with
no damping exhibits total external reQection in a
semi-infinite geometry. This total reHection occurs in a
frequency region just above the resonant frequency of
the dielectric. The dielectric constant is negative in
this frequency region. An electromagnetic field exists
inside the dielectric even in this total-reQecting
frequency region. The wave vector (for normal in-
cidence) is purely imaginary inside the dielectric. lf the
transmission of a plane parallel sheet of such a dielectric
is measured as a function of sheet thickness, the
imaginary part of the wave vector can be measured in
spite of the fact that there is no a,bsorption of energy
by the dielectric.

The problem of interpretation of experimental
results is a completely classical one, but one which
should be closely examined before applying this theory
to experimental results. A differentiation between the
two kinds of absorption is not normally made in cases
of strong optical absorption, where both types are
usually present. The theory developed here relates the
imaginary part of the dielectric constant to parameters
characteristic of the crystal. It is important for applica-
tions of the theory to analyze and interpret experiments
in such a way that the optical constants (n„and ss;, e„
and s;, or suitable combinations) are obtained. This is

especially true in making reQection corrections to
transmission experiments for obtaining e;. A trivial
and extreme example is the measurement of e; in the
case of pure penetration absorption. If an ordinary
reQection correction is made, it will be found that all
the energy not reQected from the crystal is transmitted
through the crystal. To interpret this fact as a lack of
energy absorption by the crystal is completely correct,

~ In some cases, the applicability of the theory is limited to
low temperatures. In order for the theory to be valid, it is necessary
that the rate of exchange of energy between the exciton and photon
in a mixed eigenstate be fast compared to the transition probability
for exciton-phonon scattering. The rate of energy exchange is
approximately tee(sp)&, as can be seen from (12). For oscillator
strengths of 10 3 or smaller and temperatures high enough that
the free-carrier scattering lifetime is around 10 '4 sec, the rate of
energy is no longer fast compared to the rate of exciton scattering.

To interpret this fact as proof that the imaginary part
of the index of refraction is zero is definitely incorrect.

A useful approximate expression can be found from
the more general Eq. (31) for p in terms of the observed
absorption coefficient if y/koo(&1 and an absorption
single line is suKciently isolated that the following two
conditions are met:

e, (ko)dko
~ absorption line

4rrP I' (1—y')&
=Mp dy, (32)

e ~s L1+(4sP/e')ysj&

where e' is the dielectric constant due to all other lines,
evaluated in the region of absorption of the line under
study, and cop is the frequency of the absorption line.
(The integral can be expressed in terms of elliptic
functions if desired. ) The large contribution to the
integral occurs when y is near zero. In many physical
cases, 47rP is small enough that 4s.P/rP can be neglected
in the denominator. For these cases,

S 5$
febsorption line= ~0+cell 'Sk(ko)dko. (33)

X 8 ~ absorption line

This equation resembles closely the Smakula equation'4
for absorption by impurities in a crystal, except that
a factor L3/(n'+2))' which occurs in the Smakula
expression is missing here. The physical reason for the
absence of this term is that, for the perfect crystal,
all "local field" eGects are taken into account in a
correct computation of the crystal wave functions
(see Sec. IV). The derivation of (33) does not rest on
the assumption N,((1.However, the extension of (33)
to the case of two adjacent lines in the form

fi+fs= constant x rs;(ko)cko
~ both lines

is not correct unless the condition e,&(1 is met.
One important result of (33) concerns the estimation

of relative oscillator strengths from observed absorption
data (i.e., from e;). When two absorption lines lie
close together, the lower-energy line is suppressed and
the higher-energy line is enhanced in the area under
the rs;(ko) curve. This effect arises because the contribu-
tion by the higher-energy line to ns in (33) for the
lower line is large and positive, whereas the contribution

2'See the "generalized Smakula equation" of D. L. Dexter
(reference 19).

1. The contribution of all other bands to the real
part of the dielectric constant is positive and essentially
constant over the region of study,

2. The contribution of all other bands to the imag-
inary part of the dielectric constant is zero.

The approximate formula, exact only for y=0, is
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by the lower-energy line to rt' in (33) for the higher
energy line is large and negative.

The assumptions which have been made to obtain the
theory of the dielectric constant were discussed as they
were made. The least satisfying of these is probably
the assumption that the general theory is valid for
actual crystals which do not Gt either extreme exciton
model. The theory as constructed in Secs. III through
V is a more precise theory than the usual one outlined
in Sec. II. The division of the crystal into sub-blocks,
the use of semiclassical radiation theory, the assumption
that e—1 is a small quantity, and an appeal to a group
velocity were all avoided.

The formulation given of the complex dielectric
constant problem makes it possible, in principle, to
compute the complex dielectric constant from Grst
principles. Although it is impossible to make really

satisfying calculations on the basis of this theory
without much more knowledge of exciton wave functions
and the exciton-lattice interaction than is available at
present, nevertheless the theory can be of use in provid-
ing a framework in which to interpret the optical
absorption associated with exciton states.
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The problem of hot electrons in a nonpolar crystal is reconsidered using the Lorentzian gas model more
accurately. Scattering by acoustical phonons alone is considered first. The new results are (1) an asymptotic
formula for the moments of the velocity distribution which permits calculation of the deviation from the
square root law at high fields, and (2) a recursion system allowing the calculation of any velocity polynomial
in terms of the average energy, random velocity, and mobility of the electrons. Scattering by ionized im-
purities in addition to acoustical phonons is considered next and the distribution function is derived. The
proportionality constant relating the change in the low-field mobility to 8' is shown to be highly sensitive
to ionized impurity scattering. Thus, appreciable changes from its value for pure lattice scattering occur for
tse/tsr as low as 10 '. (E is the field strength and t40 and pr are the low-field lattice and impurity mobilities,
respectively. ) It is pointed out that substantial deviations from results obtained using a Maxwellian dis-
tribution do occur.

1. INTRODUCTION

'HIS paper concerns the motion of electrons (or
holes) in nonpolar semiconductors or insulators

in strong electrostatic Gelds. We consider a crystal with
spherical energy bands and at a high enough tempera-
ture so that the equipartition law is valid for the
acoustical lattice oscillators with which an electron
interacts. With these two assumptions, Shockley' shows
that the scattering cross section' and the average energy
losses for an electron interacting with acoustical
phonons, remain, to a good approximation, the same
if we replace the phonon Geld by a classical gas of hard
spheres of mass' KT/c' (where c is the longitudinal
speed of sound and KT is the thermal energy) and of

' W. Shockley, Bell System Tech. J. 30, 990 (1951).' See also F. Seitz, Phys. Rev. 73, 549 (1948); A. H. Wilson,
The Theory of Metals (Cambridge University Press, Cambridge,
1953), second edition, Chap. 9.

'The validity of equipartition implies that ET/c' is much
greater than the electron eGective mass.

such a density as to make the mean free path (mfp) the
same in both cases. This is the Lorentzian4 ' gas model
or the gaseous discharge analogy. Indeed, the velocity
distribution function is the same in both cases. (See
Sec. 2.)

In Sec. 2 we shall give accurate calculations for the
physical properties of hot electrons in Shockley's model.
In particular, we wish to emphasize deviations from the
square root law in the current voltage characteristics
at intemediate Gelds.

In Sec. 3 we shall consider scatterings by ionized
impurities, in addition to acoustical phonons, derive
the proper distribution function and obtain deviations
from Ohm's law at low Gelds. The results will be com-

pared to those obtained using a Maxwellian distri-

4 H. A. Lorentz, Theory of Etectrorts (Stechert and Company,
New York, 1923), p. 267.

~ S. Chapman and T. G. Cowling, The M'athensatical Theory of
37ortttwtform Gases (Cambridge University Press, Cambridge,
1953), second edition, p. 187.


