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Theory of Solid Ne, A, Kr, and Xe at O'K*
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A quantum-mechanical variational technique is applied to an Einstein model of a solid, and the heats of
sublimation and equations oi state oi solid Ne, A, Kr, and Xe are calculated at O'K. Mie-Lennard-Jones 6-12
potentials appropriate to the gas-phase data are used throughout, and the importance of quantum-mechanical
effects is discussed; in general, good agreement with experiment is obtained. From the theoretical zero-point
energies equivalent Debye temperatures, 8, are calculated, and from the dependence of these 8 on volume,
Gruneisen constants are computed in good agreement with experiment. Theoretical compressibility curves
(at O'K) are presented, and compared with the available experimental data; in the case of Ne, the only
substance for which high-pressure data are available, the agreement is rather good up to 20 k atmos.

I. INTRODUCTION

HE behavior of a collection of closed-shell atoms
can in general be rather well described by as-

suming a suitable law of force between two isolated
atoms. The potential energies corresponding to such
laws of force are characterized by (a) an attractive part
whose dominant term varies as the inverse sixth power
of the distance, r, between the centers of mass of the
two atoms, and (b) a repulsive part of still shorter range.
Such a potential energy, v(r), has a negative minimum
at an intermediate r, rises very rapidly to large positive
values at small r, and goes to zero, through negative
values, at large interatomic distances. A simplified and
yet satisfactory representation of v(r) makes use of a
function involving two parameters, (1) the interatomic
distance, o, where the potential is zero, and (2) the
depth, e, of the well corresponding to the minimum of
v(r) Interato. mic potentials involving three and more
parameters, have been proposed by several authors, '
and obviously, the Qexibility introduced by the extra
parameters leads to a somewhat better fit of the gas-
phase data. ' However, none of these more elaborate
potentials can be derived in a rigorous way from the
principles of quantum theory, ' and in any case, the
interaction of two atoms at small separations, under
conditions of appreciable electron-shell overlap, cannot
be precisely described in terms of a function involving
only the distance between the centers of mass.

Two-parameter potentials of the form

v(&) =4eL(~/s')" —(~/~) "j
have been extensively discussed by Lennard-Jones and
co-workers. ' Analysis has shown that such a v(r) with
m=6, m=12, and with suitable choices for 0. and e,
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'For a discussion of diferent potentials and their use, see
Hirschfelder, Curtiss, and Bird, Molecular Theory of Gases and
Lr'qN&s (John Wiley and Sons, Inc., New York, 1954).' J. E. Lennard-Jones, Proc. Roy. Soc. (London) A106, 463
(1924), and subsequent papers.

correlates well the gas-phase experimental data, vis. ,
virial coefficients, viscosity, and Joule-Thomson coefli-
cients, for He, Ne, A, Kr, and Xe.' ' Properties of the
corresponding liquid phase are more difficult to describe
theoretically, and for this reason play a less important
role in the choice of the optimum m value. On the other
hand, after Lennard-Jones many workers' " have
shown that the 6-12 potential gives also a fair descrip-
tion of the solid phase. In these investigations, quantal
sects are taken into account by attributing a suitable
zero-point energy to the collective modes of oscillation
of the crystal lattice; the results agree moderately well
with experiment, except in the case of He, in which the
zero-point energy at zero pressure is comparable to the
net static potential energy. By static potential energy
we always mean the potential energy calculated on the
assumption that each atom is fixed at a definite crystal
lattice site.

In the present paper we employ a variational method
for the calculation of the binding energies and the
equations of state of solid Xe, A, Kr, and Xe at O'K and
for pressures from zero up to 2&&10' kg/cm'. Our trial
wave functions represent the motion of the various
atoms of the crystalline solid about their crystal lattice
sites, the motion corresponding to displacements from
these sites, of amplitude much smaller than the mean
distance between nearest neighbors. A 6-12 potential as
in Eq. (1) is used throughout, and forces depending on
the relative coordinates of more than two atoms (many-
body forces) are neglected. Furthermore, our wave
function for the solid as a whole is built up out of non-
overlapping single-atom wave functions; as a result,
symmetry or exchange sects are absent in our treat-

3R. H. Fowler and K. A. Guggenheim, StatisticaI, Thermo-
dyeamscs (Cambridge University Press, London, 1952).' J. E. Lennard-Jones, Proc. Phys. Soc. (London) 43, 461
(1931).

sR. A. Buckingham, Proc. Roy. Soc. (London) A168, 264
(1938).' J. de Boer and B.S. Blaisse, Physics 14, 149 (1948).

~ L. Salter, Phil. Mag. 45, 360 (1954).
s J. H. Henkel, J. Chem. Phys. 23, 681 (1955).
9 I. J. Zucker, J. Chem. Phys. 25, 915 (1956)."C.Domb and I. J. Zucker, Nature 178, 484 (1956)."T.F. Johns, Phil. Mag. 3, 229 (1958).
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ment so that, for example, any predicted diGerence be-
tween the binding energies of solid Ne" and solid Ne"
is due entirely to the diGerence in masses between the
two isotopes, and not on the difference of their statistics.
Except for the case of He' and He' the e6ects of sta-
tistics (i.e., the proper symmetry of the total wave
function) should be negligible.

Our calculation takes into account two important
quantal contributions: (1) a correction, hU, to the
static potential energy, since the atoms are not 6xed to
their sites, and (2) the kinetic energy, T, arising from
this motion. These contributions are both positive, and
approximately equal one to another. Our method in its
present form does not seem to be suitable for application
to solid He for reasons explained in Sec. II. Our results
for solid Ne, A, Kr, and Xe are in good agreement with
the available experimental data, which unfortunately
are scarce.

II. THE WAVE FUNCTION AND THE ENERGY OF
GROUND STATE OF THE SOLID

The single-atom wave function used, p(r;), describes
the motion of the ith atom about its crystal lattice site;
the wave function for the solid as a whole, 4(rr, rs, r~),
is a suitable product of the y's. As a variational trial
function for y(r;) we take a superposition of the ground-
state and first-excited-state wave functions of a point
particle moving freely in a spherical box of radius
a&A/2; E is the mean distance between nearest
neighbor atoms. Thus we write:

due to the correlated motions of the atoms, are very
easily excited even at low temperatures; an appropriate
account of this situation is given by the Debye model.
However, as far as the ground state of the solid is con-
cerned, either the Debye model or the Einstein model
can provide a good description if only the wave function
of the model is properly chosen.

Our results below show that the wave function 0' of
Eqs. (2) and (2a) indeed has enough variational Qexi-
bility to give a good value for the ground-state energy
of the solid, over a wide range of densities. In fact, even
if b is taken equal to zero in Eq. (2a), the wave function
(2) still gives acceptable values for the ground-state
energy.

We proceed now to a calculation of the energy, E.
Explicitly, E will be a function of the variational
parameters a and b:

$2 N N N

B(g,b)= O'* — P V,'+Q Q u(r, ;) %dr, dr

N N

i=1 j=1 &
i&j

if the normalization const. ant, A, is chosen in such a way
that

0"*Cdr1 ~ drN = 1,

where

q (r;) =A(u/~Ix;I)[sin(s-Ix;I/a)+b sin(2s-Ix;I/u) j
and

for Ix;I ~& a, (2a)

where x,—= r;—R; is the vector distance of the center of
mass of the sth atom from its crystal lattice site at R;;
A is a normalization constant, and u, b play the role of
variational parameters. Since the q's do not overlap,
inclusion of any atomic spin coordinates and appropriate
symmetrization or antisymmetrization of 0' with respect
to permutations among the atoms will not aGect the
results.

Our variational ground-state wave function 4 in
Eq. (2) corresponds to an Einstein model of a solid in
which the motions of any two atoms are completely
uncorrelated. Ke recall that the important factor in a
Debye model, which does oGer a rough description of
such correlations. and of the empirically valid T' law for
the specific heat at low temperatures, is not the ground-
state wave function, but rather the relatively large
density of low-lying excited states. In other words, there
are collective modes of oscillation in the solid, which,

where E and M are the number of atoms in the solid
and the mass of each atom, respectively; r;;—= r;—r, ,
and V,& is the Laplacian with respect to r;.

The total kinetic energy is immediately evaluated,
while the total potential energy can be evaluated by a
method previously developed by the author. "The result
ls

Z(a, b) A' (n q
' 1+4b'

2M l u) 1+b'

n, (u)ng(a)

where

d "w(x)
R;;=—

I R;—R;I, w(x) =ms(x) t'ai'l[yj=
dx~

and

"N. Bernardes, Nuovo citnento (to be published).
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Using a 6-12 potential, I Eq. (1) with m=12 and
m=67, and Eq. (2a) for q, and anticipating that br&(1,
we obtain

E(ab) hs
( wq s1+4bs

2M (a) 1+b'

o )is 2g
+4l~~l I

1+
I I

i i j i (R~g) (R;~)

2u 4 2a)' 2a
+~I I +~l I +bl I +

L.R;;) ER;;) &R,, )

o )s 2g)s
-4-:& &I I I+)tI

~-i '=i I R;;) L,R,,)

seen to converge too slowly and we are unable to present
results for He."

The summation in Eq. (4) over all possible pairs in
the lattice, can be carried out by the method of I,ennard-
Jones and Ingham. '4 The results, with x—=2a/R (R being
the nearest neighbor distance), is

E(a,b) (1+4b') t' t'ai'm ) (o i'
4eX E 1+b') 42Meo') ER)

(~mls
+s I I LC&s+ Ct4nx'+Crux'

ER)
I'&'i s

+Cisyxs+Clbxs+ 7—-',
I
—

I

ER)
X LCs+Cs)ix'+Cispx'+Ctsi xs+Ci41'xs+

(2ul' r'2@is (2a1'
+&I I +"I& I +fl )I + ' ' (4) where

R,, )

(T(a,b)+ U,i+AU(a, b) ), (5)4'
U, t, =4elV-,'I Cis(o/R)" —Cs(o/R)'7

where is the static potential energy, and
o.=3.108—1.981b—1.347b',

P =6.182—7.170b—2.213b',

y = 10.07—15.97b—0.0198b',

()= 14.68—28.31b—4.680b')

X=0.7065—0.4502b —0.3060b',

p =0.4324—0.5016b—0.1547b',

s =0.2641—0.4189b—0.0052b',

1 =0 1661 .0 320—4b+. 0 0529b'.

(1+4b'q tr t'ai'w' q po q'
Z(, ,b) =—4,g

I

0 1+b') &2Meo'j &R)

is the total kinetic energy. The C's are tabulated con-
stants, '" which depend only on the type of lattice
structure.

Defining P=h'w /(2Meos), and introducing numerical
values for a, P, i LEq. (4a)7 and for the C's (appro-
priate to a face-centered cubic or hexagonal close-
packed lattice, for which the C's are the same within
four significant figures), we obtain (if b ((1)The errors introduced by neglecting terms in higher

powers of 2u/R, , than those whose coefficients are
written explicitly in (4), are, for Ne at zero pressure,
about 0.1'Po in the attractive part and 1% in the re-
pulsive part. For Ne at high pressures, and for the
heavier elements even at zero pressure, these errors are
much smaller. On the other hand, for He (at 25 atmos),
the attractive term may be in error by approximately

5%, and the repulsive term may be wrong by a factor
of two. The evaluation of the potential energy for He
by our method of expansion in powers of 2a/R;, is thus

E(rj,,b) U, g

+ (1+3b')&(0/R)'x '
4&X 4&iV

+ (o/R)is[E, xs+I',x'+ I' +sxPs4x +s" .7
—( /R) sl Q x'+Q x'+Q x'yQ x'+ 7, (6)

where
I'

3
= 18.74—11.94b—8.121b',

P2= 37.18—43.12b—13.31b',

Ps= 60.48—95.92b—0.1187b',

P4= 88.12—169.9b—28.09b',

Qi ——4.522—2.882b —1.959b',

Qs ——2.661—3.087b—0.9522bs,

Qs
——1.602—2.541b—0.0314b',

Q4
——1.001—1.932b—0.3191b'.

TAnLE I. Two-body potential parameters (0 in A, s in 10 "erg)
adopted by diGerent authors: first set by de Boer, second by
Dobbs and Jones. The third set of values is used in the present
paper.

sr(3) g(8)

This paper
sr(l) q(1)

de Boer
tr(2) g(2)

Dobbs and Jones

2.75 49.2
3.40 169
3.68 230
4.07 311

2.74
3.41
3.65
3.92

2.74
3.40
3,65
3.98

48.82
165.0
230
318

¹

A
Kr
Xe

I See reference 16.
& See reference 17.

50
'3 At high pressures the convergence is improved, and the results

of our calculations for He' at p= 10 000 atmospheres agree, within
20%, with J. W. Stewart's data PJ. Phys. Chem. Solids I, 146
(1956)j.

'4 J. E. I.ennard-Jones and A. E. Ingham, Proc. Roy. Soc.
(London) A107, 636 (1925).
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TABLE II. The Grst two columns show the values of the variational parameters which minimize the energy at zero pressure. In the
third column the ratio (core radius/nearest neighbor distance) for which the energy at zero pressure is a minimum is given. If quantum
effects were neglected, this ratio would have the same value (0.917) for all substances. The three subsequent columns list, respectively,
the potential energy of a static lattice, the quantum mechanical correction hU to this quantity, and the corresponding kinetic energy,
T. Adding these three quantities, we obtain the heats of sublimation at O'K listed in the seventh column. The last two columns indicate,
in %, the contributions of quantum-mechanical effects to the heat of sublimation and volume at zero pressure

y = (Ro/2a) ~ a/Ro —Ust (RP)/4' hV (Ra)/4eN T(Ro)/4' —Z0/4'
(To+a,Uo)/

J U.to) (VO/V, el '. ) —1
(%) (%)

Ne
A
Kr
Xe

0.11
0.14
0.15
0.14

9.75
30.2
53.9
90.2

0.875
0.905
0.910
0.915

2.022
2.140

. 2.148
2.152

0.233
0.103
0.0583
O.D390

0331
0.113
0.0616
0.0401

1.458
1.924
2.028
2.073

28 15
10 4.2
5.6 2.4
3.7 0.9

For a given value of R, we now minimize E(a,b) with

respect to u and b. This leads to two simultaneous
algebraic equations which, in the case of b'((1, are

and

(1+3b')$y'= A sy'+A sy'+A ty+A s)

tL6$+f(y) —g(y)j=~(y) —~(y),

(7)

(8)

III. RESULTS AND DISCUSSION

Table I lists the values we have chosen for 0. and e.,
for comparison we also present the values adopted by

'~Hereafter a bar over a quantity means the values of this
quantity when the optimal values of a and b are used.

where y=—x s=—(R/2u)', and

A s= Et(o/R)" —Qt(o/R)4,

2P, (~/R)ro Q, (~/R).j
A, =3@s(~/R) —Qs(~/R)'j

A.=4L~ (-/R)"-Q ( /R)'j,

f(y) = (o/R)'(3. 917y '+1.906y '+0.06y '+0.64y '),

g(y) (o/R)to(16 24y
—s+26 60y

—a+0 119y—4+56 2y
—

s)~

h(y) =(o/R)"(11.95y '+43.09y '+95.82y 4+169.9y '),

k(y) = (o/R)4(2. 881y—'+3.090y—'+2.543y-'+1.932y-').

Since Eqs. (7) and (8) cannot be decoupled, we use an
iteration procedure: taking b=0, we solve Eq. (7) for

y; substituting this value of y into Eq. (8) we solve for
b, which is then substituted into Eq. (7), which now

gives a better solution for y, and so forth. We stop the
iterations when the number of significant figures we

want is not altered by a new iteration. For three
significant figures we found two iterations to be sufhcient.

Obtaining in this way the values of a and b which

minimize E(u,b) for a given R, i.e., for a given volume,
we use Eq. (6) to calculate the corresponding minimized

energy, E=E(R)."We do this for different values of R;
by numerical differentiation of E(R) with respect to R,
we obtain the pressure ss volume curves (p= dE/d V)—
In particular, for zero pressure, the volume Vo and the
ground-state energy (i.e., the heat of sublimation) Es
are given by (dE/dV)v=vs=0, and E(Vs), respectively.

1.00

0.90

085

080

0.75

0.70

045
0 12

P f~ IO kg/ca~
18

Fro. 1.Volume as a function of pressure, for Ne, A, Kr, and Xe.
The solid lines are theoretical curves, using 0&3), &&3) from Table I.
The closed circles correspond to experimental values for Ne, due
to Stewart. ~

's J. de Boer, Physics 14, 159 (1952),
'7 E. R. Dobbs and G. 0. Jones, Reports oe Progress irl, Physics

(The Physical Society, London, 1957), Vol. 20, p. 516.
~ It is worth mentioning that, for Ne, the minimizing value of b

decreases E0 by only 1% relative to the value with b=0. For Xe,
this effect is even smaller (0,1%).

de Boer,"and by Dobbs and Jones."In all cases, the
various o and e agree within 3%.

Table II gives the optimal values of fp and y Li.e., the
solutions to Eqs. (7) and (8)j, U„t,, T, AU, and the
ground-state energy Eo, all values corresponding to zero
pressure. The last two columns give a measure of the
relative importance of the quantal contributions to the
energy and volume at zero pressure. "

Table III shows the values, at zero pressure, of the
binding energies or heats of sublimation, and the
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TAnLE IH. Heats of sublimation (in cal/mole), and volumes (in cm /mole) at zero pressure and O'K, for three different sets of 0'

values listed in Table I. In the fourth and eighth columns the experimental values are shown. '

Ne
A
Kr
Xe

Vp(»
de Boer

13.1
22.8
27.5
33.6

P'p(&)

Dobbs and Jones

13.2
22.6
28.2
37.6

yp(3)
This paper

13.1
22.6
27.5
35.1

P'pexp

12.5m 1.5
22.6~0.1
27.6+0.4
35 &2

gp(1)
de Boer

410
1830
2688
3800

Qp (2)

Dobbs and Jones

413
1874
2688
3716

—gp(p)
This paper

420
1852
2630
3824

gpexp

450~10
1850&12
2590&50
3830%50

a See reference 17, and reference 23 added in proof.

corresponding volumes; we have used the three diferent
sets of values for 0- and e listed in Table I. The relevant
experimental values of t/'0 and Eo, as quoted by Dobbs
and Jones, 'r are also presented in this table. Agreement
between theory and experiment is rather good, except
possibly for Ne, in which case, as seen from Table II, we
seem to have a little too much kinetic energy, and so the
binding energy seems to be too small. Since, as just
noted, the introduction of a second variational parame-
ter, b~O, in the single-atom wave function q does not
make a considerable improvement in Eo, we can con-
clude that explicit correlation terms must be introduced
into the wave function to describe the motion of
neighboring atoms (i.e., we must give up the Einstein
model). Such effects are, however, probably negligible

for A, Kr, and Xe, where, as seen from Table II,
a/280=—y ' is much smaller than for Ne.

50—

40

50

20

IO

Figures 1 and 2 show our results for the volume as a
function of pressure, at O'K. In these calculations it is
a sufhcient approximation to take b= 0, since the pres-
sure is even less affected than E by a nonvanishing b. In

, plotting the theoretical curves" in Fig. 1 we used the
values for t/0 listed in the third column of Table III. The
experimental (V/Vs) vs p values for Ne, due to
Stewart, "are presented in Fig. 1 for comparison. The
agreement up to 2)&10' kg/cm' is rather good.

Figure 2 shows the dependence of the dimensionless
quantities V*=—2 *'(R/o)' and P*=Pos/er The lowest
curve represents the pressure of a static lattice, and we
can see the increasing importance of the quantal eBects
associated with the actual nonstatic condition of the
tattice as the atomic number decreases. The dots in
Fig. 2 are theoretical values for Ne, A, and Kr, calcu-
lated by de Boer and Blaisse, ' and the open circles
theoretical values for Ne calculated by Salter. '

Strictly speaking, a variational calculation like ours
is not able to provide any information about the excited
states, and hence about the thermal properties, of the
solid. However, we can obtain an idea about the thermal
excitations by equating our zero-point energy (T(V&)
+AU(Vs)) to the zero-point energy of a corresponding
Debye model of the solid. Hence we have estimated the
Debye temperatures, Ps, by equating (T(Vs)+AU(Vp) }
to (9/8)1VkPs, and solving for Ps." The values we ob-
tained are listed in Table IV, which also shows in the
second column the "high-temperature" experimental
values, and in the third column the available 00 values
appropriate to low temperatures. "

We may also calculate the Debye temperatures,
8, at higher pressures, or smaller volumes, using

(T(V)+AU(V)) = (9/8)1Vke; we find to a good approxi-
mation (p/ps)=(Vs/V)', where at low pressures the
constant y has the following values:

2.7 3.0 3.2 3.2
r

l.05 l.00 0.9S ~ 0.90
V

r

0.85 0.80 0.75 The p values at higher pressures are slightly smaller.

This exponent y is an average Griineisen constant, and
FIG. 2. Reduced pressure as function of the reduced volume,

using 0&'&, a&3) from Table I. The lowest curve, marked "static, "
corresponds to a classical model in which all the atoms are sup-
posed at rest at their lattice sites. The closed circles (Ne, A, and
Kr) and open circles (Ne) are theoretical values calculated by de
Boer and Blaisse' and by Salter, ' respectively. For a given value
of V*, quantum-mechanical eBects are increasingly important with
decreasing atomic mass.

"We found a' difference of about 1% between the p-V curves
for the two isotopes Ne'0 and ¹~;the plotted values correspond-
ing to natural Ne of atomic weight 20.18."J.W. Stewart, J. Phys. Chem. Solids 1, 146 (1956).

2' We note from Table II that (T))fAU), so that our Einstein-
type model predicts anharmonic sects whose relative importance
increases with decreasing atomic weight.
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TABLE IV. Theoretical and experimental Debye temperatures,
00 in 'K, at zero pressure. The values in the second column have
been obtained from speci6c heat measurements at moderately high
temperatures (T~ft); the low-temperature value for A is the value
extrapolated to O'K from measurements at liquid helium tem-
peratures. '

0.80

QJso

Ne
A
Kr
Xe

a See reference 17.

T0+AUP
8o=

(9/8)Nk

73
93
70
65

80e», ' high'

64
81
63
55

80e», "low"

0.40

Kr

the values we have found for it are in agreement with
those generally accepted. ""~'

Our results give an indication that a variational
treatment applied to an Einstein model is able to ac-
count quantitatively for the properties of solid Ne, A,
Kr, and Xe. As shown in Fig. 3, the relative importance
of the quantal contributions to the binding energy, as
measured by the ratio (X+AU)/U, t,, increases rapidly
with decreasing volume or increasing pressure, and at
not too high pressures becomes appreciable even for Xe.
Thus the comparison of theory and experiment is
particularly significant at high pressures (as in the p-V
curve for Ne in Fig. 1), and will be most sensitive there
to the details of the quantum mechanical description of
the motion of atoms within the solid. "

~ T. H. K. Barron, Phil. Mag. 46, 720 (1955), and Ann. of Phys
I, 77 (1957).It also is worth mentioning that the value of v for He
Ldeduced from the experiments of J. S. Dugdale and F. E. Simon,
Proc. Roy. Soc. (London) A218, 291 (1953)g is 2.1; this together
with our values for Ne, A, Kr and Xe, indicates an interesting
trend of increasing y with increasing atomic weight. This same
trend has been experimentally observed for other classes of
elements PE. Griineisen, Hartdbttch der Physeh (Verlag Julius
Springer, Berlin, 1926), Vol. 10, p. 1, Table 4j.

"Note added i prloof. Since this paper was w—ritten new and
more accurate data for solid 'Ne at liquid helium temperatures
have become available, D. G. Henshaw, Phys. Rev. Ill, 1470

ODO
LOO 0.90

v/v,
0.80 0.70

FIG. 3. Importance of quantum-mechanical corrections when the
solid is compressed. For a given substance, quantum effects be-
come more and more important at higher pressures.

Ke hope that this work may aid in stimulating ex-
perimental research on the properties of solidified rare
gases at low temperature and high pressures.

(1958). The measured nearest neighbor distance is 3.13 A, which
should be compared to our theoretical value of 3.14 A (see Tables
I and II).
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