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Plasmas at high-electron temperatures can carry transverse waves in which self-magnetic fields and
relativistic effects become important. In this paper the relativistic perturbation equations for an isotropic
uniform plasma are solved as an initial-value problem, i.e., by Laplace transformation, and the propagation
or dispersal of both longitudinal and transverse perturbations is calculated. In both cases transients occur
which have a continuous frequency spectrum. While transverse perturbations also yield pure persistent
waves (with phase velocity exceeding that of light) of all wavelengths, longitudinal perturbations of very
short wavelength will not be propagated as pure waves but will die out eventually with only longer wave-
lengths persisting. The transverse plasma perturbations discussed in the analysis are nonvortical and the
dispersal of vortices is covered by a separate discussion. The vortices do not give rise to a new mode of

propagation of perturbations.

1. PLASMA PERTURBATIONS AS AN
INITIAL-VALUE PROBLEM

GOOD deal of work has been devoted to longi-

tudinal plasma oscillations, but for high-electron
temperatures, transverse plasma oscillations become
important also. In this paper, a unified treatment of
both types will be given. A simplification of procedure
is achieved if one separates out the plasma vortices and
treats them differently.

The study of plasma waves was, for a while, impeded
by difficulties which arise when the wave velocity
coincides with some of the electron stream velocities.
These difficulties have been resolved by studying the
appropriate initial-value problem, i.e., calculating how
a given spatial perturbation develops in time. To
anticipate a harmonic wave analysis of all perturbations
is an oversimplification. (We shall see, for instance,
that this anticipation automatically excludes plasma
vortices.)

A full treatment of the initial-value problem for
longitudinal plasma perturbations was given by Willson!
and our general treatment will follow Willson’s method
closely. Instead of anticipating proportionality of all
perturbations to exp (fwi— k11— tkoxs— tksx3) and iden-
tifying all the four operators 8/dx1, 9/9%s, 8/dx3, and
d/0t with imaginary numbers —ik;, —iks, —1ks, and
iw, one leaves 4/9¢ in the form of an operator and applies
a Laplace transformation with respect to the time.

For a Laplace-transformed function, the operator
3/t becomes, again, a pure number (usually denoted
by s), provided the initial value of the function is zero.
It follows that one can retain the mathematical
procedure of the harmonic wave analysis, replace iw by
s, and adopt the interpretation of one’s results according
to Laplace-transform theory, as long as the initial
values of the quantities concerned are zero. This is
the reason why it pays to reduce vorticity to zero before
one starts.

Whenever a function does not vanish initially, the

* Prepared under U. S. Air Force Contract AF 33 (600)-27784.
1A. J. Willson, Ph.D. thesis, Cambridge University, 1957
(unpublished).

rule is to write the initial value on the right side of an
equation for every differentiation 9/d¢ which appears
on the left (i.e., for every occurrence of s or iw on the
left). In any physical situation some of the variables
are bound to have initial nonvanishing perturbations:
otherwise perturbations of an equilibrium state could
not arise. Hence, we cannot take over the wave analysis
right to the end. Our final equations for, say, the
electromagnetic potentials @, will be of the form
F(s)a,=1I(s), where the function I(s) incorporates all
the initial data while F(s) summarizes the differential
equations governing the system. The wave analysis
would have given F(s)a,=0 and hence F(s)=F (iw)=0
which is the dispersion formula, connecting the propaga-
tion constants ki, ks, k3 with the frequency. But the
actual behavior of the system is given by interpreting
a,=1(s)/F(s) in the Laplace-transform sense. Our task
is, not only to derive F(s) for both transverse and
longitudinal perturbations (i.e., to get a transverse as
well as a longitudinal dispersion formula), but also to
get a representation of I(s) which will allow simple
interpretation of the Laplace-transforms.

2. RELATIVISTIC EQUATIONS OF MOTION

Transverse plasma oscillations become interesting
only when self-magnetic fields are having appreciable
effects. These effects are smaller than electrostatic
effects by a factor #2/¢?, and when this is appreciable,
we cannot ignore relativity effects. Thus a fully
relativistic treatment becomes necessary, but the
elegance of relativistic electrodynamics makes this a
pleasure rather than a burden, and one need not
apologize for introducing relativity even when all
electrons retain small velocities.

In fact, any fully smoothed-out Maxwellian velocity
distribution does contain a few very fast electrons, and
as the upper limit of velocities plays a significant role
in the dispersion formula, there is some advantage in
introducing a natural extreme upper limit by means of
relativity effects. A relativistically accurate longitudinal
dispersion formula was obtained by Clemmow and

1504



TRANSVERSE PLASMA WAVES

Willson? and the results deduced below are in agreement
with theirs.

It is customary to begin the derivation of the plasma
equations with Boltzmann’s equation for a velocity
distribution function, and to ignore the collision term
(but to take into account macroscopic Coulomb
repulsions). This treatment is tantamount to solving
the equations of motion and the conservation equations
of the different electron streams that are superimposed
on each other in their combined fields, and we shall
here adopt the latter method.

A suitable system of units is the ‘“electron optical
system.”” In this system one can omit as multipliers
the following quantities: the rest-mass of the electron,
the charge of the electron (but for its sign), the
velocity of light, the dielectric constant of free space,
the permeability of free space, and the factors 4w of
an unrationalized system. For instance, the relativistic
equations of motion are

dU,/dr=U,(d,a,—9,a,) (summation convention), (1)

where the U, are the components of four-velocity, the
a, are the potentials, 9, is short for d/dx,, 7 is proper
time, and the suffixes go from 1 to 4. The fourth
component is imaginary: «s=4f. The components U,
obey the “kinetic” condition U,U,=—1 while the
components a, obey the Lorentz condition d,a,=0.
The equation of conservation of mass or charge is

aNU,=0, (2)

where &V is the number density of a stream measured in
its own rest-frame. The field equations are

90,4,= 2. NU,—J,*, 3)

streams

where the summation extends over all the superimposed
electron streams (not over u) and where J,* is the total
four-current density of the ions. In future, the sign 3
shall always indicate a summation over all streams, not
over suffixes. Repeated suffixes are always understood
to be summed over. We shall be interested in the
problem of vortices, and in electrodynamics one means
by vortices not those of the velocity field U, but those
of the ‘“generalized momentum” P,=U,—a, where
U, is the kinetic four-momentum (in our units) and
—a, the potential four-momentum of electrons (in our
units). Since

d/dr="U,9,, 4)

we can write the equation of motion (1) as

dPy/dT+ U“avap= 0) (5)

2P, C. Clemmow and A. J. Willson, Proc. Roy. Soc. (London)
A237, 117 (1956).

3 See, for instance, P. A. Sturrock, Static and Dynamic Electron
Optics (Cambridge University Press, Cambridge, 1955), Part 1,
Chap. 1.2. :
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and convert the continuity equation (2) to the form
U,0,N+No,U,=dN/dr+N3,P,=0, (6)

by using the Lorentz condition 8,a,=0. The field
equations (3) read

> NP+ (Z N—d,9,)a,=J,". (7)

We shall make reference to the persistence of vortices:
by subtracting the identity

U,0,U,=0 8)

(see the kinetic condition U,U,= —1) from our equation
of motion (5), we obtain

Uy, (G“P,-— avP;-) = 0; (9)

and by an application of Stokes’ theorem in four
dimensions this equation can be integrated into the
statement that the “circulation” of P,, i.e., the line-
integral § P,dx,, is conserved when the circuit is
carried along by the electron stream.* If there is no
vorticity to begin with, none will arise, the line integral
vanishes around all circuits, and P, is derivable from a
potential : P,=9,{.

3. SMALL PERTURBATIONS OF A UNIFORM
MULTISTREAM PLASMA

In the unperturbed state U,, P,, and N are independ-
ent of space and time coordinates and the operators
d, produce nothing when applied to them. The total
electron current density Y N U, just balances that of the
ions, J,*, and there are no fields: a,=0, so that P,=U,.

Let the perturbations cause small modifications w,,
pv, and 7 of the unperturbed quantities U,, P,, and N.
The field is purely a perturbation. We have p,=u,—a,.

The field equations (7) become

2 Nput22 nPut (22 N—8,9,)a,=0, (10)

where it is permissible to employ unperturbed values
for quantities denoted by capital letters, ignoring
products of perturbation terms. The equations of
motion (5) and continuity (6) are perturbed to

dpy)dr+U,d,a,=0, (11)
dn/dr+Na,p,=0, (12)

where the proper-time derivative d/dr may be taken
along unperturbed paths (electron worldlines), with
only a second order error. Hence we may put d/dr="U.,4d,
and again employ unperturbed values for quantities
denoted by capital letters. The Lorentz condition
remains 8,¢,=0 while the kinetic condition becomes
Uu,=0.

We solve by the method described in Sec. 1 above,
i.e., by writing d,= —1%k, and introducing initial values
on the right for every occurrence of 9/d¢, that is of

4 See, for instance, O. Buneman, Proc. Cambridge Phil. Soc.
65, 77 (1954), Part 1.
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ky(=104=10/0x4=09/3t), on the left. Eventually we
interpret by identifying %, with the customary s of
Laplace-transform theory.

We take initial conditions such that no terms
appear on the right-hand side of the equations of
motion (11). We justify this restriction later (Sec. 7).
Then :

Uukprt+kUu0,=0, (13)
or

p=- kUya,/Usks,

just as in the harmonic wave analysis. (A change of
dummy suffix is necessary in the denominator.) The
continuity equation (12) becomes

(14)

Uskin+Nk,p,=Umn(0)+Nps(0), (13)
so that
n= (U47l<0) +A’7P4(0)"Nkvpv)/kan (16)
while the field equations (10) become
> Nﬁ“‘i"z nU,+ (Z N+kvkv)au=k4aﬂ(0)+du(0)-
(17

Here d,.(0) are the initial values of da,/d¢, and in the
second term the U, have been substituted for the
unperturbed 2,.

Finally, we substitute our explicit formulas (14)
and (16) for p, and % into the field equations (17),
changing dummy suffixes where necessary:

—k“dp Z NUV/Uakv—l_k)\k)\aV Z NU"U“/(U"k”)2
+(E N+kyky)an=1#(k4)7 (18)

where

1, (ks) = k4a,(0) -3, (0)
— 2 ULUm(0)+Nps(0))/Ucks. (19)

Here are four equations for the four unknown a,. They
lead to expressions for @, which can be interpreted
according to the usual Laplace-transform rules.

4. ISOTROPIC DISTRIBUTIONS

The summations indicated by . extend over all
unperturbed stream velocities, i.e., over all triplets
Uy, U,, Us that characterize the superimposed unper-
turbed streams. Us=:(14+ U2+ U2+ Uzt is not an
independent variable. In the rest-frame of the plasma,
i.e., in the frame in which the ions (supposed too heavy
to be perturbed) are at rest, one generally deals with
isotropic distributions.

This means that, for instance, the velocity component
— U, occurs with the same frequency, i.e., the same N,
as +U;. It also means that each component is con-
tinuously distributed, and that our sums over all
streams are, strictly speaking, integrals. The symbol
> should be understood to imply this.

Let us now place the space axes such that k=0,
k.=0, i.e., that “propagation” takes place in the
direction of the x; axis. Then U,k,=Usks+Usks and

O. BUNEMAN

the following totals vanish because of the symmetry:

2. NU/Usk,,

2 NU2/ Uk,

2 NULUs/ (Uska),

> NUU;/(Usk,)2,

2 NUUy/ (Usks)?,

2 NUUS/(Usk, )%,

> NUU,/(U,k,)
Thus the matrix of coefficients in the four equations
(18) for a, is diagonal but for terms with suffixes (3,4).

The transverse components ¢; and @, are given by
Eq. (18) in the desired form directly:

Fl(k4)al=11(k4), Fg(k4)dz=]2(k4), (20)
where
Fi(k)= (k+k A1+ NUE/ (Uskst+Udk)*H+2 N
(21)

and owing to symmetry, F1(ks)=F(k,).

For the longitudinal component one uses the Lorentz
condition 9,@,=0, which becomes kza;+k4a,=0 if we
take a “gauge” for which ¢4(0)=0. This can always be
achieved: in fact, by adding to @, the four-gradient of
suitable combinations of

exp[ikg(xa— t)] and exp[ik3(x3—|—t)]

we can always reduce a;(0) as well as a4(0) to zero.
Then, incidentally, d4(0) vanishes also, since

64a4= '—63(13= ikaaa.
Moreover, we get the longitudinal field in the form

Ey= (—63a4+64(13)/i= k3as—kyas= (k32+k42)d4/k3
= (k32+k42)a3//e4. (22)
On substitution of
a3=— k4E3/(k32+ k)
and
4= ksEs/ (k32+ k42)

into the fourth component of Eq. (18) for the @, derived
in Sec. 3, one obtains

Fo(ke)Es/ks=T1(ks), (23)

where
Fo(k)=k?+2 Ne2(U3HUR)/ (kU s+ kU,

In the discussion of the important functions F; and
F, one can employ the fact that under symmetry

Z Nk32U12/(k3U3+k4U4)2
+Z ngUz/(k3U3+k4U4)=0 (25)
This is proved by integrating with respect to azimuth ¢

about the U, axis, i.e., writing U= (U4 U#)? sing,
Us=(U2+Ug)* cosp. The expression in question

(24)
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[left-hand side of (25)]1is then equal to
> N(d/dp)[ksU1/ (ksUs~+kUs)],

and since our summation implies an integration with
respect to ¢ from O to 2, this “sum” vanishes.

It is also convenient to collect the contribution from
the streams with +U;s and — U; and to deduce

> NU2/(ksUs+kiUs)?=Y NU2/(k2U2—k2UR)
=—2 NV (kd+k?V3),

where V3;=iU,/U, is a velocity component dxs/dt
measured as displacement with respect to observer’s
time, not proper time. With this identity, we get I,
(and Fs) in the form

F1=F2= k32+k42+2 N
—2 N(k24-k2)V 3/ (kd-+ks2V &)
— bk N(1-V)
=2 N(A—=VDk2V 2/ (ki+k?V )
=k?+ke+Y. NA1=V3)/(1+k2V 2/ k). (27)

If %2 is positive, F; is also positive. If % has an
imaginary part, all contributions to F; have imaginary
parts of the same sign and hence F; can vanish only
when k4’ is negative, i.e., k4 pure imaginary. There are
no transverse plasma instabilities. Also, on putting
ki=1w, we see that F; decreases monotonically from
> N to —© as ? rises from k32 to 4 . There exists
just one zero of F; in this frequency range, i.e., one
natural transverse plasma resonance. The monotonic
behavior extends to frequencies as low as %3V max
where Viax is the maximum velocity occurring in the
distribution, and there can be no further resonance
frequency in the extended frequency range between
kstax and k3.

Similar arguments can be applied to F, which,
owing to the kinetic condition, can be written as

Fo=k—3 Nk(14-U24-U2)/ (ksUs+kUs)?  (28)

Here we transform the term k23 N/(ksUs+kU4)?
while using the identity (26) already established for
the remaining sums. We introduce polar coordinates
about the axis of U; and we average over all angles,
which means we average over the cosine of the polar
angle between —1 and 4-1. This is easily done and
leads to

N/ (ksUst kU4
=Y N/[k2Us—k2(Up+U2+U2)]. (29)

If we let V be the speed measured as displacement
with observer’s (rather than proper) time, i.e.,

V=i(Ul+U2+UH?/ U,

(26)

and hence Us=1/(1— V2)}, this sum becomes

—3 N(1=V2)/ (k2+k2V?).
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Altogether, therefore,

Fo=k2+> Nk2(1—V?)/(kE+k3V?)
+23° N2V 2/ (ké+kPV ).

Again, if %24 is positive or has an imaginary part, Fy
cannot vanish and hence there are no longitudinal
plasma instabilities. Also, if ks=iw, Fo increases
monotonically up to ks? as w? increases from &gV max
to =, so that there is at most one longitudinal plasma
resonance within this range.

Explicit forms of the dispersion laws Fi(w,ks)=0,
Fo(w, k3=0) are obtained by giving  as a function of
the phase velocity W=w/ks, and by averaging over the
polar angle in all the terms of Fy and Fy:

(30)

w: W 14
F=W23 N (——— tanh‘1~), (transverse) (31)
wi—-1 vV w

1—-v?
We—TV2

w |4
F=W2Y. N ( +2— tanh™1—— 2)
v w

(longitudinal). (32)

Since W> Vmax, one can develop in powers of V/W.
Omitting terms of the order V4/W*, one gets

W/ N=W2/(W2—1)—6, (33)
/Y N=1—6(1—3/W?), (34)

where 0= $NV?/3" N is the temperature, in units of
6X10° degrees.

When comparing these formulas with nonrelativistic
approximations, one must define a ‘“plasma frequency”
w, for reference. It is customary to use the square root
of the ion density : w,2=)_ NU4/i. For low temperatures
(Us/i=143V?), this becomes w,*=>_ N(14+36/2) and
hence

Ww?—k? W
=L Wy =1,

Wp Wp

(transverse)

(longitudinal)

(transverse) (35)
(36)

0)2
—= 1—(3—3W—20 (longitudinal).

Wy

In transverse oscillations, W always exceeds 1, so that
the temperature coefficient is never large. In longitudinal
oscillations, W may go as low as V.x which is close
to 6% for some distributions [Vimax=(76)% for the
parabolic distribution N « Ve~ V2], Then there is a
dispersive) effect even at low temperatures, known in
nonrelativistic theories.

5. WAVE VELOCITIES WITHIN THE STREAM
VELOCITY RANGE

So far, we have not yet discussed the frequency
range — &3V max <w<k3V max corresponding to a limited
range on the imaginary axis of the k4 plane. Outside this
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range F; and Fy are finite and they are nonvanishing
except possibly at two isolated conjugate points on
the imaginary axis corresponding to plasma frequencies.

The remaining frequency range corresponds to
harmonic waves whose velocity w/k; coincides with
that of some of the streams.® If such waves did exist,
we should have to have F=0 or = somewhere in
this range. We shall show that for continuous velocity
distributions and continuous distributions of initial
perturbations this is not possible.

The proof that Fs£0 rests on the fact that the
imaginary part of F does not vanish in the critical
frequency range. At w=0, ie. k=0, Fi%0 and
Fo>#0 by inspection. We can therefore limit the sub-
sequent discussion to the cases w#0. Of course, the
integrals over all stream velocities become meaningless
when k4 is exactly on the imaginary axis between
—1R3V max and —-2k3Vmax, but we get finite answers
when k4 is just to the right or just to the left of this
range (and w just below or just above the real axis).

Now a typical “sum” in our expressions (27) and
(30), such as > Nk2V 2/ (kV2—w?), can, because of
symmetry, be written as Y, NksVs3/(ksV3;—w) or
> N+wd N/(ksV3—uw), since NV is the same for 4V
as for —V;. Let us now suppose that w is just below
the real axis and remember that the summation implies
an integration over V3 between — Vi and 4 Viax.
If w/k; is just below a point in this interval on the real
axis (see Fig. 1), then the integration amounts to
describing half a clockwise circuit around the singularity
and will produce a negative imaginary part in

Z N/ (kng—w).

This imaginary part does not vanish and will persist
even as one lets w merge into the real axis, provided
the integration with respect to V; and V. for fixed
Vs=w/k; produces a nonvanishing numerator. This it
will do whenever |w| <%3V max, for then there is bound
to be at least a belt of streams whose V'3 has the value
w/k3: the possibility of the distribution function, which
depends upon (V2+4V2+4V3?)? only, having gaps be-
tween 0 and V. need not be excluded.

A similar argument can be applied to the term
> Nk2(1—V?)/(k?V2—«?) in that the integration
over V, normally taken only from 0 to Vmax, can
equally well be taken from — Vimax to 4 Vimax because
of the evenness of the integrand. However, this term
would not contribute an imaginary part at a gap in
the distribution function. Where it does contribute,
the sign of the contributions is the same as those from
the other term.

. |

" | N\ v,
max w/ Ky Vimax
F16. 1. Path of integration when w approaches

the real axis from below.

5D. Bohm and E. P. Gross, Phys. Rev. 75, 1851 and 1864
(1949).

0. BUNEMAN

Furthermore, the term
S NA—=VDrRV/ (kRV 2—u?)

in F; [Eq. (27)] contributes a nonvanishing imaginary
part, by the same argument as before, in the critical
interval. We conclude that neither Fy nor F; can
vanish when ks approaches the interval between
—1k3V max and +ik3V ma on the imaginary axis. But
the sign of the (nonvanishing) imaginary parts of
Fo and F; depends upon the side from which k4
approaches the interval. There is a cut in the complex
plane along the interval for the purposes of representa-
tion of the analytic functions Fo(ks) and Fi(ks).
Except along the cut, however, there is no ambiguity
of Fy and F;.

One can show, incidentally, that Fo and F; remain
finite along the cut provided the density distribution
has finite slope as a function of velocity and does not
break off sharply at V.. A density NV proportional to
(Va2 —V?)@V1dV 2dV 3, for instance, would be adequate
in order to insure that Fy and F, remain finite through-
out the finite part of the complex plane. Likewise
the relativistic Maxwellian density proportional to
(3/Uy) exp(iU4/60)dUdU.dU 5 (§=temperature) and ex-
tending to Vmax=1, leads to bounded F, and F1.% Rela-
tivity, of course, ensures a velocity maximum for all
types of distribution law.

Considerations of boundedness are important in the
study of the numerators I;(k,) and I4(k4) of our Laplace
transforms [Eq. (19)]. Here, too, we have integrations
over all velocities with the denominators ksUs+k Uy,
proportional to k3V3;—w, in the integrand. Provided
the initial density perturbations #(0), as well as
Np4(0), have finite slope as functions of the velocity
components and do not break off sharply at Viax
[note that #(0) need not be isotropic with respect to
velocity, and that it may cover a slightly wider range
than N, in which case one would modify the definition
of Vimax ], these integrals will remain bounded even in
the critical frequency range.

To show that, say,

ffff(VlV2V3)dV1dV2dV3/<V3'—w/kg)
is bounded, we obtain, first,
gVa)=JS f(V1,V3,Vs)dVidV,

and write the integral in the form

+Vmax
[ awaaryma—om

Vmax

= f Ce(Ve)—g (/) JAVs/ (Vimao/ k)
+g(e/ks) f Vs (Vama/ks). (37)

Here the first integral is nonsingular since g(V3) has

8 See J. L. Synge, The Relativistic Gas (Interscience Publishers,
Inc., New York, 1957), Chap. 4, paragraph 14, for this distribution
law.
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finite slope at V;=w/k; and the integrand remains
finite, while the second term is
g0/ k3){In(V max—w/k3) —In(Viaxtw/ks)F im} .

If g(w/ks) tends to O with finite slope when w/k; tends
t0 == Vmax, this term also remains finite. The sign of
the imaginary part depends, of course, upon the direc-
tion of approach to the critical range of w in the complex
plane.

To summarize: subject to reasonable conditions of
smoothness of the density distribution and the initial
perturbations, the Laplace transforms of a1, as, and E;
have the following properties:

(a) They are bounded throughout the complex
plane except, possibly, at an isolated pair of conjugate
poles representing real logitudinal or transverse plasma
waves.

(b) They are discontinuous across a cut along the
part of the imaginary axis between —iksVmax and
+ik3vmzu(y

(c) They tend to zero like 1/k4 as k4 tends to infinity.

The latter feature is readily verified separately for
I;(ky)/F1(ks) and I4(ks)/Fo(ks), using the fact that
a4(0) and d4(0) vanish and that |U,| exceeds unity
always, so that k4 always has a nonvanishing multiplier
in the combination %,U, [see Egs. (19), (20), (23),
(27), and (30)].

6. INTERPRETATION OF THE LAPLACE
TRANSFORMS

Since our Laplace transforms are well behaved
everywhere to the right of the imaginary axis, we could
use the inversion formula’

eti0
(2mi)t f [1.(k)/Fa(k)] exp(ka)dbs  (38)
for a; and the corresponding formula for longitudinal
fields. The path of integration runs parallel and just
to the right of the imaginary axis [see Fig. 2 (a)].
However, owing to the property (c) explained
above, this path can, for />0, be closed around a
large semicircle [see Fig. 2(b)]. It can then be con-
tracted to two circles about the poles (if any) and a
contour skirting the cut from —iksVmax to 2R3V max
[see Fig. 2(c)].

The circles around the poles at ky= *iw, lead to gen-
uine plasma waves, proportional to exp(==iwoi—iksxs).
The contour around the cut represents a disturbance
having a continuous spectrum with frequencies up to
k3V max, for we can convert the integral by changing to
the variable of integration w, and taking the right-hand
limit of the Laplace transforms on the up-stroke, the
left-hand limit on the down-stroke:

+%3Vmax
(21!')—1 {[I 1(’500) / F, ('L'w)]right

—k3Vm:

7 G. Doetsch, Laplace Transformations (Dover Publications,
Inc., New York, 1957), Chap. 6, paragraph 5,

¥ —[11(6)/F1 (i) Tuere} explioi)de.  (39)
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A disturbancehaving a continuous spectrum represents
a pulse, not steady oscillations. After a long enough
time no perturbation will be left, because of destructive
interference between neighboring frequencies.

There may, of course, be some almost periodic
behavior in the pulse while it lasts. The spectrum, given
by the square bracket, may have pronounced maxima.
If such a maximum occurs at w=w, and the logarithm
of the amplitude behaves like [const—37'¢?(w—wo)?]
in the vicinity, then the disturbance is approximately a
Gaussian pulse of duration 7.

Maxima in the spectrum can be due to maxima in I
or minima in F. More precisely, let us put

I=L+irM on the right, =L—irM on the left,
F=G+irH on the right, =G—iwH on the left

(note that G and H are real, but L and M need not be
real); then the spectrum is #(MG—LH)/(G*Hn*H?)
and we look for maxima of MG—LH and minima of
G*+n?H?. There is a maximum of M at frequency
k3V3® when the initial perturbations predominantly
occur in streams whose velocity component V3 lies near
some particular value V%, This is as might be expected,
since these streams will, in the first instance, carry
their own perturbations along with them. But even-
tually the perturbations get communicated, by electro-
magnetic effects, to other streams and the initial
perturbations will disperse.

More interesting are the minima of G*4-#*H? Their
nature does not depend upon the initial conditions.
Minima, of G*4m*H? occur when, in taking k4 along the
imaginary axis, one comes close to a zero of F=G--iwH.
There are no such zeros off the imaginary axis on that
sheet of the complex plane which we have employed
so far. But we can, when studying the vicinity of the
cut, continue the function which is valid on one side
analytically across the cut on to the other side, thereby
reaching a different Riemann sheet.

Suppose now that a zero of F exists on this normally
concealed Riemann sheet at ks=1iwo—<y, and let us
approximate to F by

F o ky— (iwo—),
1 1
! I
1
pote I kg4- plane @
)
+ikY max I
__ | | redloxis _ | real real
axis T 74 [axis”
-ik V
3 Max;
| F‘é !
pole * G)
| i
| |
(a) (Y] ©

F16. 2. Successive changes of the path of integration
for Laplace-inversion,
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D ks

F16. 3. Distortion of cut
leading to Landau’s damped
exponentials.

k4~ plane

D -iks

or
F il w—wotiv].

Then |F|?«c 14 (w—wo)%/v* and, according to our
earlier remarks, the decay time will be of the order vy~

This type of result was obtained by Landau in a
study of nonrelativistic longitudinal plasma oscillations
without velocity cutoff.® The discussion is taken up by
Berz. Landau’s technique is, however, not readily
adapted to the case of a velocity cutoff, in that his
deformation of the path of integration in the inversion
formula would have to be taken around the branch
points at k4= iksV max.

The link between Landau’s method of integration
and that presented here can be established by distorting
the cut from a straight line connecting ks=-17k; with
ks= —iks leftward into a semicircle connecting these
points (Vmax=1 for a Maxwellian distribution). In
pulling the right-hand branch of our path of integration
up to the new semicircular edge (see Fig. 3), one moves
in the lower Riemann sheet where there may be poles:
their residues contribute Landau’s damped exponentials.
The left-hand branch is pushed leftwards in the upper
Riemann sheet where there are no poles. In the non-
relativistic approximation the new cut appears, by
comparison, infinitely distant and the difference between
the Laplace transforms on its two edges may be ignored.

That one finds “damped oscillations” in following
Landau, as zeros of F on a different Riemann sheet,
does not contradict our spectrum of purely real fre-
quencies, since both results are valid only for £>0.
Landau’s solution is E;=0 for {<0, E3xexp(iwo—7)t
for £>0, not for all ¢. The Fourier spectrum of such a
pulse is, indeed, proportional to (w—wo—2y)~

Summarizing, we can state that transverse plasma
perturbations propagate eventually as pure harmonic
waves with a phase velocity exceeding that of light.
But there are transients in the form of a pulse whose
spectrum is continuous, covering all frequencies up
to kSVmax-

Longitudinal plasma perturbations will be entirely
of the transient variety when the wave number is
large. But for low wave numbers (large-scale perturba-
tions), a pure harmonic wave will persist, after an
initial accompaniment by transients. All longitudinal
transients have a spectrum which terminates with the

s L. Landau, J. Phys. U.S.S.R. 10, 25 (1946).
9 F. Berz, Proc. Phys. Soc. (London) B69, 939 (1956).
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upper frequency #%3Vmax. These results concerning
relativistic longitudinal plasma waves agree with
those obtained by Willson.

The critical wave number above which persistent
waves do not occur is given by putting 2:=1k3V max in
Fy=0[Eq. (30)],

k3 ‘—‘Z N(l"' Vz)/(VmaxL" VZ)
F2X NV (Vi —V32).  (40)

For nonrelativistic velocities and the parabolic distribu-
tion law mentioned above, one obtains

Vmax2k32=5 Z N/2.

If the distribution is changed from the parabolic
to the long-tailed Maxwellian distribution (extending
to V=1), one obtains k=3 N for the critical wave
number under nonrelativistic conditions. This is
much smaller than before. The larger wave numbers
have been drawn into the range which is damped,
owing to the presence of synchronous streams. Estimates
(see Landau, reference 8) show the damping to be
slight. Under relativistic conditions one obtains a
critical %, slightly above the reference plasma frequency.
At most it is 29, more, viz., at §=1 approximately
(see Appendix).

In a nonrelativistic analysis of the Maxwellian
distribution, persistent waves do not appear: lack of
relativistic cutoff allows streams to be synchronous
with waves of arbitrarily high phase velocity. These
streams (in cooperation with their neighbors) cause
Landau damping.® In relativity, waves with phase
velocity greater than that of light escape such damping.

7. REMOVAL AND DISPERSAL OF VORTICES

Up to now our analysis of transients has been
restricted to a particular set of initial conditions,
namely those which leave the equations of motion in
the form given by the wave analysis in spite of the
adoption of Laplace transform technique.

In Sec. 3 we took the equations of motion (13) in
the form

Uk, pu+kU,sa,=0,

implying specific initial conditions. For general initial
conditions, one must put initial values on the right
for every occurrence of k4 on the left. For u=1, 2, 3
this means that we ought to write Up1(0), Usp2(0),
U.p3(0) on the right. For u=4 we should write Up4(0)
+U,a,(0). Since a,=u,—p, and since U,u,=0, the
right-hand side of the equation for #,=4 can be written
—U1p1(0)— Up2(0)— Usps(0), and we see that there
are only three arbitrary initial values in the four
equations, owing to the restriction imposed on the
initial velocities by the kintetic condition.

The specific choice that we made in section 3 is
consistent with this requirement and amounts to
taking $1(0)=22(0)=23(0)=0, from which p:(0)=
—U,a,(0)/U, follows automatically.

In the discussion of longitudinal plasma oscillations,
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moreover, we committed ourselves to a specific gauge,
namely @3(0)=0, a4(0)=0. Thus our initial conditions
yield Uyps(0)=—U,12:(0)— U3a2(0) and we see that in
the longitudinal formulas (19) and (23) the “initial”
term I4(ks) reduces to D> n(0)U/(ksUs+kUs) by
virtue of the isotropy of the velocity distribution .
For I,(ks) we get [see Eq. (19)]

Z %(O)U1U4/(k3U3+k4U4)
—01(0) Z NUlz/(k3U3+k4U4)U4. (41)

If »(0) is also isotropic, the first term disappears here,
leaving the excitation of a transverse field entirely to
its own initial value. As regards the velocities, we
start our streams with u;=a,, us=a,, u3=0.

Since we have taken the initial generalized momenta
$1(0), $2(0), $3(0) equal to zero, our distribution
contains no vortices initially. This continues to be
the case (as it should), for let { be a quantity which is
initially zero and which obeys d¢/dr=—U,a,, so that
its Laplace transform is —iU,a,/U,k, (remembering
that d/dr=U,d,, transforming to iU,k,). Then the
four-dimensional gradient of {, d.{, has the transform
—kuU,0,/Usk, which is just p, [see Eq. (14)7]. The
momenta form a gradient, i.e., they have no vortices.

We see immediately that the harmonic wave analysis,
in which the formula (14), p.=—kuU,a,/U,k,, would
be used without reservations, can never account for
vortices in the plasma.

As regards purely transverse initial perturbations
(i.e., perturbations for which #;=0 initially) we may
say that the absence of vortices is sufficient to justify
our initial conditions. For, since we have chosen the
gauge a3(0)=0, we get p3(0)=0 immediately while the
condition of zero vorticity yields ds3p1=—1iksp;=0,
d3pe= —1kspo=0 (which are not operational equations,
k3 being a real number), so that $,(0)=0 and $.(0)=0.

We may say, therefore, that among the transverse
perturbations our analysis has just covered all the
nonvortical ones. The longitudinal analysis has been
restricted also, in that we have assumed #3(0)=0.

Now it is easy to justify the assumption of zero initial
velocities. We have treated the electron cloud in a
plasma as a superposition of streams. The unperturbed
cloud has a definite isotropic distribution law, given in
terms of the number density of a stream N, as a function
of the stream velocity components Ui, Ui, Us. The
latter remain permanent attributes of the streams in
the absence of perturbations, and there is a unique way
of labelling each electron according to the stream to
which it belongs: its velocity components serve as
labels.

When such an electron distribution is perturbed by,
say, giving each electron a small impulse and also
displacing it slightly, we can describe this by saying
that the initial velocity components, as well as the
initial density of the electrons with the label U U,Us,
have been changed to Ui+ui, U:tus, Ustus,
N(Uy,U,Us)+n, respectively. But another way of
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describing the perturbed initial situation is to say
that each electron has changed its label: it has been
removed from the stream (U1,UUs) to the stream
(UrFu1, Ustus, Us+u;) as well as displaced. This is
certainly the way one would go about it if one used a
Boltzmann distribution function. If the unperturbed
velocity distribution is continuous, then it will certainly
be possible to “pigeonhole’ each electron in this way.

The perturbed electron cloud is then described as
an assembly of streams with a density depending upon
stream label and position, and this density is caused to
deviate from the uniform ion density initially both
by swelling one group and depleting another when
imparting initial velocity changes, and by displacement
in space. The groups are now labelled according to
initial velocities U, Uz, Us;. The electrons in each
group would retain the velocities indicated by their
labels if the density distribution were the same as the
isotropic equilibrium distribution (i.e., that of the
ions). Otherwise, the electron velocity components will
deviate from the original U U,U; by amounts %1, #s, #3
as time proceeds. But initially these deviations are zero.

In other words, the stream analysis implies an
arbitrariness of labelling and this can be used to
establish initial conditions such that the initial velocities
vanish. In going from one description of the initial
state to another, one changes, of course, the distribution
n(0).

From this argument we see that there is no loss of
generality in assuming #3(0)=0 as we did for the
longitudinal perturbations. But one would be led to
the mnatural choice #:;(0)=0, %.(0)=0 instead of
%1(0)=a1(0), #2(0)=a2(0) as required in our analysis.

There are several ways around this difficulty. One
is to use #;(0)=0 and %,(0)=0 as initial conditions and
modify the analysis of Sec. 3 accordingly. One readily
sees that this procedure leads to squared denominators,
(Usks+Usky)™2, in I,(ky) and without rather careful
checking it is not possible to make sure that they do
not indicate oscillations of increasing amplitude [the
Laplace-inverse of (ks—iw;)2 is ¢ exp (iwit) ].

The second method is to use superposition. (This
method resulted from discussions between the author
and Dr. P. A. Sturrock of Stanford Microwave
Laboratory.) It amounts to removing the vorticies but
creating initial longitudinal velocities. We describe
the initial state #,=0 as a superposition of three states:

w=0a1(0), #u2=0a5(0), wu3=0,

initial potentials as given;
#1="by, #y= by, u3=bs,

initial potentials zero;
#;=0, #:=0, u3= —Dbs,

initial potentials zero.

The constants ; and b, of the second state (which has
no initial potentials) are then equated to the negatives
of the initial potentials of the first state; b3 is chosen
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such that Us(U1by4-Usbs)+ (U2+U2)bs;=0. The way
in which one distributes the density perturbations
among the three states is arbitrary, but we choose this
in such a way that the second state is particularly
simple.

The first state is nonvortical and covered by our
previous analysis. The third state is also nonvortical
but there is an initial longitudinal velocity which
could be removed by relabelling. The second state is
vortical and if we take its density perturbations zero,
no fields are ever created. This occurs by virtue of our
specific choice of b;: in the absence of fields, the equa-
tions of motion are U,0,u4,=0, giving u.=Ub,/
(U3k3+ U4k4) where b4= bl (bIU1+b2U2+b3U3)/U4
=b3U4/U; in accordance with the kinetic condition
and our choice of b3. We show that the flow is “incom-
pressible,” ie., that 8,#,=0. Indeed, the Laplace
transform of this equation, &sU;+kass=>by, is readily
checked to be true. Since dn/dr=—Nd,u,, we see that
no density perturbations, and hence no fields, are
created as time proceeds.

The field-free solution of our equations which we
have here described can be used to remove initial
vortices. The expressions for #, are readily Laplace-
inverted, leading to #,=b, exp[ —iks(xs— Vit)]. Each
group of streams carries its own wave of velocity
perturbations with it: the latter are (and remain)
incompressible, hence no fields arise, and one has
no occasion for studying the superposition of per-
turbations with a continuous spectrum of different
time-dependences.

The removal of vortices by the superposition method
is simple and instructive. But it introduces an initial
transverse velocity that has to be dealt with by relabel-
ling. This raises the question: why not remove the
second solution, #%,(0)=d, by relabelling also? This
procedure amounts to yet another method of dealing
with initial conditions that do not conform with those
of our earlier analysis. The previous method shows up
in detail how the relabelling and the calculation with
general initial conditions are equivalent. In fact, our
perturbation equations possess a whole class of solutions
which are “trivial,” in the sense that they amount
merely to a relabelling of the unperturbed state.

But perhaps the most elegant approach to the
problem of awkward initial conditions and initial
vortices is to use the initial generalized momenta
Py, Py, P3 as labels for the streams. This requires
preliminary investigation -of small magnetic fields
created by anisotropies in the electron velocity distribu-
tion, and construction of potentials @i, @s, a; (with
arbitrary gauge). After surveying the electron density
as a function of momenta P,, P, P; and space co-
ordinates w1, ¥, ¥s, one subtracts off a closely fitting
uniform isotropic distribution, representing the ‘“un-
perturbed” state, and analyzes the balance as outlined.
In unperturbed conditions the initial momenta remain
unchanged and are identical with the velocities, In
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perturbed or nonequilibrium distributions the momenta
will change from their initial values to Py+py, Pyt ps,
Py+ps. But initially we have pi=po=p;=0, the
condition required for our analysis of Sec. 3.

This method removes vortices simply by relabelling.
If vortices have been stirred up in some of the previously
unperturbed streams, we regroup the streams until in
the new grouping no vortices are apparent.

This discussion suggests that in a fully relativistic
treatment of the problem by a Boltzmann distribution
function one should also employ generalized momenta,
in place of velocities. Such a procedure might prove
helpful even when collisions are taken into account.

APPENDIX. CRITICAL WAVE NUMBER FOR THE
RELATIVISTIC MAXWELLIAN DISTRIBUTION

The critical wave number beyond which longitudinal
waves fail to be propagated undamped is given by
putting ks=1ksV max, 1.€., ks=1k; in the Maxwellian
distribution and solving the dispersion formula F,=0.
Putting V3=uV, where u is the cosine of the polar
angle, we find, from (30),

k=2 N+2 % Nu2V?/(1—w2V?)
=2 N{2/(1—p2V?)—1}. (A1)

Averaging with respect to u over its interval between
—1 and 41 leads to

k?=3 N(2y cothy—1), (A2)

In terms of v, we have Us=1 coshy, (UP+U2+Ug)}
=sinhy, and hence dU:dUdU ;=4x sinh?yd(sinhy) for
spherical symmetry.

In the Maxwellian distribution, &N is proportional to
(i/U4) exp(iU4/0)dUdUdUs, i.e., to exp(—8~! coshy)
Xsinh?ydy, and our object is to compare ks? with the
square of the plasma frequency, > N coshy. Their
ratio is

=00
f exp(—6! coshy)

=0

where y=tanh™1V.

y=00
X (2y coshy—sinhy)d(coshy) / f exp(—6-coshy)

y=0

Xsinhy coshyd(coshy). (A3)

Integrations by parts allow the conversion of the
integrals into combinations of

Koy = f exp(—6! coshy)dy, (A4)
0

and

©

K, ()= f exp(—6~! coshy) coshydy, (AS)
o -

where Ko and K; are Bessel functions (see Synge,
reference 6). One finds the ratio to be

(K14-20K0)/ (Ko+20K;)

which is 1428 for small 6, reaches a maximum of 1.04
at ¢~'=35 approximately, and goes to zero for large 6,



