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Kinematics of Growing Waves*
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This paper is concerned with the problem of distinguishing
between amplifying and evanescent waves. These have, in the past,
been distinguished by considerations of energy transfer or of the
initial and boundary conditions with which a wave must be
associated. Both procedures are open to criticism.

The problem is here interpreted kinematically: we investigate
the classes of wave functions which a given propagating system
may support, without inquiring into the way these disturbances
may be set up, and postponing inquiry into the boundary con-
ditions necessary. In this way, we may distinguish between
amplifying and evanescent waves by determining whether a wave
function which may be analyzed into "real-frequency" waves
may also be analyzed into "real-wave-number" waves. This
question may be answered by means of a certain diagram, which
may be constructed from knowledge of the dispersion relation.

Interchange of the roles of time and space leads to the statement
and solution of a further problem. If a propagating system is
unstable, the instability may be such that a disturbance grows,
but is propagated away from the point of origin: this is termed

"convective instability. " On the other hand, the instability may
be such that the disturbance grows in amplitude and in extent,
but always embraces the original point of origin: this is termed
"nonconvective instability. " The statement that the system
supports amplifying waves is synonymous with the statement that
the system exhibits convective instability. A system which
exhibits nonconvective instability may not be used as an ampli-
fier, but may be used as an oscillator. It is possible to distinguish
between convective and nonconvective instability by a further
diagram which also may be constructed from knowledge of the
dispersion relation.

Our theory enables us to make the following assertions. If co

is real for all real k, then any complex k, for real co, denotes an
evanescent wave. Conversely, if k is real for all real m, then any
complex co, for real k, denotes nonconvective instability.

The theory is illustrated by certain simple examples and by
discussion of the result of weak coupling between certain types of
waves.

1. INTRODUCTION certain controversies concerning growing waves which
have arisen are due primarily to a lack of understanding
of the nature of these concepts. What attention these
terms have received has been directed towards the
statement of rules for recognizing these wave types
rather than towards their definition. Our primary
objective will be to elucidate the meaning of these
terms, and our secondary objective that of deriving
criteria for recognizing when a wave is amplifying and
when it is evanescent.

We shall see, in the course of this communication,
that there is a second, hitherto unrecognized, problem
concerning instabilities of propagating media which
also admit classification into two physically distinct
types, the nature of which will be discussed later.

The first problem, that of distinguishing between
amplifying and evanescent waves, may be expressed as
follows. We suppose that the problem of wave propa-
gation has been reduced to one-dimensional form; the
"transverse boundary conditions" have therefore been
taken into account. The variables in our problem,
which we shall represent collectively as p, may there-
fore be expressed as functions of one spatial coordinate
z and time t, that is as d (z,t). If the medium is homo-
geneous in s and t, one proceeds to look for solutions of
the relevant equations which may be expressed in the
form

' 'N many branches of physics, one is interested in the
~ ~ propagation of waves through a complex medium.
In some instances, such as the propagation of radio
waves through the ionosphere or the production of
electromagnetic power in electron tubes, these waves
represent the physical phenomenon of interest. In other
cases, notably in problems concerned with stability, ' '
the waves which appear in the mathematical analysis
are not accorded individual but rather "collective"
significance in the sense that it is supposed that any
real disturbance may be represented by a combination
of such waves. One of the problems which, it has seemed,
could not be resolved by this procedure, which is known
as "substitution analysis, ' is that of distinguishing
between amplifying and evanescent waves.

The principal difficulty which one faces in ap-
proaching this problem is that the terms "amplifying"
and "evanescent" are never defined: they are normally
used as if their meanings were intuitively obvious where-
as they have in fact been vague. It would seem that
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i H. Lamb, IIydrodyrsamics (Cambridge University Press,
Cambridge, 1932), Sec. 231.' M. D. Kruskal and M. Schwarzschild, Proc. Roy. Soc.
(London) A223, 348 (1954).

' Substitution analysis has also been critized in its application
to the problem of plasma oscillations in an electron gas of nonzero
temperature I L. Landau, J. Phys. (U.S.S.R.) 10, 25 (1946);R. Q.
Twiss, Phys. Rev. 88, 1392 (1952)g, but the difficulty is not
fundamental —it may be traced to the fact that the plasma-
oscillation modes do not represent a complete set but should b
supplemented by 6eld-free modes.

y(s t) —ei(kz—cat)

If the system is periodic in s or in t, the right-hand side
of (1.1) must include a term of this periodicity, for
instance,

d, (s t) f(s)eilsz —wi)

wherein f(s) would be a function of the same periodicity
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D(co,k) =0, (1.3)

is known as the "dispersion relation. "
Ke shall restrict our attention to the case that the

dispersion relation yields a finite, or denumerably
infinite, number of solutions: these may be expressed
either as

(1.4)
or as

(1.5)

wherein o. will enumerate the "modes" of the system.
It may be noted that there is some arbitrariness in

analyzing the behavior of a propagating system into
modes. Equation (1.3) represents a relation between
two complex quantities, or between the four real
quantities ~„,~;, k„,k;, where

oo= ror+sror)

k=k,+ik, .

It therefore represents a set of two-surfaces in a four-
dimensional space. These surfaces may have points, or
curves, of contact, which may lead to some indeter-
minacy in relating the functions Q (k) which appear in
(1.4) with the functions E„(co)which appear in (1.5).
However, where such indeterminacy occurs, one will

normally be considering two or more modes at a time
[for instance, a function Q„(k)and its complex con-
jugate function7 so that this indeterminacy is not likely
to cause trouble in practice. '

Suppose, now, that Kq. (1.3) is solved in the form
(1.5), since, in the given problem, we are concerned
with the propagation of waves of a de6nite (real)
frequency. If the resulting functions E (ro) are real,
there is no difIiculty in interpreting our results: the
wave propagates without attenuation, with a known
phase velocity and with a group velocity' ' which is
given by the derivative of E (oo),

ss, ——fdE(ro)/dro7 ',

or, equiva1ently, by

s„=dQ (k)/dk.

(1.8)

However, now suppose that the function E(&o) is
complex for the value of co of interest. Two possible
interpretations are known: either the wave is eva-
nescent (the wave in a cut-off wave guide is of this

L. Srillouin, 8'ave Propagation in PerioChc Structures
(McGraw-Hill Book Company, Inc. , New York, 1946), p. 140.' Generalization of the theory here presented will nevertheless
involve further analysis of the topology and interpretation of
these "mode surfaces. "

'Lord Rayleigh, Theory of Sound (MacMillan and Company,
Ltd. , London, 1894), Vol. I, p. 301 G. and appendix.' See reference 1, p. 357 G.

as the medium itself. 4 One normally finds that solutions
of type (1.1) may exist only if ro and k are appropriately
related: the equation which determines permissible
relations,

category), or the wave is amplifying (one of the waves
in a traveling-wave tube is of this category).

In some analyses which have followed the lines
indicated, the distinction between amplifying and
evanescent waves has been ignored completely. In
some cases, this gap in the mathematical analysis was
filled by experimental evidence''; in other cases, it
was not. '~"

Among those who seek to distinguish between ampli-
fying and evanescent waves, one may distinguish two
schools, which may be labeled the "energetics" school,
and the "boundary-condition" school. The criteria
adopted by these schools will be reviewed in the next
section. The point of view of the energetics school is,
brieQy, that one should distinguish between amplifying
and evanescent waves by determining whether or not
one may extract energy from the wave. "" The point
of view of the boundary-condition school is that one
should distinguish between amplifying and evanescent
waves by determining what wave form will be set up
by prescribed initial and boundary conditions. "" The
first school is open to the following criticism: in setting
up the dispersion relation, all conservation laws have
implicitly been taken into account; one would therefore
expect that whatever information is to be derived from
the law of conservation of energy is already contained
in the dispersion relation. The second school is open to
this criticism: one may seek to classify a wave as
"amplifying" or "evanescent" by making statements
which are independent of any particular choice of
boundary conditions or initial conditions, for instance,
that waves of the first type may, with appropriate
boundary and initial conditions, lead to the design of
an amplifier, whereas waves of the second type cannot,
with any choice of boundary and initial conditions, lead
to the design of an amplifier; one would therefore expect—or at least hope —that the distinction between these
two waves might be arrived at by some procedure other
than the explicit analysis of a specified variety of initial
and boundary conditions.

The rationale of the present treatment of this problem
is that it should be possible to distinguish between
amplifying and evanescent waves without introducing
arguments of energetics or of Laplace-transform

s A. V. Haeif, Proc. Inst. Radio Engrs. 37, 4 (1949).
~ R. G. E. Hutter, Advances in Electronics, edited by L. Marton

(Academic Press, Inc. , New York, 1954), Vol. 6, p. 372.
"J.R. Pierce, J. Appl. Phys. 19, 231 (1948)."J. A. Roberts, Phys. Rev. 76, 340 (1949)."J.Feinstein and H. K. Sen, Phys. Rev. 83, 405 (1951)."J. R. Pierce, Bell System Tech. J. 33, 1343 (1954).
r4 V. A. Bailey, Phys. Rev. ?8, 428 (1950); 83, 439 (1951);106,

1356 (1957)."L. J. Chu and H. A. Haus, Massachusetts Institute of
Technology Internal Report, 1957 (unpublished)."L.Landau, J. Phys. (U.S.S.R.) 10, 25 (1946).

'r R. Q. Twiss, Phys. Rev. 88, 1392 (1952).
's R. Q. Twiss, Proc. Phys. Soc. (London) B64, 654 (1951);

Phys. Rev. 84, 448 (1951)."J.R. Pierce, Bell System Tech. J. 30, 626 (1951).
ss R. W. Gould, IRE Trans. on Electron Devices 2, 37 (1955).
» J. R. Pierce and L. R. Walker, Phys. Rev. 104, 306 (1956).
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analysis. It is believed that the distinction may be
looked for in what is here called "wave kinematics, "
by which we mean the study of the space-time distri-
bution of wave amplitude of Pee waves or combinations
of free waves. We shall consider, in particular the
existence and nature of wave packets in media which

support growing waves. The term "growing waves" is
here used as a neutral term for a wave described by
complex E'(~) for real co, when it is yet to be decided
whether this wave is amplifying or evanescent.

Our view of what constitutes wave kinematics is such
as to lead to the following consequence: all statements
which may be classed as "wave kinematics, "which one
may make with reference to a particular medium and a
particular wave type, may be derived from the dis-
persion relation characterizing that wave. The aim of
this paper will therefore be seen to be that of deriving
a criterion for distinguishing between amplifying and
evanescent waves which requires knowledge only of
the dispersion relation, requiring no explicit knowledge
either of energy transfer or of the inQuence of initial
and boundary conditions.

In Sec. 2, we shall review the criteria which have
previously been proposed or used for distinguishing
between amplifying and evanescent waves. In Sec. 3,
we shall give a kinematic interpretation of the dis-
tinction between amplifying and evanescent waves, and
so derive a criterion for the distinction of these wave

types which involves only the dispersion relation of the
system. We shall 6nd, in Sec. 4, that our kinematic
interpretation of the distinction between amplifying
and evanescent waves leads naturally to a corresponding
distinction between two types of instability of a propa-
gating medium, which we term "convective instability"
and "nonconvective instability. " It will be seen that a
medium which exhibits convective instability may be
used as an amplifier, whereas a medium which exhibits
nonconvective instability is self-oscillatory, and so may
not be used as an amplifier. We shall derive a criterion,
involving only the dispersion relation, for distinguishing
between these two types of instability. If, as seems
likely, energetic considerations oBer no simple way of
distinguishing between the two types of instabilities
which we shall be led to introduce, this fact constitutes
a further objection to the energetic approach to the
problem of growing waves.

Section 5 will be devoted to a discussion of certain
mechanical models which are simple enough for one to
understand intuitively the dynamical nature of their
characteristic wave patterns. Section 6 will discuss
certain complications of the theory which may on
occasion arise, and certain more interesting examples.

2. EARLIER AND DIFFERENT APPROACHES
TO THIS PROBLEM

It was stated, in the Introduction, that earlier
approaches to the problem of distinguishing between
amplifying and evanescent waves have turned upon

d8/eh= 0, (2.2)

so that 8 is constant. However, E and S are quadratic
functions of the 6eld variables p, so that

(2.3)

Since we are assuming k; to be nonzero, it follows from
(2.2) and (2.3) that

S=o. (2.4)

It is an immediate consequence of the argument of
the preceding paragraph that if we are to distinguish
between amplifying and evanescent waves by energy
considerations, it will be necessary to divide the total
energy Qow into components which are to be assigned
to the various "carriers" which constitute the propa-
gating system. The necessity of such an analysis repre-
sents a further objection to the energetics method.

Let us now suppose that the propagating medium is
subdivided into carriers which we enumerate by a
suffix i. The total energy density and the total energy
Row may thereby be analyzed as follows:

E=Q, E;, S=Q; S;. (2.5)

Note that we cannot assume, in advance, that each
energy component is essentially positive; it is, indeed,
a characteristic of conservative amplifying systems
that one of the carriers admits of negative-energy states.

Assuming that the energy and power have been
subdivided as in (2.5), how is one to distinguish between
amplifying and evanescent waves' In many problems,
one is concerned with the interaction between streams
of charged particles and electromagnetic fields, and one
is looking for mechanisms for converting particle
energy into electromagnetic-held energy. Some writers"
have therefore adopted as the criterion for a genuine
amplifying wave that the Poynting vector should be
parallel to the direction in which the wave-amplitude

arguments of energetics or of boundary conditions;
certain general objections to these approaches were
registered. In this section, we shall review these, and
certain other, methods in a little more detail.

In attempting to classify waves by arguments of
energy transfer, we should erst notice that such a
classi6cation is impossible if one considers only the total
energy transfer of a given pure wave, characterized by
a real value of co and complex value of k. The reason for
this is that, if the system is conservative (and it is only
if the system is conservative that one expects arguments
of energy transfer to be fruitful), the mean energy flow

(or "power") in the direction of the wave must be zero.
This follows from the following simple argument: the
energy density E and the energy Aow S are related by
the conservation equation

BE/cj/+ BS/Bz =0. (2.1)

For a wave which is sinusoidal in time, (2.1) implies
that 8(s), the mean energy Row, satisfies
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is growing, since this seems to imply a progressive
transfer of energy from particles to the 6eld. However,
this argument is not valid, as we may see from the
schematic diagram shown in Fig. 1. This diagram
indicates that it may be necessary to inject, at some
boundary to the right of the growing wave, energy into
the electron beam which is transferred, as shown, to the
electromagnetic field and so appears as a growing
Poynting Qux parallel to the direction of growth. If
energy must be injected at the high-amplitude end of
the propagating system, the wave must be classed as
evanescent rather than amplifying. Note also that it is
not sufhcient to adopt, as the criterion for amplification,
that the energy transfer from the beam to the field
should increase in the direction in which the wave grows.

A more persuasive criterion, based upon energetics,
is obtained only by supplementing the analysis of
energy and energy flow represented by (2.5) by an
assumption about the "direction of Qow. """If, in
some sense which should be clari6ed but usually is not,
the disturbance is propagating in the direction of
growth, and if the Poynting vector is parallel to the
direction of growth, then one would believe that the
wave is amplifying rather than evanescent. However,
there remains the problem of clarifying what is meant

by the "direction of Qow" and of giving a rule for
determining this direction in any particular system.
One might at erst be tempted to identify this direction
with the direction of the "group velocity, " but one
immediately faces the difhculty of fitting the idea of
group velocity into the framework of growing waves. ""
The simple rule represented by (1.8) and (1.9) clearly
cannot be valid since the expressions on the right-hand
sides of these equations are complex.

In physical systems, one can often form a definite
idea as to what the direction of Qow must be, even if
one cannot be precise as to what exactly is "Qowing. "
For instance, if there are a number of interacting
electron streams, all of which are moving in the same
direction, one has the intuitive idea that disturbances
represented by growing waves are, in some sense, being

E M FIELD

BEAM

FIG. 1. Evanescent wave with nonzero Poynting flux
in direction of growth.

~A. Sommerfeld, OPtr'cs (Academic Press, Inc., New York,
1954), p. 114 B."L. A. Wainstein, paper presented at the Union Radio-
Scienti6que Internationale Twelfth General Assembly, Boulder,
1957 (unpublished).

propagated in the direction of the beam velocities. This
assumption, which seems plausible but really calls for
clarification and analysis, is usually an explicit or
implicit ingredient of criteria employed by the energetics
school.

The above argument may be given a particularly
persuasive form by interpreting growing waves as
being due to a "weak coupling" between the constituent
carriers of the propagating system. Assuming that the
individual carriers, when uncoupled, propagate un-
attenuated waves, and that the group velocities of these
waves is in the same direction, it is reasonable to
assume that, if the carriers are only weakly coupled,
waves in the resulting system are propagated in the
original direction, even if the waves so obtained are no
longer unattenuated. It is seen' that this argument,
which underlies the "coupled mode" theory of electron
tubes, " should lead to a reliable distinction between
amplifying and evanescent waves, but only at the
expense of analyzing the energy Qow into constituents,
and of appealing to the weak-coupling hypothesis.

The case in favor of distinguishing between ampli-
fying and evanescent waves by calculation which takes
the boundary and initial conditions explicitly into

- account —for instance, by Laplace-transform analysis-
has been forcefully presented by Twiss. "There can be
no objection to carrying through the mathematical
analysis which duplicates precisely the physical process
which occurs when an electron tube is switched on, and
so arriving at the steady state which would be set up,
except that this may prove a discouragingly laborious
calculation, and except that one may have the suspicion
that the distinction which we seek may be arrived at
more simply. This means that we cannot take exception
to the results of the transient calculation carried through.
by Laplace transformation in the t coordinate. If the
medium were infinite in extent, so that there were no
spatial boundary conditions to be considered, such a
calculation might show certain waves to be evanescent,
since their amplitude decayed away from the point of
origin, or it might show the system to be amplifying,
since the disturbance is propagated away from the
origin but grows in amplitude, or it may prove the
system to be unstable in the sense that the wave-
amplitude in the neighborhood of the origin grows
indehnitely.

However, since the preceding calculation leads more
naturally to an analysis in real wave numbers than in
real frequencies, it is sometimes proposed that
Laplace-transform calculation in the s variable should
be carried out. It may seem that the validity of this
procedure stands or falls with the validity of the
Laplace-transform calculation in time, but this is not
so. There is an important physical distinction between
the two cases, in consequence of which Laplace-
transform calculation in the s variable may lead to
erroneous conclusions.
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FIG. 2. Contour of integration for Laplace-transform
analysis in time.

In applying Laplace-transform theory in time, one
assumes that the system is undisturbed up to time / =0,
when a disturbance is initiated by "forcing terms. "
Laplace-transform calculation, based on the equations
of motion, will then lead to an expression of the fol-
lowing type for the wave amplitude":

F;;(k,(u)f, (k,cq)
y.(s ])—eikz j, g~ s ~~t

D(k,&o)

(2.6)

For simplicity, we consider a disturbance which is
sinusoidal in the space coordinate z. In the above
equation, P, (k,or) characterizes the forcing term: the
consideration of impulse-like forcing terms would
enable us to interpret P, (k,~) alternatively as deter-
mined by the initial values of the potentials P;. The
coefficients F;,(k,&o) are characteristic of the propagating
medium: the denominator D(k,~) is identical with the
function appearing in (1.3), and appears in Laplace-
transform theory as the determinant of the matrix F;, :

D(kp)) = iFg(kgb) i. (2.7)

The integral (2.6) may be analyzed into contributions
arising from the poles of the integrand, that is, from the
zeros of the dispersion function D(k,~). However, in
order to obtain a definite answer, it is necessary to
specify the contour of integration. In the case we are
considering, this is determined uniquely by the require-
ment that P, (s,t) =—0 for t &0. The contour must be that
shown in Fig. 2, that is, it must be a curve which passes
above all zeros of the function D(k, a&). This curve may
be displaced in the direction &a, ~+~, which ensures
that P;(s,t)—=0 if t&0. For positive values of t, the
contour may be closed by a return path for which

co,=—~, which shows that every zero of D(k,~) then
contributes to the wave.

Now suppose that we attempt to repeat these argu-
ments, interchanging the roles of z and I,. We may
imagine that we are considering the modulation of a
beam incident from z= —~ at the plane z=0, the
modulation being periodic in time. The resulting wave
function may again be written in a form similar to
(2.6),

where the function f;(k,&o) now characterizes the
external force applied at the plane z=0. The problem
still remains of choosing the appropriate contour of
integration. If it could be asserted that p, (s,t)=—0 for
z&0, then the contour would be analogous to that
appropriate to the integral (2.6), that is, the integral
shown in Fig. 3. (This contour now runs below the zeros
of D(k, or) since (1.2) gives different signs to the space
and time exponents. ) However, the important point to
which we wish to draw attention is this: in the previous
case, in which forces were applied at time 1=0 to a
system which was undisturbed for Ir'&0, our under-
standing of causality led to the unmistakable conclusion
that p, (z,f)=0 f—or t&0; however, it is impossible to
deduce from the principles of causality that, in the case
we are considering, the wave functions p, (s,t) should
vanish for z&0. There is no reason why unattenuated
waves (for instance, electromagnetic waves traveling
with approximately the velocity of light) should not
propagate "upstream, " in the negative z direction.
Indeed, it may be that in some recalcitrant cases it is
impossible for the wave function even to remain finite
for negative values of z, since an amplifying wave
propagates against the direction of the electron stream.
There is also the more likely possibility that an eva-
nescent wave will extend upstream from the modulating
plane s=0, a sort of "bow wave. " (A careful analysis
shows that such space-charge bow waves exist in
klystron amplifiers. ) If we now suppose that such bow
waves exist, it is clear that the contour of integration
should not be that shown in Fig. 3: it should instead
be that shown in Fig. 4, the contour running below all
zeros of D(k, &v) except those representing evanescent
waves which fall oG in the negative z direction, that is,
with negative values of k;. Note, however, that there
may be also genuine amplifying waves which will also
have negative values of k;: it is clearly necessary that
the contour should run below the zeros of D(k, co)

representative of these modes, as shown in Fig. 4. We
now see that, in carrying out Laplace-transform theory
in z, the following basic difIiculty has arisen: the con-
tour may not be assumed to run below all poles of the
dispersion function D(k,co); moreover, in order to know

k; ii'

kr

Fg(k, a))P; (k,co)

y (s t) =e—'"' dk e'"'
D(k,M)

(2.8) FIG. 3. Incorrect contour of integration for Laplace-transform
analysis in space
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, k;

xA xA

FIG. 4. Correct contour of integration for Laplace-transform
analysis in space.

u J. H. Piddington, Phys. Rev. 101, 9 (1956); 101, 14 (1956)."O. Buneman (to be published).

just what contour is appropriate, it is necessary to have
some means of classifying waves which grow expo-
nentially in the +z direction into "amplifying" and
"evanescent" waves. Hence the application of Laplace-
transform theory in the z coordinate by no means leads
to a classification of growing waves into amplifying and
evanescent types: on the contrary, such a classification
must be obtained by other methods if Laplace-transform
theory in the z coordinate is to be employed at all.

It may be noted that the above difhculty is not
alleviated by interpreting the integral (2.8) as giving
the wave function due to prescribed initial values at the
plane z=0 (which is, of course, the conventional in-
terpretation of the Laplace-transform integral). The
reason is that it may be physically impossible to set
up the prescribed initial values of P;(z, t) at z=0 by
operations at the plane z=0. For instance, if there is
an evanescent wave with a negative value of k;, this
wave can be excited only by an appropriate forcing
term at some positive value of z.

An unusual approach to the problem of resolving the
distinction between amplifying and evanescent waves
has been proposed by Piddington. '4 Piddington shows
that it is possible to misinterpret waves which are
known to be evanescent as amplifying, but deduces
from this fact the unwarranted conclusion that all
waves for which co is real and k complex must, in fact,
be evanescent. However, Piddington's contributions
are valuable in emphasizing the relationship between
amplification and instability: Piddington clearly in-
terprets amplification as a kind of "convective insta-
bility, " a point of view which our investigation leads
us to endorse.

A new approach to the problem we are discussing
has recently been proposed by Buneman. 25 The pro-
cedure here is to investigate whether or not it is possible
to draw energy from a given growing wave by means of
an appropriate probe. Since this theory is quite new,

it is impossible to give a critical account of it here. It
must sufFice to observe that the theory, as at present

proposed, makes it necessary to divide the system under

consideration into independent components, and to
study the interaction of these components with a

"virtual probe. " The results of this theory agree with
our own insofar as they demonstrate that amplifi-
cation is associated with instability.

y(» t) — d~ f(~)ei[R((u) z rut]—f
J

(3.1)

where the integration is here assumed to run over all
real values of te, and it is assumed that f(te) has a sharp
peak at co=~0 and is negligibly small elsewhere. For
definiteness, we shall consider the following functional
representation of f(a&):

f(~) =exp —
~

607
(3.2)

where S takes some positive integral value and h~
may be made arbitrarily small.

We first observe that the wave function represented
by (3.1) is a "time-like packet" in the sense that, for
any value of z, the wave function is bounded in extent.
This follows at once from Riemann's Lemma. " Pro-
vided that E,(te) is bounded, the function f(te)e'x&"&'

is bounded for all real values of co. Hence, by Riemann's
Lemma,

@(zt)~0 as t —+a~. (3.3)
ss E. C. Titchmarsh, Fourier Integrals (Clarendon Press,

Oxford, 1937), p. 11 6'.

3. KINEMATIC FORMULATION OF THE PROBLEM

The principal thesis of this communication is the
assertion that the distinction between amplifying and
evanescent waves may be interpreted within the frame-
work of wave kinematics. This term is intended to
denote the space-time "geometry" of wave functions,
and to exclude all specifically dynamical concepts such
as energy, momentum, etc. In this section, we derive a
kinematic classification of growing waves into two types,
and adopt this classification as defining the terms
"amplifying" and "evanescent. "This kinematic classi-
fication will lead us to a criterion for distinguishing
between these wave types which requires knowledge
only of the dispersion relation.

We consider the relation (1.5), characterizing a
particular mode of a propagating system. We suppose
that, for some value coo of co, the quantity k, which is
given by E(res) if we drop the suKx n, is complex. We
wish to find out whether this wave is amplifying or
evanescent without looking into the energetics of the
system and without explicit discussion of the boundary
conditions necessary to excite this wave. This means
that we must consider a "free" wave function which is
not necessarily limited to any finite region of space and
time. If this wave is monochromatic, there is no way of
telling whether it is amplifying or evanescent.

It is proposed that we consider a wave function which
is quasi-monochromatic. That is, we consider a wave
which is expressible in the form
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we should determine whether the function de6ned by
(3.1) is such that, for arbitrary t,

If this condition is satisfied, then the wave function is
a space-like packet and the wave is amplifying; if this
condition is not satished, the wave function is not a
space-like packet, and the wave is evanescent.

If P(s, t) is to be a space-like packet, it is necessary
that, for arbitrary t, p should be expressible as

@(s,t) =
~

dk g(k, t)e" (3.5)

I'ro. 5. Time-like packet also a space-like packet.

It is in this sense that we describe P(s, t) as a "time-like

packet. "
The important question which now arises is the

following: Is the wave function (3.1) also a space-like

packet. ? If it is, then a "contour diagram" of the ampli-

tude of the wave function over the z-t plane must be
as shown in Fig. 5; on the other hand, the contour
diagram might be as shown in Fig. 6, in which case the
wave function could not be interpreted as a space-like

packet. It is clear, from Fig. 5, that a wave function
which may be interpreted as both a time-like packet
and a space-like packet represents a disturbance which

is being propagated in the medium: we might say that
such a wave function is "launchable" since if it were

generated, at some time, in a localized region of the
z axis, the disturbance would be "launched" from this

region since the disturbance in the neighborhood of
this region ultimately vanishes. We may conceive that
such a disturbance could also be generated by an

appropriate time-varying signal applied at the plane
z=o. Wave functions of the type shown in Fig. 6, on

the other hand, do not represent propagated disturb-

ances of the medium, since they are at no time localized

in space. In order to realize a wave function of the type
shown in Fig. 6, one would expect that it would be
necessary to apply appropriate signals at two points,
with large positive and negative z coordinates.

It is clear that wave functions of the type shown in

Fig. 6 are those which we expect to arise in systems
which support only evanescent waves, whereas we

expect that wave functions of the type shown in Fig. 5
will arise in systems which support amplifying waves.

We propose to adopt this classi6cation as our kinematic
formulation of the distinction between amplifying and
evanescent waves. We therefore assert that if a quasi

monochromatic spatially growing wave which is, by

construction, a time like packet is a. l-so a space like packet, -

thee the wave under consideration is amplifying; if, on,

the other hand, the time-like packet is not a space like-
packet, then the wave is evanescent.

Xt follows from the above definition that in order to
determine whether or not a growing wave is amplifying,

where the integration is to run over real values of k.
By Riemann's Lemma, in order that 4 (s,t) should be a
space-like packet, it is sufhcient that it should be
expressible in the form (3.5), in which the integration
runs over all real values of k, and, for arbitrary t, g(k, t)
is a bounded function of k.

The problem is now to decide how investigation of
the dispersion relation will enable us to see whether or
not the wave function delned by (3.1) may be expressed
in the form (3.5). The information which we seek is
given by a certain diagram. We construct, in the ~„-co;
plane, the locus I' which is traced by the function (1.4),
appropriate to the mode under consideration, as k takes
all real values between —~ and ~. This curve will not
pass through the point co=era since, by hypothesis, this
value of or corresponds to a complex value of k. We shall
suppose that E(co) is real for real co outside the range
co~ to ~2. The path of integration of the integral (3.1)
therefore corresponds to integration over real values of
k, except for the contribution to the integral between
the limits co& and co2. However, we remember that, by
appropriate choice of f(&o)—for instance, by making
Bar in (3.2) arbitrarily small —we may make the con-
tribution to the integral (3.1) outside a small neighbor-
hood of oro negligibly small. If the functions occurring
in (3.1) are analytic, we are entitled to displace the
path of integration of (3.1) so that the integration
runs from co= —~ to co=~ by some path other than
the real axis. The question which interests us is this:
Is it possible to displace the contour of integration in
such a way that the integral (3.1) then represents

f-o
Pro. 6. Time-like packet not a space-like packet.



KINEMATICS OF GROWING WAVES 1495

integration over real values of k? This will be possible
if and only if the curve I' "bridges" the gap between
co~ and &v2. If I' has the form shown in Fig. 7, it is clearly
possible to re-express the integral (3.1) as

dQ
p(s t) = I dk f(Q(k))e't"*

dk
(3 6)

where k runs over all real values.
If p(s, t) is to represent a space-like packet, it is

certainly necessary that F should so bridge the gap
between ~& and cv2 that the integral ('3.1) may be
re-expressed as (3.6). Hence we may immediately
assert that if we 6nd the contour 1 to be of the form
shown in Fig. 8, then the mode under consideration
represents an evanescent wave over the band co~ to co2.

In fact, the situation shown in Fig. 8 necessarily involves
a complication which was referred to in the Intro-
duction. In analyzing media which support growing
waves, we shall normally consider modes in groups of
at least two: for instance, the waves characterized by
E(&o) and by E*(&u), where E* denotes the complex
conjugate of E.%e expect, of course, that all the modes
of one group will be of the same type — "ither eva-
nescent or amplifying, although some of the amplifying
modes might prove to be uninteresting since they
represent negative amplification.

I et us now assume that the contour F is of the form
shown in Fig. 7, so that the integral (3.1) may be
expressed in the form (3.6). We shall consider two
questions: With what range of the curve F is the
dominant contribution to the integral (3.6) associated,
and what further conditions must be satisied in order
that the integral (3.6) should represent a space-like
packet? The erst question is easily answered if we
consider the particular functional form (3.2). By 'making
6+ arbitrarily small, we may insure that the contri-
bution to the integral arising from that part of the

Fro. 7. Frequency band corresponding to growing waves bridged
by locus of frequencies corresponding to real wave numbers.

Q) QJp QJ

F&G. 8. Frequency band corresponding to growing waves not
bridged by locus of frequencies corresponding to real wave
numbers.

contour for which

(3.7)

is made negligibly small, where e is the smallest real
root of the equation

)2Eq )2E~
1—

] [n'+( [n4 — +(—)'~a'+=0 (3 g)
&4&

If X=1, n= 1; if X=2, n= [(3—242) )& It is clear that,
whatever form the function f(~) may take, the domi-
nant contribution must come from that portion of the
curve 7 for which co;/0.

We may now turn to the second question. It follows
from Riemann's Lemma that the integral (3.6) will

represent a space-like packet, for which (3.4) is satis-
6ed, provided that (dQ/dk) f(Q(k))e"'&"' is bounded
for all real k. However, the consideration of the pre-
ceding paragraph indicates that it is, indeed, sufhcient
that this function shouM be finite over the range of
values of k necessary to bridge the gap in the real
co axis, excluding the points of intersection with the
axis. If we restrict our attention to functions f(~)
which do not happen to have poles on the curve I",
this condition is satisied provided that F remains in
the Gnite part of the plane, and provided that the
complex function dQ/dk is bounded over the relevant
part of the curve F and has no singularities between
1 and the real axis.

4. CONVECTIVE AND NONCONVECTIVE
INSTABILITY

Ke now pass on to the consideration of a new
problem. By considering wave functions which were
defined in such a way as to be time-like packets, and
then enquiring into conditions necessary for these
functions to be also space-like packets, we have arrived
at a classiication between amplifying and evanescent
waves, and a criterion for distinguishing them. What
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FIG. 9. Space-like packet not a time-like packet.

analogous information may we obtain by interchanging
the roles of space and time?

We now begin by considering modes as characterized
by the form (1.4) of the dispersion relation. We shall
consider that, for a particular value ke of k, Q(k) is

complex. Clearly, we are now considering the problem
of Asstability of the given medium for, if 0;&0, the
component of the disturbance characterized by ko will

grow in time. We may therefore anticipate that the
analysis given in Sec. 3 will enable us to de6ne a
classi6cation of unstable modes into two types, and
that we shall be able to obtain a criterion for dis-
tinguishing between these types.

We now consider, in place of the expression (3.1),
the integral

y(s t) — i dk g(k)eiPtz 0(tt)ti— (4.1)

in which we assume that the function g(k) is sharply
peaked at k=ke. Hence, if Q, (k) is bounded, (4.1)
represents a space-like packet.

We may again distinguish, for the functions de6ned

by (4.1), two possibilities: the function ttt(s, t), which

is by hypothesis a space-like packet, may or may not
also be a time-like packet. In order to see the significance
of this distinction, we may draw diagrams for the two
possibilities. If the wave function represents a time-like

packet, we obtain once more contours of the form shown
in Fig. 5. If, on the other hand, the space-like packet
is not a time-like packet, we obtain the set of contours
shown in Fig. 9.These two diagrams represent two types
of instability: it is suggested that that shown in Fig. 5
be termed "convective instability, ' and that shown in

Fig. 9 be termed "nonconvective instability. " Hence
we arrive at the following definition: if a wave fetnction

growing in time, whichis composed of a narrow spectrgm

of wave nlmbers, and which is therefore a space like-
packet, is also a time like packet, then -the instability
represented by this wave is convectt've; if, on the other hand,

the space lik-e packet is not a time lik-e packet, then the

instability is eoncoeeectiee.
The classi6cation of instability which we have so

easily arrived at is instructive and illuminating. The
theory of dynamical systems of a 6nite number of
degrees of freedom leads one to expect that any system
which is shown to be unstable cannot persist in a
quiescent state if random disturbances, no matter how
small, must be supposed to be present. This simple
view suggests that a propagating system characterized
by a dispersion relation which admits complex values
of co for real values of k must be supposed to disrupt
some time after an arbitrarily small disturbance is
admitted. However, electron tubes such as the traveling-
wave tube and the two-stream ampli6er are represented
by dispersion relations with this property, but it is
known that the tube is not unstable in the sense indi-
cated. This paradox, to which Twiss has drawn at-
tention, ' is resolved by our classi6cation of instability.
If a propagating system exhibits convective instability,
a finite length of the system may persist in a quiescent
state, even in the presence of small random disturb-
ances, since these disturbances, although ampli6ed, are
carried away from the region in which they originate.
Such systems may be used as ampli6ers, and the
traveling-wave tube" and two-stream amplifier' are of
this type. If, on the other hand, a propagating system
exhibits nonconvective instability, an arbitrary per-
turbation of the system will give rise to a disturbance
which grows in amplitude at the point at which the
perturbation originated; we also expect that the dis-
turbance will spread until it extends over an arbitrarily
large region of the system. If an electron tube were to
exhibit nonconvective instability, it could not be used
as an ampli6er; it would be said to be "unstable" or
"self-oscillatory. "

We may distinguish between convective and non-
convective instability by constructing diagrams analo-

h

FIG. 10. Band of wave numbers corresponding to instability
bridged by locus of wave numbers corresponding to real fre-
quencies.

sr J. R. Pierce, Travettttg Wave Tubes-(D. Van Nostrand
Company, Inc., Princeton, New Jersey, 1950).
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gous to those shown in Figs. 7 and 8. We construct, in
the k,-k; plane, the curve A which is the locus of points
k=E(&u), where Z is the function (or functions) ap-
propriate to the mode under investigation, and ~ takes
all real values. We are assuming that, for k=ko, co is
complex: hence the curve A. may not pass through the
point ko. The two types of curve which we may expect
to obtain are shown in Figs. 10 and 11.If the curve A.

bridges the interval k~ to k2, for which co is complex,
the space-like packet (4.1) may be rewritten in the form

(4.2)

in which the integration is over real values of ~, so that
the packet is time-like; the instability is therefore
convective. If, on the other hand, the curves 4, h.'

representing a pair of modes have the configuration
shown in Fig. 11, the integral (4.1) may not be re-

Pro. 12. Mechanical model of simple propagating system.

We consider a linear array of oscillators, such as
pendula vibrating in planes transverse to the s axis.
The equation of motion of each oscillator is then of the
form

d'y/dt'= —Xy, (5.1)

where p might measure the angular displacement of the
pendulum. H we now suppose that each pendulum bob
is connected to its neighbors by elastic strings, the
equation of motion of the eth pendulum is of the form

= —~4' P(4'm~ —24' +p —~)
dt'

(5.2)

A
=k, which becomes, in the limiting case of inlnitely short

separation between oscillators,

d2y g2 += —~4+~
dP Bs

(5.3)

FIG. 11. Band of wave numbers corresponding to instability
not bridged by locus of wave numbers corresponding to real
frequencies.

If we now suppose that the whole assembly, shown
schematically in Fig. 12, is translated in the s direction
with velocity z, the total derivative in (5.3) may be
re-expressed as

expressed as an integral for a time-like packet, so that
the instability is nonconvective.

(5.4)

S. DISCUSSION OF MECHANICAL MODELS

In order to compare the kinematic classification of
wave types which has been set out in the preceding
two sections with one's more intuitive dynamical ideas
about growing waves, it is convenient to discuss simple
examples. In this section we shall consider a mechanical
device which is flexible enough to display nongrowing
and growing waves of all types. We shall 6nd that, for
this model, it is easy to decide on mechanical grounds
whether a spatially growing wave is amplifying or
evanescent, but not at all easy to decide whether a
wave growing in time represents convective or non-
convective instability. Hence, even in this simple case,
the kinematic theory conlrms what one knows dynami-
cally and also adds something which one did not know
dynamically.

(a)—zk)'-= coo'+ c'k'. (5.6)

FzG. 13.Vive pattern for low-frequency evanescent wave.

We see at once that the dispersion relation derivable
from (5.4) is

(co—zk)'= X+pk'. (5.5)

If, as we have implicitly assumed, the pendula are
hanging in their stable positions and the connecting
links are under tension, X&0 and p&0 so that (5.5)
may be rewritten as



P. A. STURROCK

2
&(I--" ) 0

Pro. 14. Diagram characterizing waves known to be evanescent.

(This equation is identical with the long-wave approxi-
mation to the dispersion relation of a drifting electron
plasma of nonzero temperature. ") We know that if
spatially growing waves appear in such energetically
passive systems, these are evanescent waves (see Fig.
13). Equation (5.6) leads to complex values of k, for
real oi, only if c) lvl and joil &(1—v/c')1o&s. Within
this range,

(oi—vk)'= —v'+ c'k'. (5.9)

We must distinguish between the cases
l

v
l
)c and

lvl &c; the former is relevant to our above model of
an amplifier. Equation (5.9) leads to the following
formulas for Z(o&):

This device is an amplifier in the sense that more energy
may be extracted from the wave than is used to modu-
late the wave. The initial modulation may be accom-
plished by arbitrarily small disturbances given to
undisturbed pendula as they pass a given plane whereas
one may, sufFiciently far down the line, extract a finite
amount of power from the system by arranging for the
bobs to strike massive resonators such as large pendula
suspended in their stable positions. (See Fig. 15.)

We now apply the kinematic criterion to this system,
relaxing the condition that the connecting strings should
be removed. The dispersion relation may now be
written as

L(c'—e)~vs —cs~'7'
k;=&

C —8 C —5
(5.7)

In order to compare our conjecture with our kine-
matic criterion, we construct the curves I' from the
formula

——Pc
V~ p
C

M=vk&(ops +c k )1 (5.8)

n Q
C)

PENDULA HERE
ACQUIRE SMALL
TRANSVERSE
IMPULSES

PFNOULA HERE
DELIVER ENERGY
TO RESONATORS

FIG. 15. Simple mechanical amplifier.

» D. Bohm and E. P. Gross, Phys. Rev. 75, 1851 (1949).

This diagram is found to be as shown in Fig. 14, which
is of the type shown in Fig. 8 and so denotes evanescent
waves, as we expect. Since co is real for all real k, the
system is of course stable so that no investigation of
instability is required. We may, indeed, notice that the

fact that the dispersion relation admits of no comp/ex
values of oi for real values of k is sufhcient reason for one
to class any spatially growing waves which may occur as
evueesceek.

We now rearrange the model in such a way that it is
clear, from a dynamical point of view, that it will act
as an amplifier. We first assume that the coupling
between pendula is removed and that the pendula are
initially in their positions of unstable equilibrium: thus
A. &0 and @=0. If co is real, k is complex so that the
system will again support spatially growing waves.

FIG. 16. Diagram characterizing waves known to be amplifying.

vo~ [(v'—c') v' —c'oi'7i
k„= — —, k, =

8 —C 8 —C

vo&a Lc'oi' —(v' —c') v'71

I
M

I & (v'/c' —1)*v,
(5.10)

5 —C

if
l
~

l & (2/c' —1)1v.

Hence the system admits growing waves only in the
band lail &(v'/c' —1)'v. In order to determine the
nature of these growing waves, we derive the functions
n(k),

oi„=vk, oi, =~(v' —c'k')1& if lkl & v/c,

oi„=vk& (c'k' —v') 1, co,=0, if
l
k

l
)v/c, (5.11)

and so construct the curves F which are as shown in
Fig. 16. These curves are of the type shown in Fig. 7,
and so confirm that the growing waves are amplifying.
If

l
v

l
&c there are no spatially growing waves.

It is clear from dynamical considerations that the
above model is unstable, and it is also clear that this
instability is convective if c=0, v/0, and noncon-
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VV

c4( 2 c2)
VV

c&iv -c )

Fxo. 17. Diagram characterizing convective instability in
mechanical model.

These curves are as shown in Fig. 18. Since they are of
the type shown in Fig. 11, we conclude that the in-
stability is now nonconvective, in agreement with our
earlier conjecture concerning the particular case n=O,
c/0. This result may be regarded as a special case of
the following general assertion: if the dispersionrelation,
admits ordy real values of h for real values of co, thenany,
instability must be eomcoevective.

6. DISCUSSION

In Sec. 3, we considered a mode for which the function
X(a&) is real outside the finite band between frequencies
co~ and co2, a similar simpli6cation was made in Sec. 4.
This assumption is appropriate to the discussion of
systems composed of lossless elements, except that one
of the frequencies ~& and co2 might be supposed to be
in6nite, a point which we shall return to in a later
paragraph. However, many physical systems involve
lossy elements for which we must assume that it is the
exception, rather than the rule, for E(oi) to be real. It
is interesting to note brieRy modi6cations which must,
be made in our theory in this case.

It is easy to see what eQ'ect a small amount of loss or
dissipation will have upon the curves I' determined by

vective if c/0, v=O. We now consider the question of
stability kinematically, erst for the case

~

v
~
)c.

Formulas (5.11) show that this instability is restricted
to the range ~h~ (i/c. The nature of this instability
may be determined by constructing the curves A by
means of formulas (5.10), which are as shown in Fig.
17. Our expectation that the instability is convective
for the case c=O is con6rmed, since this diagram is of
the type shown in Fig. 10; however our kinematic
arguments have given us more information (for cWO)
than could be deduced dynamically.

We now consider the instability exhibited. by the
system when ~v~ &c. The band of instability is as
before, but the curves A are now determined by the
formulas

—h~ I(c'—v') v'+ c'aP) &

k, = h;=0. (5.12)
c —5

FIG. 18, Diagram characterizing nonconvective instability in
mechanical model.

the functions Q(h) in the s&„-&u,plane. We see from (1.1)
that the function Q(h) will generally have a small
imaginary part which is negative in sign. This will have
the eGect of displacing the curves I' slightly in the
negative co; direction. Hence the typical diagrams,
shown in figures 7 and 8, for amplifying and evanescent
waves will be replaced by those of Figs. 19 and 20,
respectively. In looking for amplifying waves, it is
clear that we should look for ranges of values of co,

which correspond to complex k, and which are "bridged"
by a curve 1" which enters the upper half-plane, for
this is essential if disturbances are to grow in time. It
follows that a system will cease to be amplifying if the
losses are so great that the curves F are depressed
entirely below the or„axis. These minor facts apart,
the analysis of Sec. 3 is unaffected.

The analysis of stability given in Sec. 4 will also be
affected slightly by dissipation terms. However, we
find that the sense of the displacement of the curves A
depends upon the value of the derivative d~/dh.

Let us now ignore dissipation, but suppose that one
of the frequencies or~, co2—say ~2—is in6nite. The
analysis of Sec. 3 would now be affected in a significant
way if 0,/0„tends to a nonzero limit as h —+ ~ . Suppose,
for instance, that 0,/Q„~0.5. We now And that wave
functions of the type (3.1) may be re-expressed as
integrals over real values of h if, in (3.2), 1V=1. This

Frc. 19. Displacement of diagram characterizing amplifying
waves dgq to small losses.
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Fro. 20. Displacement of diagram characterizing. evanescent
waves due to small losses.

may be seen from Fig. 21, in which the region of the
co„-co;plane which contributes to the integral (3.1) is
shown shaded. However, if we now consider the function
f(co) defined by (3.2), with X=2, we find that the
integral (3.1) may not be expressed as an integral over
real values of k, since the area of the co„-co;plane con-
tributing to the integral is now that shown in Fig. 22,
which is not crossed by the curve F. Hence a system
characterized by such a curve I' would have the curious
property that certain types of disturbance are amplified
and propagated, whereas other types of disturbance
must be classed as nonpropagating. Since the k„-k;
diagrams would be similar to Figs. 21 and 22, we should
conclude that the nonpropagating disturbances repre-
sent nonconvective instability. Hence, if 0;/0„tends to
a nonzero value as k~&00, or if, equivalently, E,/E„
tends to a nonzero limit as or —+& ~, we should conclude
that the system is "essentially" unstable, since dis-
turbances represented by functions of the type (3.2)
will, if E is suKciently large, be associated with non-
convective instability.

It may happen that, in setting up a model for a given
physical system, one will arrive at dispersion relations
which lead to the curious situation noted in the pre-
ceding paragraph. However, it seems likely that this
will happen only for models which must be classed as
inexact or incomplete. The writer believes that it is
unphysical to assume that 0,/0„tends to any limit other
than zero as k ~~~. The rationale of this conjecture

o

FIG. 21. Example of time-like wave packet which is space-like
for given asymptotic behavior of the dispersion relation.

is as follows. The complex media which we are describing
are composed of a number of discrete "carriers, " such
as the electromagnetic field, electron beams, etc.
Amplification or instability can occur only by virtue of
cooperative interaction between these carriers. Now
consider a disturbance applied very suddenly to any
one of these carriers, At the moment of this disturbance,
the other carriers will be unaGected due to the inertia
of their components, and possibly also to the finite
velocity of propagation of signals. Hence the cooperative
interaction necessary for growth of this disturbance
will not follow immediately, but after a time determined
by the Rnite inertia and finite signal velocities of the
system. This suggests that, for very high frequencies,
the dispersion relation separates into a number of terms
which characterize each carrier of the system, inde-
pendently of the other carriers. The point which we
wish to make is well demonstrated by the dispersion
relation representing the interaction, by electrostatic

Fro. 22. Example of time-like packet which is not space-like for
same asymptotic behavior of dispersion relation.

forces, of a number of superposed electron streams":

Q; L(oP/(a) —i,k)'j=1, (6.1)

in which ~; is the velocity of the ith stream, and co;

is the plasma frequency of the stream. We see at once
that, as k —+ ~, the roots of (6.1) tend to co= v,k, taken
twice over for each stream. The point is not well
exemplified by mechanical models, such as those
considered in Sec. 5, since mechanical models usually
involve such unphysical assumptions as infinite forces
of constraint.

This point deserves further study but, in this corn-
munication, we merely note that if our conjecture is
correct, the classi6cation of waves into "amplifying"
and "nonamplifying" (or, more pertinently, the classi-
6cation of instability into "convective" and "non-
convective") will be independent of the nature of the
wave packet.

In this paper we have noted that, in a system which
supports growing waves, the behavior of a wave packet

'9 G. .Ecker, Z. Physik 1N, 274 (1955).
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(a)

{b)

disturbances. Hence the identi6cation which we know
to hold in the absence of amplification must still hold
when there is amplification.

It is proposed that, for simplicity, we return to the
consideration of lossless systems which support ampli-
fying waves only in a 6nite part of the spectrum.

The reader has doubtless conjectured that the classi-
fication of a mode as "amplifying" in Sec. 3 is synony-
mous with its classification as a "convective instability"
according to Sec. 4. This identi6cation is in full accord
with our interpretation of the nature of "amplifying
waves. " In order to pursue this point, it would be
necessary to consider the topology of the two-surfaces
represented by the dispersion relation in the four-
dimensional space with coordinates k„, k;, co„, co;.
However, the relationship between the classifications
of Sec. 3 and Sec. 4 is clarified by the consideration of
the possible modes which may arise due to the coupliog
of just two carriers, or due to the coupling of one mode
from each of two propagating systems. "'~" The
consideration of this simplified problem will also enable
us to relate the diagrams drawn in Secs. 3 and 4 with

g n ameea~ame s a
.2
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FIG. 23. Mode coupling leads to simple propagating waves.

will depend, to a large extent, upon the particular
spectrum of that packet. However, there are certain
important remarks which may be made which are
independent of the nature of the spectrum, which
underlies our classification of growing. waves and of
instabilities. Although we do not expect to be able to
assign a definite velocity of propagation to a growing
signal, we do expect that one may at least determine,
from the dispersion relation, the direction in which a
signal is propagated. This information should be con-
tained in the diagram of Fig. 7, or in that of Fig. 10.
It seems clear that the direction of propagation of
disturbances is determined by the sense. in which the
curve F (or A.) is traced as k (or co) runs through the
range of values from —~ to ao. If we consider that the
coupling between the carriers responsible for the
amplification is removed, then the curves I' and A. will
lie upon the real axes of the appropriate planes. The
sense in which these curves are traced is then deter-
mined by the sign of dt's/dk, which is now the group
velocity. If we now. assume that the original coupling
between carriers is restored by degrees, the sense (i.e.
the sense of traversal) of the, curves I' and h. will be
unaffected, and so will, the -sense of propagation of
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Fro. 24. Mode coupling leads to amplifying waves
(convective instability).

~ J. R. Pierce, J. Appl. Phys. 25, 179 (1954).
3' J.R. Pierce and P. K. Tien, Proc. Inst. Radio Kngrs. 42, 1389

(1954).
~ H. HeiIner, Proc. Inst. Radio Engrs. 43, 210 (1955).
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the more familiar diagram relating or and k when both
may be taken to be real.

We first consider the coupling between two modes in
which, for the uncoupled state, the group velocities of
the two modes are in the same sense. The uncoupled
modes are indicated by dashed lines in Fig. 23(a).
When these modes are coupled, the curves character-
izing the modes of the coupled system may be either
of the form shown in Fig. 23(a), or of the form shown
in Fig. 24(a). The case shown in Fig. 23(a) is that the
coupled system supports two simple waves: there are
no amplifying or evanescent bands, and there is no
type of instability. The curves 1 therefore lie along the
real a& axis as shown in Fig. 23(b), and the curves A lie
upon the real k axis as shown in Fig. 23(c).

Now consider the more interesting case shown in
Fig. 24(a). For values of k between k~ and k2, &o is

complex; for values of or between ~~ and co2, k is complex.
It is clear that the curves F and A cannot be of the forms
shown in Figs. 8 and 11; the curves will be of the types
shown in Figs. 7 and 10, as shown in Figs. 24(b) and (c).
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Fro. 25. Mode coupling leads to evanescent wave.
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FIG. 26. Mode coupling leads to nonconvective instability.

We see that this model confirms our identification of
the terms "amplifying wave" and "convective in-
stabihty. "

I et us now consider the coupling of two modes, the
group velocities of which are opposite in sign. The
modes may, upon coupling, take either the form shown
in Fig. 25(a) or that shown in Fig. 26(a). If the curves
are as shown in Fig. 25(a), all real values of k correspond
to real values of co, so that there is no instability. On
the other hand, some real values of co correspond to
complex values of k. The appropriate curves F and h.
are readily seen to be as shown in Figs. 25(b) and (c).
Since Fig. 25(b) is of the type shown in Fig. 8, it is
clear that the band co~ to co2 is evanescent. The loops
a,ppearing in Fig. 25(c) are reminiscent of Fig. 10, but
it should be remembered that, for all real values of k,
co is real so that the question of instability does not arise.

I.et us now consider the diagram of Fig. 26(a). In
this case, k is real for all real values of or, so that there
will be neither amplifying nor evanescent waves. On
the other hand, co is complex if k is within the band k~
to k2, so that the system is unstable. The F, A diagrams
are seen to be as shown in Figs. 26(b) and (c). Since
there are no growing waves, Fig. 26(b) is of no interest.
Figure 26(c) is of the type shown in Fig. 11, so that the
instability represented by Fig. 26(a) is nonconvective.
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Ke have seen that the types of behavior which may
occur when two simple modes are coupled is restricted
by the relative signs of the group velocities of the un-
coupled modes. If the group velocities are such that
the uncoupled carriers are propagating in the same
sense, then coupling results either in two simple waves
or in "convective instability, "which may otherwise be
interpreted as the existence of an amplifying wave. If,
on the other hand, the group velocities represent
propagation of the uncoupled carriers in opposite senses,
then coupling results either in a band of evanescent
waves, or in a band of wave numbers associated with
nonconvective instability. Hence we may construct
ampli6ers only by coupling modes, the group velocities
of which are in the same sense. On the other hand, by

FIG. 2f. Dispersion relation for two-stream amplifier:
stream velocities in same direction.

coupling modes, the group velocities of which are in
opposite senses, we are constructing a system which

may form the basis of an oscillator.
In constructing a traveling-wave tube, "we arrange

for the interaction of an electron beam and a circuit
wave which propagate in the same sense, and so arrive
at the situation characterized by Fig. 24(a). If we

arrange for the interaction of an electron beam with a
circuit wave, the group velocity of which is in the
opposite direction to the velocity of the beam, the

FIG. 28. Dispersion relation for two-stream "amplifier":
stream velocities in opposite directions.

resulting system is characterized by a diagram of the
type shown in Fig. 26(a): this represents the mechanism
of the backward-wave oscillator. """

Let us, in conclusion, consider the co-k diagram
representative of the interaction between two super-
posed electron streams. The dispersion relation for this
double-stream system is the particular case of (6.1):

~P/(~ —n&k)'+tos'/(~ —n, k)'= 1. (6.2)

If e& and ~2 are in the same direction, the diagram is as
shown in Fig. 27. We see that two of the four modes
represent simple waves; the other two modes represent
amplifying waves for frequencies below ~0. If the
velocities e~ and v2 are opposite in sense, the diagram
is as shown in Fig. 28. The modes which were simple
now lead to a band of evanescent waves, a point which
has been noted by Gould. "However, a more important
characteristic of this system is that the pair of modes
which before represented convective instability now
represent nonconvective instability for all wave
numbers below kp. This indicates that a two-stream
system, in which the streams are moving in opposite
directions, will disrupt or exhibit large-amplitude
oscillations if the region of interaction exceeds the
critical value m'/ko.

~ R. Kompfner and N. T. Williams, Proc. Inst. Radio Engrs.
41, 1602 (1953).

~ H. Heffner, Proc. Inst. Radio Engrs. 42, 930 (1954).
"H. R. Johnson, Proc. Inst. Radio Engrs. 43, 684 (1955).


