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Volume Anomaly of Liquid He' Arising from Its Nuclear Spin System
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The anomalous volume expansion coefficient of liquid He' derived in a previous work through a discussion
of its nuclear spin system will be shown to be describable quantitatively within the statistical thermodynamic
formalism attached to its nuclear spin degrees of freedom. The theory predicts, through the large partial
negative spin expansion coefficient, a volume minimum or a density maximum of saturated liquid He' subject
to the volume behavior determined by its non-spin degrees of freedom. The temperature at which the density
maximum should occur is higher than about 0.2 K. At this temperature, or very close to it, the negative spin
expansion coefficient has a sharp minimum and the total liquid density is expected to have an inflection point
in the density-temperature representative plane. Since the whole anomaly depends directly on the liquid
compressibility, it should be most pronounced in the saturated liquid and should decrease under the appli-
cation of external pressure.

1. INTRODUCTION further stabilized through the consideration of some
recent nuclear paramagnetic susceptibility measure-
ments' of compressed liquid Hes. The formalism of our
theory is fully valid in the compressed liquid also, so
that as soon as liquid compressibility and. additional
nuclear paramagnetic susceptibility values become
available in the compressed liquid, new definite features
of the phase diagram of liquid He' should appear,
verifiable through experimentation. These features
would correspond to the possible existence of two loci
in the pressure-temperature or volume-temperature
phase diagrams of this antisymmetric liquid. One of
these is a locus of the points associated with the
vanishing of the expansion coefFicient of the liquid, that
is the locus of density maxima or volume minima, a
smooth line dividing the liquid region of the phase
diagrams in two parts, associated, respectively, with
the normal and abnormal, that is positive and negative,
expansion coefficients of the liquid, on the high- and
low-temperature side of the locus. The other locus is
that of the inQection points of the liquid density or
volume resulting from the vanishing of the second
temperature derivative of the partial spin volume and
its negative sign at low temperatures leading to the
vanishing of the second. temperature derivatives of the
total liquid density or volume. Ke turn now to the
description of the quantitative theory of the volume
anomaly in liquid He', discussed brieQy previously' in
a more qualitative fashion.

'~N a previous work' devoted to the study of the
~ ~ various efkcts arising from the nuclear spin system
of liquid He' on some of its thermal properties, we have
been led to predict a partial density or volume anomaly.
The discussion was, however, restricted for several
reasons. One of these concerned the method of evalu-
ating the partial spin volume V, (T) and the somewhat
arbitrary choice of the sign of this quantity. Also, the
absence, at the time of our work, of liquid He' com-
pressibility data allowed us to give only semiquanti-
tative estimations of the actual magnitude of the partial
spin volume and the associated partial spin expansion
coeKcient. Recent sound velocity measurements' in
this Laboratory extended over a wide temperature
interval do define the adiabatic compressibility values
of liquid He', even at the lower temperatures where
direct density measurements are not available, although
preliminary expansion coeScient measurements' have
been made at these low temperatures, 0.5& T& j..0'K..
In this latter range, however, the compressibility values
depend on extrapolated values of the directly measured
liquid densities. ' Since the expected density anomaly
is rather moderate, the smoothly extrapolated density
values should yield fairly well approximated com-
pressibility values, in view of the highly precise sound
velocity data. ' Inasmuch as the nuclear spin system
appears to dominate the entropy and heat capacity of
liquid He' at suKciently low temperatures, ' it seemed
of interest to rediscuss the volume or density anomaly
to be reasonably expected in a now experimentally
accessible region, and to give the quantitative form of
the theory outlined previously. ' The theory could be
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the temperature T, and Xo(T) is the limiting Langevin
susceptibility which the liquid would have at its actual
density at T, if it were an ideal paramagnet. We have
shown previously' that with the thermodynamics of
the spin system being fully determined through the
knowledge of its entropy, under saturation conditions,
the equation of state of the spin system could be
derived under the assumption that the partial volume
derivative (BS /8 U) r was also available near the
liquid-vapor saturation line. Using the approximate
ideal Fermi gas formalism with the empirical suscepti-
bility ratio function X(T)/Xp(T), the resulting partial
derivative (8$ /BV)r was positive as well as p (T,V),
the partial spin pressure. Experimentally, however, this
derivative was determined to have the negative sign,
recently, ' so that

p, (T,V) = ' (BS,/BV) AT(0.
~0

(2)

If the numerical values of the derivatives were still
given, to some degree of approximation, by the for-
malism of the ideal Fermi gas with the empirical
apparent degeneration temperature, then, V being the
liquid volume,

p.(T V) = —sE.(T)/V, (3)

as shown previously. Here E,(T) is the spin thermal
excitation energy defined through the spin heat capacity
temperature integral. '

The existence of such a negative spin pressure is in
its effect similar to the application of an external
pressure, tending to reduce the volume of the system
through compression. The negative spin pressure may
be said to correspond to the existence of an apparent
attractive type of potential energy responsible for the
negative pressure in question. Physically, this seems to
correspond, at finite temperatures, to a decrease, from
the state of absolute zero, of the apparent repulsion
existing between parallel spin atoms, or the formation
of a compensating negative potential type of energy
with the ensuing negative spin pressure p, (T,V). If we
denote by p, ', the apparent positive external pressure
which could replace the efFect of the negative p, (T,V),
then the existence of such an external pressure yieMs a
relative volume decrease which may be written,
approximately,

V,/V = —p, '(T)«(T), (4)

where «(T) is the compressibility of the liquid. This
phenomenon resembles somewhat the phenomena of
volume anomalies which are observed in ferromagnetic
substances below their Curie point and whose theory
was first discussed by Bauer. ~

At the lower temperatures, the distinction between
the various kinds of compressibilities may, of course,

r E.Bauer, J.phys. radium 10, 345 (1929);see also Pierre Weiss,
Le Magnetisme, Prooeed&sgs of the Soloay Congress (Gautheir-
Villars, Paris, 1932), pp. 325-345.

i V./Vi«1. (6)

That the latter relation has to be fulfilled results from
the fact that Eq. (4) is actually a differential type of
relation, with V, standing for a small volume change
5V,. Now, in Eq (3). we know' that E,(T) tends toward
a finite value in the limit of high temperatures. In the
approximate formalism discussed previously, ' this
limit is 2E.Tp per mole, To being the apparent-empirical
degeneration temperature of the spin system. '' But
«(T), the compressibility of liquid He, is a fairly
rapidly increasing function of the temperature, so that
V, (T) defined by Eq. (4) is a fairly rapidly decreasing
function of the temperature, and Eq. (4) could thus
lose its validity at higher temperatures if (6) were not
satisfied. It is, however, possible to recast the above
basic relation in a more rigorous form. Indeed, let

oV.(T)/V = —«(T)5p.' (T),
with

~p' (T)=s~E (T)/V (g)

where at the lower temperatures the variation of the
total volume V may be neglected. Then, the total
molar spin volume is

t
dE.(T)q

«(T) i idT
Jo l dT )

«(T)C.(T)dT,
a

C (T) being the molar spin heat capacity of the satu-
rated liquid. It is seen now that in order for V (T) to be
small or moderate, it is necessary that «(T) should not
increase too fast with temperature so as not to com-
pensate for the slow decrease of the spin heat capacity
C (T) with temperature. If «(T) is the adiabatic com-
pressibility, then the integral relation (9) should remain
valid up to the critical temperature T„since then over
the whole temperature range V.(T) will stay moderate.

From (9), we obtain

d V./d T= ——',«(T)C.(T),
and the partial spin expansion coe%cient is

n, (T)= V '(dV, /dT)
=—-'V '«(T)C, (T).

(10)

It is seen that, as is the case with V, the partial spin

be omitted. Or, using Eq. (3) with p, ' as defined above,
one finds

V.(T)=—;E,—(T)«(T). (5)

The definition of the partial spin volume V through
Eq. (4) is valid, provided that
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Fro. 1. The partial spin volume V (cc/mole) and spin expansion
coetiicient n, ('K) ', as a function of the temperature T('K).

expansion coeKcient a is always negative. It vanishes,
of course, at the absolute zero and since «(T) is expected
to have only a moderate variation at the low tempera-
tures, T 1.0'K, n, (T) will exhibit the characteristic
temperature variations of $—C,(T)].In particular, its
minimum value will occur at about the position of the
maximum of C (T). Indeed, (11) yields easily

dn. /dT= —na —-'V 'C (d«/dT)
', V '«(-T)—(dC,/d T). (12)

Now an is a rather small number, a being the total
expansion coeflicient; also (d«/dT) is expected to be
quite small at low temperatures, where «(T) reduces
essentially to its limiting value Kp, the compressibility
at the absolute zero. Hence, the right-hand side
essentially vanishes close to the temperature at which
dC,/dT vanishes. Hence, n. (T) has its minimum at a
temperature close to the one at which C,(T) is maxi-
mum. At this same temperature, V,(T) has an in-
Rection point, since from (10), d'V, /dT' vanishes at
about the same temperature where a, (T) is extremum.
Let then T, be the temperature where V has its in-
Qection point. Then, at T&T, where e is a decreasing
function of T, d'V, /dT' is negative, and V, is thus
concave downward in the (V.,T) plane, that is toward
decreasing V values. At temperatures T& T„e, is an
increasing function of T, d'V./dT' is positive, since
dC,/dT is negative at these temperatures. Again, we
have

d'V /d T'= s«(T)dC, /d—T ',C.(T)d«/d—T-, (13)

resulting from (10);the Rrst positive term on the right-
hand side outweighs the second negative term which is
proportional to the small (d«/dT). Hence, at T)T„
V, has to become concave upward in the (V„T) plane.
These results are fully displayed in I'ig. 1 which is a
graph of both V, (T) and n, (T). It will be seen that
V, (T) decreases from zero at the absolute zero, para-
bolically in T at low enough temperatures as shown
previously' as far as its T dependence was concerned.

V has an inRection point at about 0.2'K, beyond
which it becomes concave upward.

We wish to consider now briefly the thermodynamic
aspects of the above results on the partial spin volume
t/" . We have proved rigorously' that at temperatures
T(T„T, being the temperature at which C,(T) is
maximum, ' and near the saturation line,

faC. (p, T)/apjr ——T(a V /aT ) )0, T&T., (14)

or, in this range,

while

fr)C (p,T)/Bp'jr T——(r)'—V./BT') &0 T)T., (16)

or, at these higher temperatures,

(O'V, /8 T')~)0. (17)

But these rigorous thermodynamic results are identical
with those discussed above in connection with Eqs.
(12) and (13), derived within the formalism of the
theory of the spin system. The complete thermodynamic
self-consistency of the theory of the partial spin volume
Vo(T) is thus fully apparent through Eqs. (14)—(17).

What is there to be expected experimentally?
Clearly, the present theory of the liquid He' volume
anomaly deals strictly with the spin system only.
Hence, it cannot locate the actual position of the
expected density maximum because the presumed
positive or normal expansion coeKcient determined

by the normal degrees of freedom of the liquid is of
unknown form, at the present time. Indeed, the total
expansion coefficient is'

n(T) =n.(T)+a„.(T), (18)

and the vanishing of a(T) originates with the opposite
signs of a, (T) ((0) and n„,(T) ()0). At any rate,
below the temperature of the expected density maxi-
mum, o.„, is numerically smaller than 0. , and should
continue to decrease smoothly toward zero from above,
in the limit of the absolute zero. With n„. or dV„,/dT
being quite small, d'V„,/dT', while positive is expected
also to be quite small at low temperatures. Hence, the
approach of the total liquid volume toward its limiting
value at the absolute zero would be dominated by n„
dn, /dT or d'V, /dTs. The change of the latter from
negative to positive values, as shown in Fig. 1, with its
vanishing at the minimum of 0., cannot but impress
itself on the temperature behavior of the total liquid
volume. The latter has thus to exhibit an inQection
point at some temperature lower than but close to the
minimum of n„where d'V, /dT' has essentially its
inQection point. Hence, beside the density maximum
or volume minimum, saturated liquid He' is expected
to exhibit also an inQection point at a temperature
somewhat below but close to that of V,(T), at about
0.19'K. In other words, the saturated liquid density

s L. Goldstein, preceding paper LPhys. Rev. 112, 1465 (1958)g.
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p(T) is 6rst concave upward in the (p, T) plane, has an
infiection point close to T„defined above, and then
becomes concave downward beyond T . Or, the molar
volume V(T) decreases erst from its value at the
absolute zero, being concave downward, because it is
reasonable to expect that

d'V/d T'd V-./d T'&0, T&T„
d'V/d T' d'V. /d T'=0, T T., (19)
d'V/dT'=d'V. /dT'+d'V /dT') 0 T)T

This is visible on Fig. 1, where it is sufhcient to displace
V, (T) parallel to itself into the positive region of the

(V,T) plane, so that V (T) would approach from below
a limiting volume line V (T -+ 0) parallel to the T axis,
at about 37 cc/mole, the liquid volume at the absolute
zero. That is, at very low temperatures where «(T) is
essentially constant and equal to «(T —+ 0) or «(0), one
has

lim V(T) = V„,(T —+0)+V.(T)
T (T~

=V„.(T +0)——,'«(—0) " C.(T)dT

= V„(T—+ 0) —(RTO/2) L«(0)] (ln2) (T/To)'

XL1—i7r2(T/To)'] (20)

where use has been made of the approximate analytical
expression of C, (T) given previously, ' ' as well as of
Eq. (9) above. To the above approximation, the
approach of V (T) toward its limit denoted by
V„,(T —+0) at the absolute zero is thus parabolic in
T and from below, as mentioned above in connection
with Eq. (13). Or, since the density is (V referring to
the molar volumes, and M being the molecular weight)

lim p(T) =M(V„,(T~ 0) ——,'RTOL«(0)](ln2)(T/To)'
T (T~

XL1—-', '(T/To)'])-', (»)
one obtains, with

(22)

the results:

lim dp/dT= (p2/M)R«(0) (ln2) (T/To)
T (T~

XL1——'~2(T/To)'] (23)
and

lim d'p/d T'= (2/M') p(dp/d T)'
T (TQ.

+ (p2/M)R«(0) (In2) To 'l 1—~3m (T/To) ] (24)

showing that the density approaches its limit at the
absolute zero from above, being concave upward at
these low temperatures.

We are now prepared to extend the preceding
discussion to the case of compressed liquid He'. Since

the compressibility of the liquid decreases with in-
creasing pressure, while C.(p, T) changes only by
shifting its Inaximum toward lower temperatures, ' it
will be seen that n, (p, T) increases algebraically toward
zero, with its minimum displaced simultaneously
toward lower temperatures. This also means that the
inflection point of V, (p, T) is shifted toward lower
temperatures, and with it the inflection point of V(p, T),
the total volume of the compressed liquid. This con-
clusion is, of course, subject. to the condition mentioned
above that ld'V, (p, T)/dT'l remains large in corn-
parison with $d'V„(p, T)/dT'] associated with the
normal degrees of freedom. Hence, there is a locus of the
inflection points in the phase diagrams of liquid He',
which locus starting on the liquid-vapor phase sepa-
ration line would be sloping toward lower temperatures.
Examination of the experimental data' in the com-
pressed liquid He' nuclear paramagnetic susceptibilities
indicate that this locus would start at about 0.18—
0,19'K on the liquid-vapor phase separation line, to
end at about 0.05'K on the melting line.

The discussion of the locus of the liquid density
maxima or volume minima is much less straightforward,
since the above theory cannot locate these extrema,
but explains only their origin through the interplay
of the anomalous spin system and the expected normal
behavior of the non-spin degrees of freedom. The locus
in question is thus de6ned through the equation

n(p, T)=0, or —n„,(p, T)=a, (p, T). (25)

the erst prevails, whereby n„,(p, T) decreases with
increasing pressure faster than n, (p, T) increases toward
zero, then in the (V,T) plane, the locus of the maxima
is expected to be directed toward increasing tempera-
tures at increasing pressures. The opposite situation
would develop with the second inequality in (26). At
any rate, according to Eqs. (9) and (10), the partial

spin volume V (p, T) and expansion coe%cient n, (p, T),
cannot but decrease in magnitude with increasing

pressure as a result of the decreasing liquid com-

pressibility values «(p, T) with increasing pressure.

Hence, the application of external pressure will tend

to decrease the sharpness of the density anomaly,
which would be expected to be the most pronounced
in the saturated liquid.

Let then T„be the temperature of the minimum of the
saturated liquid volume or that of its density maximum.
Consider the (V,T) phase diagram. In this plane, the
locus can be a line of negative slope, that is a line

reaching the melting line at a temperature higher than
T„. Or, this line could, conceivably, be one of positive
slope, ending on the melting line at a temperature lower
than T„.If of the inequalities

l(&~-/~p)~l ) l(~~ /~p)rl l(~~-/~p)rl
& l(~ ./~p) l (26)
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The location of the locus of the inflection points T,(p)
resulting from the minimum of the partial spin ex-
pansion coeKcient allows one to give a qualitatively
fairly complete picture of the pressure dependence of
C„(p,T), the constant pressure heat capacity function
of liquid He' over the whole liquid region of the phase
diagram of this substance. This picture depends, indeed,
uniquely on the locus of the inflection points of the
liquid volume or density.

Consider the (p, T) phase diagram of He'. In this
plane, the locus of the points T, (p) starts at about
0.18—0.19'K on the liquid-vapor phase separation line,
at a very low pressure, and decreases with increasing
pressure, to reach the melting line at about 0.05'K, as
discussed above. Draw two lines parallel to the pressure
axis through the two limiting points of the locus T,(p),
extending between the two phase separation lines.
These two constant temperature lines together with
the locus T (p) define three regions of the (p, T) plane.
At T& T (P), where T,(P) is the melting line endpoint
of T (p), that is about 0.05'K, we have at all points of
this region

(rl'V/rl T'), (0, (27)

and, hence, by the thermodynamic relation

L~C.(p, T)/~pl~= T(~'V/»—'). (28)

C„(p,T) will increase from its value on the saturation
line at a chosen T value, Inonotonically, until the
melting line is reached, where this constant temperature
heat capacity arc stops in the (C~(p, T),p) repre-
sentative plane.

In the region between the two constant temperature
lines, T (P) (T&T,(p), starting at the saturation line,
the constant temperature heat capacity arcs start to
increase with pressure first until the locus T,(p) is
reached; they then have to turn around, since on the
high pressure side of the locus, (O'V/BT')~ is positive
at all points of the phase diagram, and by (28), C„(p,T),
at the chosen constant T, cannot but increase there with
increasing pressure, until the melting line is reached,
where again this 6nite constant temperature heat
capacity arc ends, exhibiting thus a maximum.

Finally, at T)T,(p), that is T&0.18—0.20'K, the
6nite constant temperature heat capacity arcs always
decrease throughout the whole pressure interval
available at the chosen T between the liquid-vapor line
and the melting line.

A comparison of these heat capacity behaviors of
liquid He' with application of external pressure with
our recent studies on the spin heat capacities in com-
pressed liquid He', shows the complete parallelism
between the pressure effects on the spin heat capacity
and the total liquid heat capacity. This parallelism
comes about through the fact pointed out previously" '
that as far as the liquid heat capacity is concerned, this
quantity is dominated by the spin heat capacity below
the temperature of the maximum of the latter, that is
below T,.At T& T, the qualitative pressure dependence
of the total liquid heat capacity has to be essentially
that of C . Above T, the derivatives (O' V/8 T')„and
(rI'V, /BTs)„are both of the same sign, they are both
positive, and this explains the similar pressure de-
pendences of C, and (C,+C,) or the total liquid heat
capacity over the whole liquid region of the He' phase
diagram.

The preceding result on the pressure eBect of the
liquid He' heat capacity was obtained independently
by Hammel' on the assumption of the existence of the
volume minima. This assumption then leads, through
the Nernst theorem, to the existence of inQection
points on the low-temperature side of the minima,
since the expansion coeKcients have to, vanish again
at the absolute zero. However, the thermodynamic
formalism cannot explain the origin of the volume
anomalies. We have shown in this paper, in agreement
with our previous semiquantitative description' of the
partial spin volume and expansion coefficient, that
these anomalies arise from the peculiar thermal proper-
ties of the nuclear spin system of liquid He', tending
to oppose the normal behavior determined by the
degrees of freedom other than spin. These results also
suggest that solid He' might also exhibit properties in
which the nuclear spin system could play a major role.

' Hammel, Sherman, and Edeskuty (to be published).


