
PH YSI CAL REVIEW VOLUME 112, NUMBER DECEMBER 1, 1958
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Using recently obtained data on various thermal properties of liquid He', the constant-volume heat
capacity of the saturated liquid has been evaluated. This elementary heat capacity C, (T) was found to
exhibit at least three inflection points over the temperature interval extending to the critical temperature.
Of these, the one at the lowest temperature was shown to originate with the partial heat capacity of spin
disorder. The inflection point at the approach of the critical temperature T, is imposed by the thermodynamic
result that C,(T) should reach its finite limit C, (T,) from below with positively infinite first and second
temperature derivatives. The laws governing the pressure dependence of the partial spin heat capacity
over the liquid region of the He' phase diagram have been deduced. The remarkable pressure e8'ects displayed
by the spin system of liquid He' through its heat capacity may be expected to manifest themselves through
the observable pressure dependence of the total liquid heat capacity at low enough temperatures where the
spin heat capacity is dominant. A purely heuristic and indirect approach toward the problem of the existence
of phonon type of partial excitations in liquid He yields a negative answer, without, however, a definite
exclusion of such symmetrical excitations in this antisymmetric liquid.

1. INTRODUCTION

HE fundamental problem raised by the application
of the two kinds of statistics to the description

of the thermal properties or the two liquid helium
isotopes is, in principle, susceptible of solution. This
requires first the determination of the characteristic
energy spectrum of the lV-atom system formed by
these liquids, Ã being a number of the order of magni-
tude of Avogadro's number. Kith the available spectra,
the canonical ensemble formalism, duly adapted to
these quantum systems, should lead to a complete
description of the equilibrium statistical thermo-
dynamics of these systems. The difficulties of physical
and analytical nature arising in the systematic attack
on the problem of liquid helium appear to justify an
indirect approach, grounded on the empirical knowledge
of the various thermal properties of the liquid helium
isotopes. Studies of these thermal properties within

the framework of the formalism of statistical thermo-

dynamics should lead to a description of these quantities
which could be precise enough to reappear essentially
unmodified in their formulation resulting from the more
fundamental approach.

In the present paper we should like to give an account
of an analysis of the thermal excitations in liquid He'.
The nature of these excitations has been studied on
the basis of the simplest macroscopic conditions

imposed on the liquid, that is under constant volume.

Hence, the physically simplest heat capacity of the

liquid, that is its constant-volume heat capacity, had
to be obtained 6rst, since this quantity is the tempera-
ture rate of variation of the sum total of all its internal
thermal energy of excitation at a given temperature of
the liquid. This constant-volume heat capacity may
then be submitted. to an analysis in terms of the
excitations referring to various types of degrees of
freedom of the liquid. In liquid He' the partial orienta-

14

tional spin excitations introduced previously' will

appear to emerge clearly as the dominant thermal
excitations at low temperatures. Other partial excita-
tions failed to be describable, without considerable
reserve, in terms of phonons. Several arguments of
elementary physical character will be shown to deny
the very existence of such partial symmetric excitations
in liquid He'. These same arguments used in connection
with liquid He4I cast doubt also on the unreserved
validity of the assumption which allows phonon-type
excitations to be electively present in the high-temper-
ature phase of liquid He'.

In the course of the present work, a major effort was
also made toward a complete clarification of the
properties of the spin system in compressed liquid He',
that is throughout the whole liquid region of its phase
diagram. These investigations have disclosed a series
of remarkable properties of the spin heat capacity of the
liquid under external pressure. The experimental
determination of the pressure dependence of total
liquid heat capacity at low temperatures should lead
to a clear recognition of the inhuence of the spin system
on this and other thermal properties of liquid He' in
this low-temperature range, where it becomes dominant.

2. VARIOUS TYPES OF HEAT CAPACITIES
OF LIQUID He'

The experimentally measured heat capacity of
liquids refers, in general, to that of the saturated
liquid. The same remark applies to other thermal
properties such as the density, for instance, and the
associated volume expansion coefficient. The saturated-
liquid heat capacity is a fairly complex property, since
a displacement along the saturation line in any one of
the representative planes of the thermodynamic
variables involves simultaneous changes in all the
variables of state. The saturated-liquid heat capacity
C, (T) is thus a function of three variables such as

' L. Goldstein, Phys. Rev. 96, 1455 (1954); 102, 1205 (1956).
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a„=e '(r)v/r)T)„-
=~.+xr(dp/d T)
=~.+ (vip~') (&p/&T),

(4)

the normal expansion coeKcient, under constant
pressure, of the saturated liquid. The last of Eqs. (4)
makes use of the expression of the velocity of small-

amplitude sound waves in terms of the density and
adiabatic compressibility x, or yr/y, xr being the
isothermal compressibility of the liquid. Combining
the above equations, one obtains, after some algebra,

y= c,/c.
=L1+A(1+8 ') j/t 1—A(1+8)j

~ = (T~./pc. ) (&p/d T)

8= (dp/dT)/(pusrr, ).

(5)

(6)

Using again (1) and (2) with (4) and (5), one obtains

(7)

(8)

The more elementary specific heats c~ and c„, and their
ratio y, have now been expressed in terms of the
properties, p, rr., c„N, and dp/dT, all relative to the
saturated liquid whose knowledge is necessary for its
complete thermodynamic description. The specific
heats c~ and c, refer to the saturated liquid along isobars

(p, V, T). The more elementary heat capacities such as
the constant-pressure heat capacity C„, or, above all,
the constant-volume heat capacity C„, are not expressed
usually in terms of the more easily accessible C, (p, U, T).
It seemed thus of interest, even necessary, to derive the
expressions for C„and C„, and their ratio Cv/C„or y,
in terms of C„and other properties of the saturated
liquid, such as the density p, the associated expansion
coeKcient n„ the velocity u of low-frequency sound
waves in the saturated liquid, and the vapor pressure

p(T), all of which quantities are directly accessible to
measurements.

One may start with the thermodynamic relations

c„=c,+T(r)v/aT) „(dp/d T), (1)

c„=c, T(r)p/r)T—),(dv/dT), (2)

where the c's are speci6c heats; v is the specific volume
of the saturated liquid or p '. The partial derivatives
are to be obtained with the help of the equation of
state; the total derivatives are the slopes of the phase
separation lines in the (p, T) and (s,T) thermodynamic
planes, respectively. The derivative dp/dT is thus the
slope of the vapor pressure line, while dv/dT is n, s.
Equations (1) and (2), and the additional thermo-

dynamic relation

s„—c„=T(r)p/r)T)„(8n/aT)„

together with the equation of state, yield

and isopycnals starting at the liquid saturation line
and in its geometrical vicinity.

In He', densities of the saturated liquid and vapor, '
vapor pressure, ' heat capacity4 C„and sound velocity'
have all been measured over fairly wide temperature
intervals. The thermodynamic relations (5), (7), and
(8) yield with these data the heat-capacity ratio y,
and the elementary heat capacities C„and C, from
about 0.5'K to temperatures close to the critical
temperature, with a temperature gap to be discussed
below.

The procedure followed in the evaluation of these
quantities was to fit, by the method of least squares,
the density p(T), heat capacity C, (T), and sound
velocity N(T), by analytic expressions in the tempera-
ture T. These analytical fits reproduced with good
approximations the observed data and, with the
exception of the critical region, they have been used
to extrapolate these properties somewhat outside the
temperature range of the data. Actually, this type of
extrapolation involved mainly the heat capacity C„
which has only been measured with sufhcient precision
between about 0.4 and 2.0'K by the Los Alamos and
Argonne workers. 4 Very recently these heat-capacity
data have been extended' down to about 0.10'K.
However, these results are somewhat of preliminary
character and their full discussion could not be justi6ed
at the present time.

The observed liquid and vapor densities as analyzed
by Kerr' clearly suggest that the rectilinear diameter
law is fairly well obeyed by He'. A new discussion of
these data shows that the average densities of the
liquid and vapor, sttpL, (T)+pv, v(T)), were distributed
around the mean of these with small standard devia-
tion. This mean value is the calculated critical density,
which was found to be 0.04124 g/cc. The various types
of least-square fits' of the density curves pr, (T) and
pv &, (T), of the liquid and vapor, as a double-valued
function of the temperature, along the lines suggested

E. C. Kerr, Phys. Rev. 96, 551 (1954); Grilly, Hammel, and
Sydoriak, Phys. Rev. 75, 11p3 (1949); W. E. Keller, Phys. Rev.
98, 1571 (1954).

s Sydoriak, Grilly, and Hammel, phys. Rev. 75, 3p3 (1949);
Abraham, Osborne, and Weinstock, Phys. Rev. 8Q, 366 (l,95p);
S. G. Sydoriak and T. R. Roberts, Phys. Rev. IQ6, 175 (1957).

'G. de Vries and J. G. Daunt, Phys. Rev. 92, 1572 (1953);
93, 631 (1954);T. R. Roberts and S. G. Sydoriak, Phys Rev. 93, .
1418 (1954);98, 1672 (1955);Osborne, Abraham, and Weinstock,
Phys. Rev. 98, 551 (1955).

~Laquer, Sydoriak, and Roberts, Symposium on Liquid and
Solid He (Ohio State University Press, Columbus, Ohio, 1958),
p. 15, and to be published. In a more restricted temperature
range, similar measurements have also been reported by H.
Flicker and K. R. Atkins, Symposium on Liquid and Solid He,
(Ohio State University Press, Columbus, Ohio, 1958), p. 11.

6Brewer, Sreedhar, Kramers, and Daunt, Bull. Arn. Phys.
Soc. Ser. II, 3, 133 (1958).We wish to thank here Dr. J.G. Daunt
for communication of these results before publication.

~Dr. R. K. Zeigler of this Laboratory was kind enough to
look into the statistical analysis of the density data.

8 These types of least-square Gts with double-valued functions
have been studied by Mr. Paul E. Harper of this Laboratory.
His cooperation was most appreciated.
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by Kerr, ' have all led to location of the critical tempera-
ture in the close vicinity of 3.4 K, with critical densities
very near the above-mentioned value. The latter is
practically the same as the one obtained by Kerr. '
These studies all suggest that the saturated liquid and
vapor density data were complete enough to enable one
to obtain their satisfactory analytical approximate
description, which in turn, yielded fairly good approxi-
mations of the liquid, or vapor, expansion coefFicient
e, . The latter is anomalous at the approach of the
critical point, where it becomes infinite.

The Los Alamos sound velocity data' extend over a
wide temperature interval. However, the use of their
analytical fit n(T) to the close vicinity of the critical
point, and to the critical point itself, is necessarily of
unknown and somewhat questionable accuracy.

With the various limitations which are involved in
the use of the data entering into the rigorous thermo-
dynamic expressions (5), (7), and (8), whereby the
temperature derivative (dp/dT) of the vapor-pressure
curve is known with fair accuracy, ' we are now prepared
to discuss the calculated elementary heat capacities
C~(T) and C„(T) and their ratio y(T).

The calculated molar heat capacities, ' C~/Ri C„/R.,
their ratio y, as well as the graph of the analytical fit
to the experimental molar saturated-liquid heat
capacity C,/R, are given in Fig. 1. Because of the
extrapolated character of the C,/R function beyond
2.0'K, this graph should be considered as divided
essentially in two parts. The one extending up to 2.0'K
represents a fairly well-established group of results.
The region above 2.0'K is based on an analytical type
of assumption on the functional behavior of C,/R, and

will have to be revised more or less depending on the
degree of approximation achieved by the assumed shape
of the extrapolated C,/R function when compared with

future data on this quantity.

2.5

It is evident on the graph of y that this ratio rises
above unity, a little above 1.0'K. Actually, of course,
y is always larger than unity at finite temperatures, but
its excess over unity is not accessible experimentally
below some temperature. In liquid He', this temperature
appears to be about 1.0'K. The constant volume heat
capacity C, (T) thus distinctly detaches itself from C, (T)
or C~(T) at about 1.1—1.2'K, falling necessarily below
the values of the latter. While below 1.0'K these heat
capacities, being coincident practically, are all concave
upward, that is

dsC//dT )0, (j =s,e,p), T&1.0 K,

two of them are such that

d'C~/d T') 0, d'C, /d T') 0, 0.5'K &~T &~T„(10)
that is, these are concave upward over the indicated
temperature interval, increasing monotonically toward
infinity at T„ together with the ratio p.

Since this ratio p is always larger than unity, we
obtain with (5) or (6) a lower limit of the saturated-
liquid specific heat c„by requiring the denominator of
(5) to be positive. This lower bound of c„or c, &„ is
such that

c,, x= (Tn, /p) (dp/dT)+It T/(pN)s j(dp/dT)s. (11)

This lower bound of c, may thus be said to be composed
of two partial heat capacities, the erst of which,

(12)

is connected with the expansion of the saturated liquid
through its linear dependence on the expansion coeK-
cient n„while the second term is independent of this
expansion and is actually the constant-volume part
of cs,)„or

c...x= $T/(pN)'g (dP/d T)'.

2.0
Oop/R

e,/a

As the temperature of the liquid increases toward the
critical temperature T„ the latter partial heat capacity
tends toward a finite limit, so that

FIG. 2. Various molar
heat capacities and the
C„/C„ratio of liquid He'
us the temperature. The
portions of the curves
above 2.0 K are based
on extrapolations (see
the text).

G5

0COa I.o 2.0
T'K

4.0

9 Special thanks are due to Mrs. J. E. Powers for the major
part of the numerical calculations. Mrs. B. Fagan and Miss D.
Cooper have kindly cooperated through various numerical work,
and Mrs. A. S. Luders and Mrs. S. M. Hindman through the
drawing of the graphs.

lim c„x&~ (T/p)(dp/dT)n„
T +Tc

and in the close vicinity of T., c, itself tends to become
identical with c„go~, becoming infinite at T, with a,.

The lower bound c,, x, by Eq. (8), depends on the
sound velocity I, which quantity has to be extrapolated
beyond about 3.20'K, if this lower bound is to be
evaluated numerically. The study of c, z appeared to
be instructive enough in the critical region, even
though it could only be obtained with some approxima-
tion through the extrapolated sound-velocity values.
Using one of the least-square fits of N(T) and p(T),
whereby the latter density expression locates the critical
point at somewhat below 3.40'K and the critical
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TABLE I. Calculated sound velocities, expansion coe%cients,
and lower bounds of the component and total heat capacity'in
liquid He' in the critical region.

T
{oK)

3.20
3.25
3.30
3.32
3.34
3.36
3.38
3.39
3.395
3.397
3.3973

T/Tc

0.9419
0.9566
0.9714
0.9772
0.9831
0.9890
0.9949
0.9978
0.9993
0.9999
1.000

{m/sec)

99.0
94.73
90.25
88.36
86.43

82.48
81.47
80.96
80.76
80.73

(oK)

0.690
0.850
1.125
1.306
1.575
2.043
3.183
5.444
9.421

27.74

C~,y/R

0.397
0.508
0.667
0.754
0.861
0.998
1.194
1.344
1.466
1.563
1.615

C.,9')/R C.,X/R

1.466
1.970
2.870
3.477
4.398
6.020

10.04
18.03
32.41
98.32

1.863
2.478
3.537
4,231
5.259
7.018

11.23
19.37
33.88
99.88

density" at 0.04127 g/cc, which is almost identical
with the mean value of —',[pl.(T)+pv.„s(T)j discussed
above, we give in Table I the calculated values of I,
n„C,„,i/E, C,, &, &&/R, and the sum of these two partial
lower bounds, C,, &,/E, or the lower bound of C,/R, in
the vicinity of the critical point, that is between
0.94T, and T,. It will be seen that, compared with
normal values of expansion coefFicients, o, is already
enormous at 0.94T,.

Using the lower bound c, , i„Eq. (11), with Eq. (2),
we obtain a lower bound of the constant-volume
speci6c heat c,, )„given by

c .&
= [T/(p&)'3(dp/d T)'

(Tn./p)[(~—p/~T). (dp/dT)3 —(15)

In the vicinity of the critical point,

dp/dT & (r)p/r)T). ,
and

dcv, t T dl
2Tn, +1+2-

dT T I dT

d ln(dp/dT)
+2T

dT

dpTn, ( Bp) d inn,
+

p t aTJ„ dT dT

(t)pi dp
(»)

dT ~. aT) „dT
On going over to the limit T+ T„one obtains

(dc„,i,) (dc„(T))
liiil

(

—

[
= liiil

&=& l dT) r=r. ( dT )

B. SOME QUALITATIVE FEATURES OF THE
CONSTANT-VOLUME HEAT CAPACITY

We should like to discuss now some general character-
istics of C„. As noted above, Fig. 1 shows that in the
interval 0.5'K «T ~&1.1'K, where the various heat
capacities all coincide practically, the heat capacities
are concave upward in the (C,T) representative plane.
However, C„has definitely an inQection point between
about 1.5—1.6'K, with C, becoming concave downward
beyond this temperature.

Before discussing the temperature region T&2.0'K,
where the calculated c, values are based on extrapolated
c, values, as mentioned above, we should like to study
the behavior of c„at the approach of the critical
temperature. We have seen above that the lower
bound c„,z, Eq. (15), is the closer to the actual specific
heat c„, the nearer T is to T,. One finds with Eqs. (15)
and (17), with T near T„

lim c„,i [T/(pl)'j(dp——/dT)'.
T~TC

(17)
=c„(T,) 2 lim n, (T)

At the critical point itself, the difference [(Bp/r)T)„—(dp/dT)j vanishes rigorously, so that

is the rigorous expression of the constant-volume

specific heat at the critical point of any monatomic
Quid. This formula was derived some time ago" along
somewhat diGerent lines.

As far as the heat capacity C, is concerned, the
development of its anomaly appears to be restricted to
a temperature region of a few percent of T,. Between
about 0.94T, and T„ the partial lower bound C,„,i/E.
increases by about a factor of four. The other lower
bound C,, i,t'~/E, being linear in the expansion coeflicient
o.„exhibits fully the expected anomaly at the approach
of T,. It should, of course, be remembered that the
various thermal properties included in Table I are
numerically only approximate; their temperature
variation should, however, be qualitatively correct.

' The critical data are quite close to those estimated recently
by V. Peshkov, J.ExptL Theoret. Phys. (U.S.S.R.) BB, 833 (1937)."Curtis, Boyd, aud Palmer, J. Chem. Phys. 19, 801 (1951).

dg
+T, '+2[v(T,)j '

r =T'c

d ln(dp/dT)

dT J F=Tc
(20)

t' dc„) t'd'c, )I= »m ]r 7'. t,dTj r r. tdTs)
(21)

or the constant-volume specific heat of monatomic
liquids reaches its finite limit c„(T,), Eq. (18), at. the

because the second term with the curly brackets or
the right-hand side of (19) vanishes rigorously, since
the function [(Bp/BT), (dp/dT) j vanish—es together
with all its temperature derivatives at T.. Hence,
(c,T) approaches its finite limit c„(T,) with a positive
infinite temperature derivative, through the latter's
linear dependence on n, (T). One can now study d'c„/d T'
near and at T, through d'c„, i/dTs. One thus finds
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critical temperature with positive in6nite 6rst and
second temperature derivatives, a rigorous thermo-
dynamic result valid in all monatomic liquids. Its
extension to molecular liquids will be considered
brieRy below.

Experimentally, as pointed out above, the second
derivative d'C„/rIT vanishes at about 1.6'K. Xn

approaching the critical point, we have just proved
that this second derivative must become positive again.
Hence, it must have at least one other zero between
about 2.0'K and T„or C„must have at least one
additional inQection point in this higher temperature
range. If the C, curve calculated with the analytically
extrapolated C, values, exhibited in Fig. 1, could be
taken at face value above 2.0'K, then the inRection
point of C„would appear between its apparent sharp
maximum at about 2.4'K and a sharp minimum beyond
3.0 K. The latter would have to follow the maximum,
assumed real for the moment, because the finite limit
of c, at T, can only be reached from below, according
to Eq. (21). We wish to emphasize again that, at the
present time, the C, curve of Fig. 1 has to be regarded
with all due reserve beyond 2.0'K, on account of the
extrapolated C, values used in its calculation. However,
the inflection point around 1.6'K is essentially an
empirical result, and, furthermore, with the apparent
maximum in C„occurring by about 0.4—0.5'K beyond
the experimentally established C. values, this maximum
could well be associated with the actual behavior of
C„. At any rate, it is seen that measurements of C, are
needed beyond 2.0'K in order to decide empirically
whether the anomaly in C, displayed by the apparent
maximum at about 2.4-2.5'K is real or spurious,
caused, in the latter case, by the failure of the analytical
fit of C, (T) to represent an acceptable approximation of
this heat capacity at T)2.0'K.

It seems of interest to return again brieRy to the
consideration of the C,„,i/R values included in Table I.
Since this partial constant-volume heat capacity is
also an approximate lower bound of the actual constant-
volume heat capacity, by Eq. (15), it is seen that these
lower bounds are fully compatible, as they shouM be,
with the directly computed extrapolated C„/R values,
given in Fig. 1. In particular, the apparent sharp
maximum of the latter heat capacity does not conRict
with the approximate lower bound values of C„,&,/R,
which are better approximations to C„/R, the closer
the temperature is to T,. It is worth noting that the
extrapolated C,/R becomes equal to C,„,i/R somewhat
below 3.25'K, so that if the maximum of the former
were real, its minimum would develop at about 3.0
—3.25'K, beyond which it would increase smoothly
toward its finite limit C„(T,).

The present, essentially thermodynamic, discussion
demonstrates that the elementary constant-volume
heat capacity of liquid He' is not a monotonically
increasing function of the temperature, and this may

TABLE II. Qualitative behavior of the second temperature
derivative d'C„/d& of the constant-volume heat capacity of
liquid He3.

Approximate
temperature
or interval

('K)

(0-0.4)
(0.5)—(1.5-1.6)
1.6&T
0.9~ &c—&c
Tc

Sign or value
of d'C /dT'

(—)
(+)
(—)
(+)
(+ )

be one of the results of the present work. Ke have, so
far, refrained from considering the low-temperature
behavior of this heat capacity, which, of course, becomes
identical with C, and C~ at these low temperatures and
to which we shall return in a moment. Clearly, the
possible minimum of C„at about 3.0—3.25'K is already
a manifestation of the approaching critical region,
which imposes the temperature behavior of C„ through
Eq. (21). This latter result, of great generality, will
now be extended to molecular liquids. In the latter,
the limiting value C„(T,), Eq. (18), is only a fraction of
the total constant-volume heat capacity at T„another
fraction of this property arises from the temperature
rate of excitation of the internal energy levels of the
molecules. Since the latter is hardly affected by the
peculiar behavior of the liquid around the critical
temperature, it will be realized that the development
of the infinite slope of C„(T) as T, is being approached
is of purely intermolecular origin. This anomalous
behavior is thus independent of the internal constitu-
tion of the molecules of the liquid, and the rigorous
macroscopic thermodynamic results on the constant-
volume heat capacity, Eq. (18), as a fraction of the
total constant-volume heat capacity, and its anomalous
temperature derivatives, Eq. (21), remain valid in all
liquids at the critical temperature.

In attempting to complete the graph of the C„(T)
function toward the absolute zero, one is led to a heat
capacity which becomes ~ concave downward in the
(C„,T) plane, as indicated by Roberts and Sydoriak'
on the C, (T) function. With this extended graph one
obtains the qualitative temperature dependence of
C„(T), dC„/dT, and d'C„/dT', over almost the whole
temperature interval from the absolute zero to the
critical temperature T,. At the present time, the
behavior of C„(T) is uncertain between about 2.3 to
3.2'K, as discussed above. It seemed, nevertheless,
instructive to give in Table II the qualitative behavior
of d'C, /dT' Of the various temperature regions limited

by the zeros of this second temperature derivative, the
one close to T, is similar in all liquids, as discussed
above. Disregarding the latter region, Table II and
Fig. 1 disclose the multiple alternations of the sign of
the curvature of C„(T). These alternations suggest,
perhaps, the complexity in the thermal excitations of
liquid He', whereby various types of excitations could
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possibly cooperate in the sense that they become
individually dominant in the various temperature
intervals. That at the lower temperatures this is
effectively the case will be demonstrated in the next
section.

4. ANALYSIS OF THE CONSTANT-VOLUME HEAT
CAPACITY OF LIQUID He' IN TERMS OF
ELEMENTARY THERMAL EXCITATIONS

4.1 Temperature Region Affected by the Heat
Capacity of Syin Disorder

One of the main purposes of the present work
consists in an attempt at a possible decomposition of
the constant-volume heat capacity of liquid He'
into its more elementary components. Such an analysis
should enable one to recognize, possibly, whether the
thermal excitations of the liquid could be described
approximately in terms of known excitations and
whether certain types of excitations could, to some
reasonable extent, be shown to be more likely absent
than present in this liquid.

As mentioned in Sec. 1, the fundamental approach
to the problem of liquid He' is to follow the systematic
investigation of the E-atom system, interacting
according to a poorly known interaction law, of which
even the pairwise interaction part is known incom-

pletely, at best, at the present time. The solution of the
characteristic-value problem associated with such a
collection of E interacting atoms, subject to antisym-
metric statistics, yielding its energy spectrum, is

needed, in principle, for the rigorous statistical-
mechanical description of such a system. The magnitude
of the difhculties encountered in such a direct approach
to the theory of liquid He' appears to be considerable,
This state of affairs tends to justify, it seems to us,
the use of indirect methods which should, nevertheless,
yield the description of certain properties of the system
in a manner not too different from that resulting
eventually from the fundamental approach.

In this sense, the asymptotic limiting ideal Fermi-gas
model of liquid He', associated with the switching off
of the interatomic couplings, while at the same time

keeping the density at its value prior to the switching
off process, was of some limited use. This model applied"
thus to the liquid phase required the smooth variation
of its various thermal properties as a function of the
variables of state. In addition, the model was capable
of giving, at lower temperatures, T&2.0'K, the order
of magnitude of the entropy of the system. An improve-
ment of the model through introduction into its
formalism of the approximate pair potential energies
of the He' atoms was again capable of yielding, to some
degree of approximation, the binding energy of the
system in the ground state and the exchange energy,
using plane de Broglie waves for the individual wave
functions of the atoms. " This has led, to within the

"L.Goldstein (unpublished calculations).
"L.Goldstein and M. Goldstein, J.Chem. Phys. 18, 538 (1950).

~.(T)/Jt = (ln2)Lx(T)/xo(T) 3, (22)

and, under the conditions stated, valid apparently in
the case of saturated liquid He', since

x(T)/xo(T) ~&~, (23)

the full spin entropy of E ln2 can only be reached by
the system asymptotically from below, when its
susceptibility x(T) approaches the Langevin-Brillouin
limit" xo(T). Stated in other words, when a system of
atoms or molecules of spin sk, and given magnetic
moment, exhibits the limiting I,angevin-Brillouin
susceptibility law, then its entropy of orientational spin
disorder is complete, that is it is equal to R ln(2s+I),
per mole of the system. Or, vice versa, if a paramagnetic
system has achieved the orientational spin entropy of
Jt' ln(2s+1), then, ipso facto, its paramagnetic suscepti-
bility must be given by the limiting I angevin-Brillouin
law. Or, as pointed out and discussed in detail pre-
viously, ' " the ratio of the actual susceptibility x(T)
of the system of Ã0 atoms, to the limiting susceptibility
xo(T) of the same system, at the same temperature
and density, is

x(T)/xo(T) =&(T)/&o, (24)

r4 Fairbanks, Ard, and Walters, Phys. Rev. 95, 566 (1954)."P.Langevin, Ann. chim. et phys. 5, 70 (1905).
's L. Brillouin, J. phys. radium 8, 74 (1927)."L. Goldstein, Symposium ou Liquid aud Solid He' (Ohio

State University Press, Columbus, Ohio, 1958), p. 57.

approximations of the calculations, to the exclusion of
the ferromagnetic behavior at the absolute zero, and
to the definition of a characteristic energy ~es~ or
temperature

~

eo
~
/k, k being Boltzmann's constant,

of the order of magnitude of 1.0'K, which could be
expected to play a role in the nuclear paramagnetic
behavior of the liquid. ' The ferromagnetic ground
state being excluded, the system was capable of
reaching its ground state with vanishing total spin
moment. Clearly, for this state to be reached the system
has to develop a kind of an internal field, the energy
of which, per atom, appeared to be well approximated
by the absolute value

~
eo~ of the exchange energy in

this spin configuration. ' Empirically, "To, the character-
istic temperature

~
eo~/k, appears to be close to 0.5'K.

Hence, at T&TO, the nuclear paramagnetic suscepti-
bility of liquid He, x(T), a smooth, continuous, and
monotonic function of T, would be expected to be less
than but also close to that of an ideal paramagnet,
whose susceptibility xs(T) is that given by the law of
Langevin. "At T(To, the susceptibility x(T) should
fall below its ideal limiting I angevin value, at the same
temperature and density, and should approach smoothly
and asymptotically a finite limit, its maximum value,
accessible only at the absolute zero. We have shown'
that, under conditions which could be well specified,
the molar entropy of orientational spin disorder was
given, for liquid He' whose atoms have spin its/2, by
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the fraction of those atoms S(T)/Xo of the system
which are available for magnetization by a small,
external, uniform magnetic field, in presence of which
the X(T) atoms distribute themselves over the available
magnetic spin sublevels of the atoms according to the
Boltzmann distribution. If there are (2s+1) such
levels, that is if the degree of spin degeneracy is (2s+1),
then by Boltzmann's entropy theorem the partial
orientational spin entropy per "available" atom is
ln(2s+1), or (Xo being Avogadro's number) per mole,
[x(T)/xo(T)]R ln(2s+1). For s equal to -'„ this
reduces to (22). The component entropy S,(T) defines
the whole thermodynamics of the spin system arising
from the orientational or directional behavior of the
atomic or molecular spins of the collection of atoms
or molecules exhibiting the above-stated magnetic
susceptibility behavior.

By the smooth, continuous, and monotonic character
of the susceptibility function x (T) of liquid He'
throughout the whole temperature interval 0.1 ~& T ~&T„
as established experimentally, ""the development of
the partial spin entropy (22) from its vanishing value,
by the Nernst law, to its maximum limit of R ln2 per
mole of liquid He, is accompanied, according to
thermodynamics, by the development of a partial heat
capacity of spin disorder, through

C.(T)/R= T[d(S./R)/dT)
= (In2) T(d/tET) [x(T)/xp(T) j. (25)

The entropy of spin disorder expressed by Eq. (22)
can be proved rigorously within the formalism of the
ideal Fermi gas of atoms of spin A/2. We have given"'
a series of arguments of precise physical significance
which showed that, under the conditions specified, the
spin entropy expression (22) could be considered to be
valid in a system like liquid He'. Using for x(T) the
experimentally determined susceptibility values, " it
was shown' that the partial entropy of spin disorder S,
tended to become the dominant part of the total entropy
of liquid He' below about 0.8—1.0'K. The heat capacity
of spin disorder C, was expected to become the dominant
part of the total heat capacity of the liquid at still
lower temperatures. In particular, a sharp decrease of
this total heat capacity could not occur before the
characteristic anomaly of the partial spin heat capacity, '
through its peculiar maximum, was reached from the
high-temperature side. At very low temperatures, the
empirical values of the susceptibility, which, of course,
are a complete representation of all possible interactions
within the liquid yielding the observed x(T) values,
suggested that C, (T) should vanish, asymptotically,
linearly with the temperature. This asymptotic linear
region of C, could only be reached at T&0.05'K.

The thermodynamically evaluated constant-volume
heat capacity of liquid He' was decomposed into two

' G. K. Walters and W. M. Fairbank, Phys. Rev. 103, 262
(1956); and Symposium ou Liquid aud Solid He' (Ohio State
University Press, Columbus, Ohio, 1958), p. 1 of the Supplement.
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parts, the constant-volume spin heat capacity and its
complement, the nonspin heat capacity at constant
volume. Inasmuch as the decomposition of the total
heat capacity of the saturated liquid

C,=C.. .+C„., „ (26)

is justified on the basis of the decomposition of the
entropy of the saturated liquid, we may also write

C„=C...+C,, „, (27)

and using Eq. (8) so as to connect the molar heat
capacities, one obtains

C, , „/R= (C.../R)[1+A(1+8 ')j ', (28)

with A and 8 defined by Eq. (6). The calculated heat
capacities C„/R, C.../R, and C„., /R are given in
Fig. 2. Of these, C./R and C„.„/R are only available
above 0.5'K, as the various heat capacities of Fig. 1.

Figure 2 shows that the partial heat-capacity curves
C,,„and C, intersect at about 0.35—0.40 K, below
which temperature C,, becomes the dominant part of
the total heat capacity. The apparently roughly linear
character of C„,„(T) at low temperatures resembles of
course the similar behavior of C„.... The approximate
linearity of the latter partial nonspin heat capacity in
the temperature interval 0.4.-2.0'K has been pointed
out by Roberts and Sydoriak. ' To the approximation of
our calculations, the degrees of freedom of liquid He'
responsible for the constant-volume nonspin heat
capacity of the saturated liquid yield an approximately
vanishing curvature for this C„,,„(T) function, that is
a constant positive temperature rate of increase
(d/dT)(C„. ../R) of about 0.4/'K below about 1.0'K.
We give in Table III the calculated C,/R values of
the saturated liquid, omitting the subscripts, whose
accuracy is determined essentially by the empirical
susceptibility values, together with its approximate
first and second temperature derivatives, (d/dT) (C,/R)
and (d'/dT') (C,/R). Since, below about 1.0'K, C, and
C... are identical for all practical purposes, the heat
capacity C,,/R and its derivatives are replaced by
C/R and its derivatives, Table III being limited
between the absolute zero and 0.55'K. The graph of
the partial molar spin heat capacity C,/R has been
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TAsLE IZI. The molar spin heat capacity C,/R and its approximate
erst and second temperature derivatives.

T
(oK)

0.0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

Crr/R

0.0
0.112
0.195
0.235
0.243
0.234
0.219
0.201
0.183
0.167
0.152
0.139

(d/d&) (& /R)('K)-

2.31
1.95
1.23
0.477—0.007—0.244—0.335—0.352—0.335—0.310—0.279—0.248

(d~/d T~) (Cg/R)
(oK)

0.00—10.8—14.7—12.3—7.21—3.28—1.08
0.00
0.42
0.56
0.62
0.60

given previously in terms of the dimensionless variable
T/To, To being the empirical apparent degeneration
temperature which seems to enter into the approximate
analytical representation of the susceptibility data" of
saturated liquid He'.

Table III shows that the minimum value of (d/dT)
)((C,/R) is reached at about 0.35'K, where its value
is close to —0.35/'K. If, at this temperature, the
extrapolated temperature derivative of the linear C,/R
is still about 0.4/'K, then at about this temperature
the total liquid He' heat capacity has an inQection point,
since (d'/dT') (C,/R) vanishes there. The tangent of
the total heat-capacity curve at this temperature has
an almost zero or very small positive slope. In other
words, the existence and location of the first, low-

temperature, inQection point of the total heat capacity
of liquid He' is well accounted for, as intimated
previously, ' '~ through the opposing trends of tempera-
ture variation of the component spin and nonspin heat
capacities. At very low temperatures, the increasing
total heat capacity C(T) has to have negative second
temperature derivatives, since it is concave downward
toward the temperature axis. Beyond the inQection
point, about 0.35—0.40'K, the total heat capacity
becomes concave, upward, that is toward increasing
C(T) values.

These results distinctly show the role played by the
partial spin heat capacity in the behavior of the total
heat capacity at the low temperatures. We have called
attention previously' to the possibility that the peculiar
maximum of the spin heat capacity might become
observable indirectly through the total heat capacity
of the liquid, which, of course, is alone observable. It is
now clearly demonstrated that the existence of this
maximum is responsible for the slowing down of the
temperature rate of decrease of the total heat capacity.
Furthermore, we are now in a position to appreciate
fully that the downward trend of the total heat capacity
could not start at temperatures above 0.35—0.38'K.
Indeed, as the negative slope dC,/dT increases toward
zero below that temperature, the decreasing trend of
the nonspin heat capacity ceases to be cancelled or
compensated by the increasing trend of C with

decreasing temperatures. That is, the total heat
capacity will start decreasing slowly below about
0.35—0.38'K, down to about 0.2'K, where the maximum
of C is located. On the low-temperature side of this
maximum of C, the positive slopes dC, /d T and dC„,/d T
become additive. As a result, an accelerated downward
trend of the total heat capacity can only occur below
the temperature of the maximum of C, (T). This
appears to be in agreement with the still preliminary
experimental results of the Ohio State University
group. '

Since the real and accelerated downward trend of
temperature variation of C(T) starts only at about
0.19—0.20'K, one would expect the total heat capacity
to exhibit a finite curvature through its C, (T) compo-
nent down to rather low temperatures, that is low in
comparison with 0.20'K. This state of aGairs is rather
well illustrated by Table III. It is seen there that the
asymptotically linear region of C (T) has not been
reached yet at 0.10'K. Had one assumed that C,/R is
essentially linear in T below 0.10'K, then the slope of
this linear extrapolation, wrongly interpreted as the
slope of C (T)/R at the absolute zero, would have
been about 1.95/'K, or lower by about 0.35/'K than
its correct limit of about 2.30/'K, that is by some 18%
of this apparent slope of 1.95/'K. It will be seen that
(d/dT) (C /R) is, at 0.025'K, approximately, about
2.24/'K, or, still, by some 3'%%uq lower than the correct
limit. Clearly, the preceding numerical values of C, (T),
or those of its temperature derivatives, are completely
tied to the empirical values of the nuclear paramagnetic
susceptibilities of the liquid. Should these be revised
to some extent, then the above numerical values of the
spin heat capacity and its temperature derivatives will

have to be modified accordingly. The theory' of the
properties of the nuclear spin system of liquid He' has
no adjustable constant or constants whatsoever in its
formalism, so that the numerical values of some of these
properties such as the spin entropy and spin heat
capacity are defined solely by the nuclear paramagnetic
susceptibility function x(T), or the susceptibility ratio
x(T)/xo(T)

x(P,T)/xo(P, T) &x(T)/xo(T), (29)

4.2 Nuclear Spin System of Compressed
Liquid He'

The partial spin heat capacity has to play a role in
the determination of the total heat capaacity of
liquid He' under pressure as well as in the solid phase,
at low enough temperatures, provided that the applica-
tion of external pressure does not lead to an anomaly in
the nuclear paramagnetic susceptibility as a function
of the temperature. Experimentally, "the spin disorder
increases with increasing pressure p, because the
susceptibility function x(p, T) or the susceptibility ratio

x(p, T)/xo(p, T) is such that
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where the right-hand side corresponds to the ratio of
the saturated liquid at the same temperature. The
susceptibility xs(p, T) is the limiting Langevin-Brillouin
ideal susceptibility associated with the density or
atomic concentration achieved by the isothermal
compression (p„T)—+ (p, T), p, being the saturated
vapor pressure at T. The theory of the partial spin
entropy' is based strictly on the Boltzmann entropy
theorem and should thus be fully valid in liquid He'
under pressure or in solid He' provided that the
conditions speciied for the behavior of the paramagnetic
susceptibility' are fulfilled. Hence,

075

050

0.0000 0.25 0.50
T/T

0.75

LOG 2—

1.00

S,(p, T)/R= (ln2)Lx(P, T)/xs(P, T)g, (30)

and, the empirical observations then require, according
to (29), that

S.(p,T)».(T), (31)

S,(T) denoting the spin entropy of the saturated
liquid. Since, furthermore, the total entropy of the
liquid is

(32)S(p T) =S.(P,T)+S-(P,T)

and that since S„,(p, T) &~0, one sees that

S.(p T) =(R 1 2)b(P, T)/xo(P, T)r
& S(p, T), (33)

or the partial spin entropy can never become larger
than the total entropy. If at some low temperature
x(p, T) near the melting line is considerably larger than
x(T) associated with the saturated liquid at the same
temperature T, still x(p, T) &~xs(P, T), since this
susceptibility cannot become larger, paramagnetism
being permanently assumed, then the ideal limiting
susceptibility xs(P, T) at this same temperature and
pressure If the la. tter value is reached, then S (p,T)
must be equal to its upper limit of E ln2 per mole, as
discussed above, and the total entropy of the liquid
S(p,T), at the pressure p and temperature T, must
satisfy the inequality (33). By Eq. (29), the spin heat
capacity is now such that its peak value is now displaced
to temperatures lower than where it occurs in the
saturated liquid. However, again, the peak value of
this partial heat capacity C, (p, T) cannot exceed
0.248, per mole, as it appears clearly on the invariant
representation of C (T)/R given previously. ' It is
assumed here that the susceptibility of the compressed
liquid is still describable analytically, to some degree
of approximation, as appears to be the case with x(T),
the susceptibility of the saturated liquid. The analytical
description depends on one empirical parameter
Ts(p) &Tp Tp referring to the saturated liquid.

There is here an aspect of the spin heat capacity
which is worth considering. Namely, it may possibly
occur that at low temperatures and under pressure, the
spin and nonspin heat capacities would behave in
sufBciently diGerent ways so that the spin heat capacity
anomaly through its maximum would become much

Pre. 3. The molar spin entropy of staturated liquid He',
S,(T)/R, curve 4, ss the ratio (T/To), TD being the empirical
apparent degeneration temperature, and the S (p, T)/R curves
of compressed liquid He', curves 1, 2, and 3, ss the T/To(P) ratio.
Ts(p) values associated with these curves are, respectively,
Ts/2, 3TO/3, and 3Tp/4. The abscissas correspond to the same T
with the appropriate T/Ts(p) values.

more pronounced, with respect to the nonspin heat
capacity, than in the saturated liquid. In the latter, it
is seen on Fig. 2 and Fig. 1, the spin heat capacity is
responsible for the plateau of the total heat capacity
below about 1.0'K, and also for its sharp drop at the
low temperature end of this plateau, at about 0.2'K.
In the compressed liquid as well as in the solid phase,
provided that the susceptibility functions of these
modi6cations of the Quid satisfy the conditions specified
above, at low enough temperatures, the partial spin
heat capacity peak might become observable on the
total heat capacity as a well-dehned hump preceding
its sharp drop on the low-temperature side of the
anomaly.

On the assumption that the observed nuclear para-
magnetic susceptibility x(p, T) or the susceptibility ratio
x(p, T)/xs(p, T) is such that one still has approximately'

x(P,T)/xo(P, T) = —F'Ln(P, T)3/FLn(p») j (34)

F'(n) =dF/dn,

where F(n) is the function defined in the formalism of
an ideal Fermi gas, one has

S,(p,T)/R= (In2) ( F'/F). (3—5)

The right-hand side can be represented by an asymptotic
type of series in terms of the ratio T/Ts(p) at T&Ts(p).
At T&~ Ts(p), the series representation is convergent
throughout the interval (Ts(p), eo). Now the ratio

F'(n)/F(n) is—a decreasing function of the parameter
Ts(p), and, hence, if Ts(p) is such that dTs(p)/dp&0,
then

dS, (p,T)/dp= (dS,/dTs) (dTp/dp) &0, (36)

as required by (29) and (31),which qualitatively express
the observations. "This state of a8airs is illustrated in
Fig. 3, where we give four entropy curves, S,(T/'Ts)
and S,(T/Ts(P)), with Ts(P) taken to be (4sTs), (ssTs),
and (Te/2), associated with the compressed liquid.
These Ts (p) values have been chosen arbitrarily,



LOU I S GOL D S TE I N

inasmuch as, at the present time, the To(p) function is

not known. In Fig. 3, an upward displacement along a
line T= const corresponds to an isothermal compression.
A displacement along an S =const line toward the
left corresponds to a transformation at constant spin
entropy. Since the isothermal compression yields, by
(36), an increase in the spin entropy, a compression at
constant spin entropy is seen to lead to cooling.

The total entropy of the liquid is given by Eq. (32).
In considering now the total entropy changes on
isothermal compression, it will be seen that with

[aS(p,T)/ap)p =$8S.(p, T)/Bp] p

+L~S-(p,T)/~p3~ (3&)

the entropy anomaly arising from the spin entropy,
according to (36), could be enhanced, decreased or
fully compensated by the abnormal, (BS„,/Bp)z)0,
or normal, (8S,/Bp)T(0, behavior of the nonspin

entropy, over part or the whole of the available pressure
interval. At the present time, the pressure dependence
of S„,(p,T) is unknown. At low temperatures and over
some pressure interval the spin entropy with its
pressure anomaly could become dominant.

A direct thermodynamic consequence of (36) is,
in virtue of

$8S(p,T)/Bpfp= —(BU/BT) p,

the relation

V '(BV/BT)„= V '(BV./BT),+V '(BV„./BT)„(39)
where, approximately, we have introduced the partial
volumes V and V and, through them, the partial
expansion coefficients o;, and o ., of the spin system
and the normal degrees of freedom, respectively.
Equation (39) may now be written as a relation between
the expansion coefficients at constant pressure,

ni (T)=a.~(T)+n ., „(T), (40)

showing that the total expansion coeScient could become
anomalous through a, „(T). Depending, however, on
the temperature and pressure, the negative spin
expansion coefficient ix,, „(T) could be reduced or
eliminated through the normal behavior of n„,„(T)."

On the basis of the assumption stated above on the
sole use of a unique parameter To(p), defined by the
susceptibility measurements, in the approximate analyt-
ical description of x(p, T) and S,(p, T), we are now

fully prepared to map the liquid region of the phase
diagram of He' in the (p, T) plane onto the (S„T)
plane. This mapping is, of course, closely related to
the mapping of the phase diagram on to the (y(p, T),T)
plane. It should be remembered, however, that the

~9In our direct treatment of the spin system, in the second
paper of reference 1,prior to the experimental work on the pressure
effects on the susceptibility ratio, reference 17, a positive V
was used together with a positive dV&/dT, associated with the
saturated liquid. With the recent Los Alamos data, reference 5,
on the compressibility, a more complete quantitative study of the
volume anomaly of the spin system became possible.

existence of a particular analytical approximation to
x(p, T)/xo(p, T) is not needed at all. We have em-
phasized this important point previously, in connection
with the discussion of the satur'ated liquid. Indeed, once
the susceptibility ratio has been obtained empirically,
the definition of S (p, T) through Eq. (33) is complete.
The assumption expressed by (34) is of purely auxiliary
character, and is made for analytical convenience.

The region of the (S„T)plane is limited on the side
of the low S,-values by the S,(p, (T),T) curve associated
with the spin entropy of the saturated liquid, p, (T)
denoting the saturated vapor pressure. For instance,
the S,(T)/R curve of Fig. 3 is this saturated liquid
spin entropy curve. The liquid region of the (S„T)
plane is thus limited by S,(T)/R and the asymptote at
S,/R equal to ln2, parallel to the T axis. In order to
map now the liquid phase region of the (p, T) plane of
He', we have to make two possible assumptions
concerning the shape of the melting line pv(T).

We shall consider first the case where p~(T) is
normal or it is a monotonically increasing function of T,
from its lowest value pir(0), at the absolute zero,
upward, this value pir(0) being necessarily reached with
a vanishing slope. The melting line in question has
thus a minimum at the absolute zero. In order to
facilitate the mapping process, it is convenient to
divide the liquid phase region of the (p, T) diagram
into three parts, by the two isobars p= p„ that is the
critical isobar parallel to the T axis and passing through
the end point of the vapor pressure line at T„and by
the isobar p= p~(0), tangent to the melting line at the
absolute zero. The three regions of the (p, T) diagram
we shall map successively are, symbolically,

0 & p & p. ; p. & p & p (0); p & p (0)

The isobar p=const with p&p„ in the (p, T) plane,
intersects the vapor pressure line at a temperature
T&T„and, hence, this isobar extending from the
absolute zero up to the temperature T is a finite
segment. The associated susceptibility ratio x(p, T)/
x, (p,T) will also be a finite arc, extending from the
origin of the ((x/xo), T) plane up to a point where this
arc intersects the susceptibility ratio curve associated
with the saturated liquid, which we denote by x(T)/
xo(T). Hence, S (p, T)/R reduces also to a finite arc,
starting at the origin of the (S,/R, T) plane, increasing
first faster than the S (T)/R of the saturated liquid,
then slower, to curve around and intersect S,(T)/R
with a slope necessarily smaller than the slope of the
latter at the common temperature T. That is, all
isobaric spin entropy curves at p& p, are such that

S.(P,T) &S.(T), p & p., (42)

and, at the vapor pressure curve p= p, (T),

S.(p, T)=S,(T); $8S.(p, T)/BT]„&dS./dT; (43)

the derivative on the right-hand side of the inequality in
(43) is taken along the spin entropy curve of the
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saturated liquid. Hence, the smooth and monotonic
5, (p, T) curve starts out at the absolute zero with
a slope larger than 5,(T), to end at S,(T) with a
slope smaller than the latter, at their temperature of
intersection.

As p increases toward p„ the isobaric S (p, T)
curves tend to intersect the $,(T) curve at increasingly
higher temperatures. Actually, the highest temperature
of intersection, that is T„is so high that, for all practical
purposes, at pressures higher than one-half to three-
fourths atmospheric pressure, these S (p, T) curves are
similar to 5,(T), and they intersect only very close to
their would-be common asymptote at R ln2. Clearly,
5,(T) itself is of finite length since its end point is at T,.

At pressures in the region p, ~&p ~& psr(0), the S (p, T)
curves again start at the origin, their slopes at the
origin increase with p, and they are, in principle, of
infinite length, in constrast with the 5 (p, T) and 5,(T)
curves, p&p„which are all of finite length. These
high-pressure S (p, T) curves have Rln2 as a true
asymptote. The S,(p, T) curves of Fig. 3 are typical
representatives of these fully developed spin entropy
curves. The S (T) curves of this graph, the lowest one,
would in principle stop at T„which is however so
larger in comparison to Ts (~0.45'K) that this urve
would be extremely close to the asymptote at tempera-
tures well below T, already.

Finally, we have to consider the pressure region

p ~&psr(0). This region is, of course, limited in the

(p, T) plane by the melting line p~(T). Since, experi-
mentally, increasing pressures yield increased suscept-
ibility ratios in the liquid phase, it will be seen that the
5,(psr(T), T) curve will be located always higher than
all the other isobaric spin entropy curves S.(p, T).
Actually, 5,(T) and S (Psr(T), T) both start at the
origin, and at all T, $,(psr(T), T) is larger than. S (T),
both tending asymptotically toward R ln2. Remember,
however, what was said above about the finite length
of 5 (T). The area of the (S„T)plane included between
these two spin entropy curves is associated with the
liquid phase region of the (p, T) diagram mapped on to
the spin entropy-temperature plane. Neither of these
two limiting spin entropy curves belong to the family
of the isobaric spin entropy curves. The latter 611 up
the region limited by the S,(T) and 5,(psr(T), T)
curves. The mapping is now complete, but we have to
consider now in some more detail the pressure region

p&~psr(0). Any isobar of this liquid region of the

(p, T) diagram starts at some finite temperature T of
the melting line and extends, in principle, toward

inanity or the high-temperature side. Clearly then the

associated S (p(T),T) curves start now at some finite

temperature on the 5,(psr(T), T) line, . increase with

increasing T, but stay permanently below the preceding

limiting spin entropy curve, and tend asymptotically,
at high temperatures, toward R ln2, per mole. That is,
while the 5,(p, T) curves at p ~&p, were finite arcs

limited on the high-temperature side by the 5,(T)
curve, in this high-pressure region p &psi(0), the
S.(p, T) curves, though extending toward infinitely
high temperatures, are limited on the low-temperature
side by the 5,(p~(T),T) curve. Since they are always
below the latter, it is seen that

L~S.(P,T)I~T3.&dS.(p~(T), T)/dT,

P &P~(0)

We have to turn now to the discussion of the mapping
on the assumption" of a possibly anomalous melting
line psr(T), which has a minimum p~(T; ) at some
finite temperature T;, Clearly the mapping just
performed at pressures p ~&psi(0) remains unchanged
provided that the limiting isobar p= ps'(T;„) replaces
the isobar p=p~(0) of the normal case. The isobar
p=psr(T, „i„) in the (p, T) plane is tangent to the
anomalous melting line at its minimum at T„„„.
Along this isobar we obtain the last normal S,(p, T)
curve of the new set. This curve is normal because it
starts at the absolute zero, increases monotonically,
to tend toward the asymptote (R ln2) in the limit of
high temperatures. Actually, T;„might be already
high enough at this psr(T;„) pressure.

I.et us turn now the the portion of the spin entropy
curve associated with the anomalous arc of the melting
line between the absolute zero and T;„.All points of
this branch of the melting line are at a higher pressure
than the isobar p=p(T;„), with the exception of
their point of contact at T;„.In addition, this branch
of the melting line has at least two extrema, a maximum
at the absolute zero and the minimum at T;„.Hence,
this branch has at least one inflection point. The spin
entropy curve associated with this branch of the
melting line has to start at the origin, to increase over
and above the 5,(p(T;„),T) curve, and then it will

have to turn around to develop a contact point with
the latter isobaric spin entropy at T;„. Beyond
T;„, 5,(psr(T), T) increases again over and above
S,(p(T; ),T), to tend finally, at high temperatures
toward the asymptote of Rln2. Along the melting
line then, one has

d$.(p~(T)»)/dT= Ld$. (P~,T)Idp j(dPIdT) & o, (45)

T &T„;„.
Below T;„, p decreases along the melting line, or
dp/dT &~0, and dS,/dp&0, hence the inequality (45).
Above T;, (45) is again valid automatically, since
there dp/dT) 0, and the positive pressure derivative of
the spin entropy is likely to be valid along the melting
line as it is valid below it, according to the observations.
It is thus seen that as a consequence of the anomalous
melting line, the associated limiting 5 (P~ (T),T)
entropy curve is somewhat contorted. Now, the

~ I. Promeranchuk, J. Exptl Theoret. Phys. (U.S.S.R.) 20,
919 (1950); Osborne, Abraham, and Weinstock, Phys. Rev. SS,
158 (IN2).
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isobars of the phase diagram in the pressure interval
(p~(0),p(T;„))intersect the melting line at two points
of temperature T&&T;„and T»T;, respectively.
The isobaric spin entropy curves associated with one
of these isobars in the above pressure interval, start
at the origin and are included between the two entropy
curves S,(p(T; ),T) and S,(pair(T), T). These two
curves form two loops, intersecting at the origin and
forming a contact at T;„, and intersecting again in
the limit of high temperatures asymptotically at
R ln2. It will be seen that, below T;„,

[BS.(p(T), T)/aT j,&dS.(p (T),T)/dT,
46

pair(0) )p )p;; 0 & T & T;„,
and, above T ;,

that the constant pressure paramet. er p associated with
a given curve of the family appears to affect the shape
of the ratio curves through a temperature parameter
To(p), so that these susceptibility ratios appear to
admit a universal expression in terms of the dimension-
less variable T/To(p). Since, at the present time, a
proof of this invariant character of S,(p, T) is not
available, we shall have to assume, for analytical
simplicity, that S.(p, T) is a universal function

S(T/To(p)), with To(p) derivable approximately from
the empirical x/yo ratios; the To(p) curve in the (p, T)
diagram is eGectively an auxiliary critical line, starting
at about 0.45'K on the vapor pressure line and increas-

ing, with a negative slope, up to the melting line.
The heat capacity of spin disorder is, rigorously,

PBS,(p, T)/a Tj„&dS.(p~, T)/d T,

p )& pminq T )z Tmin
(47) so that with

C.(p, T)= T(BS.(p, T)/BT)„,

S.(p, T) =S.(TITO(p)),

(48)

(49)

This completes the mapping of the isobars and of the
phase separation lines of the (p, T) diagram of liquid
He' on to the (S„T)plane. It should be noted though,
that, so far, there is no direct empirical evidence
favoring the existence of an anomalous branch of the
melting line of He'.

It is worth noting finally that the region of the
(S„T) plane limited by the S,(p~(T), T) curve, the
S, axis, and the horizontal asymptote (R In2), is to be
associated with the spin entropy of the solid phase of
He', under the same conditions as those satisfied by
the nuclear paramagnetic susceptibility of the liquid
phase. Data available so far on the solid" seem to fall
in this region of the (S,T) plane. It is, however, not
entirely clear if the set of susceptibility ratios given for
the solid phase correspond to an isobar or not.

4.3 Partial Heat Capacity of Spin Disorder of
Compressed Liquid He'

The results obtained in the preceding section on the
entropy of spin disorder of compressed liquid He' can
now be further exploited to derive from them the
constant-pressure heat capacities of spin disorder.

To this eGect, consider the family of, spin entropy
curves of Fig. 3. These are obtained from the assumed
invariant analytic approximation based on the formal-
ism of ideal Fermi gases given previously, ' by a change
of the abscissa scale. The lowest member of the group
of spin entropy curves is the S,(T) curve of the saturated
liquid, the upper three curves correspond to the
apparent degeneration temperatures To(p) of (3TO/4),
(3TO/5) and (To/2), respectively. To is the apparent
degeneration temperature of the saturated liquid, equal
to about 0.45'K. The experimental results' on the
nuclear paramagnetic susceptibilities of compressed
liquid He' seem to indicate that the isobaric ratios
y(p, T)/Xo(p, T) can indeed be derived from either of
them by a change in the abscissa scale. This means

one must also have

C.(p, T) =C.(T/To(p)), (50)

Before turning now to the numerical evaluations of the
C,(p, T)/R functions, with the help of (51), it seems of
of interest to refer again to the S,(p, T) curves of Fig. 3.
Consider a pair of these curves, one of the pair being
the S,(T) curve associated with the saturated liquid,
and which limits, as discussed above, the liquid phase
region of the (S„T)plane on the high-temperature side.
Let T be some low temperature and imagine that we
construct the tangents at the temperature T to S,(T)
and to S (p, T), located above S,(T). It is then evident
that at these low temperatures,

[BS,(p, T)/8T j„&dS.(T)/dT. (52)

As the temperature increases, it will be seen that
S,(p, T) tends to reach the asymptote (R ln2) faster
than S (T), and, beyond some temperature T,(p),
S,(p, T) becomes less steep than S,(T), or

)as.(p, T)/aT)„&dS. (T)/dT, T& T.(p). (53)

Now the curves of the S (p, T) family are all monoton-
ically increasing functions of T, having a Gnite slope at
the origin. The slopes (BS,/BT)„are monotonically

or the constant-pressure spin heat capacity is also a
universal function of T/To(p) if S (p, T) is such a
function. If the approximate analytic description of
S,(T/To(p)) is taken to be the one resulting from the
formalism of ideal Fermi Quids, with the empirical

To(p) function, one has with (34), as shown previously, '

(F"(n) F'(n) )C.(p, T)/R=( :1.2)I-
E F'(n) F(n) )

F(-)=F5-(p,T)3=F5-(T/T. (p))3, (»)
F'(n) =dF/dn, F"(n) =d2F/dn2.
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decreasing functions of T, since (B'S,/BT')~ is always
negative, the S,(p, T) curves being always concave
downward in the (S„T)plane. The derivatives decrease
thus from

ftBS,(p, T)/BT]„,r=p to $8S.(p, T)/BT], , r i.„.,
the latter limit being zero since the asymptote
S,(p, T~~) or R ln2 is independent of T. It should be
noted that while S,(T) has an end point at T„and does
not belong to the set of isobaric spin entropy functions
S,(p, T), its end point is of such high temperature, as
pointed out above, that, practically, S.(T) would have
reached its asymptote well below T, Hence, by (52)
and (53). the derivative functions (BS /BT) intersect
in the (BS,/BT, T) plane at one and only one point.
The intersections of the )BS,(p, T)/BT)~ curves with
the (dS,/dT) curve of the saturated liquid occur at
the temperatures T,(p). It is easy to see that T,(p) is
a decreasing function of the pressure p; that is, the
higher the value of the pressure p, the lower is the
temperature T, (p) at which (BS,/BT)„ intersects and
falls below dS, /dT. Similarly, any two of the derivative
functions [BS,(p, ,T)/BT]r; and t BS,(p„T)/BT]ps,
intersect at a single point whose temperature is
T,(p„pi,). Again, the larger the pressure difference

(ps —p,), the lower is the value of T (p;,ps).
Multiplying both sides of the inequalities (52) and

(53) by T, we obtain

C.(p, T) &C.(T), T&T.(p), 54
C.(p, T)&C.(T), T&T,(p).

The spin heat capacities vanish, of course, at the
absolute zero; they also vanish at high temperatures
where the spin entropy becomes equal to its constant
asymptotic limit. Since they are defined as T[BS,(p, T)/
BT]„,or a product of T and the just-discussed mono-
tonically decreasing functions (BS /d T)„, they can
have only one maximum. As shown above, the spin
entropy curves as well as the spin heat capacity curves
appear to have an invariant representation. With the

0.30

0.20

analytical approximation based on the formalism of
ideal Fermi gases for the susceptibility ratio x(p, T)/
Xs(p, T), we have given previously' the C (T//Ts) curve
of the saturated liquid. We now give in Fig. 4, on the
basis of the same approximation, the C (p, T) or
C,(T/Ts(p)) curves obtained by a simple change of
of the abscissa scale. These C curves of Fig. 4 are
associated, respectively, with the S curves of Fig. 3.
They, of course, show their intersection points with each
other. The intersections with the C, (T) curve of the
saturated liquid occur at the temperatures T,(p;), and
with each other, at the temperatures T (p„ps). These
temperatures of intersection are of course the same as
those at which the spin entropy temperature derivative
functions dS,/dT, (dS,/BT) r;, (BS,/BT) r s intersect.

In virtue of the fact that the C,'s are invariant
functions of T/Ts(p), their maxima occur always at'

T .„(p)=0.43Tp(p), (55a)

and their values at the maximum are identical and
equal' to about 0.248,

C.(T--(p.))=C.(T--(p*))=C-(T--(p~))
=0.248. (55b)

At the present time the experimental data' are not
complete enough to derive from them the Ts(p)
function, besides the result stated above in connection
with Eq. (36), that dTs(p)/dp&0.

For a clearer understanding and more thorough
appreciation of the origin of the C (p, T) curves of
Fig. 4, and, with it, of the thermal properties of the
spin system, it seems advisable to study the (C.,T,p)
space to which the spin heat capacity sample curves
of Fig. 4 belong. Consider a rectangular coordinate
system of these three variables, and let the (C„T)
and (C.,p) planes be vertical, and the (p, T) plane
horizontal. We assume that a positive rotation, through
+/2, around the C axis brings the p axis in coincidence
with the T axis. In the physically meani. ngful octant
of this coordinate system,

Z (C„p,T)=0,

the spin heat capacity surface, is limited at the low

pressures, starting at the origin, by a curved surface

Zi(C.,p, T) =0, (57a)

o.lo

000a 0.25 0.50
v/y,

I.OO

Fro. 4. The molar heat capacity of spin disorder C (T)/R, of
saturated liquid He', curve 4 vs (T/To), and of C, (p, T)/E, of
compressed liquid He' es T/T0(p), curves 1, 2, and 3. The T()(p)
values of the latter are the same as those of the corresponding
entropy curves of Pig. 3. The abscissas correspond always to the
same T values, with the appropriate (T/Ts). ratios.

perpendicular to the (p, T) plane, whose intersection
with this plane is the vapor pressure line p(T), or the
liquid-vapor phase separation line. The Z (C,p, T)
surface intersects the vertical curved surface Z~ in the
C (p„T) heat capacity curve associated with the
saturated liquid, whose perpendicular projection on
the (C„T) coordinate plane is the C (T) curve.

The Z(C„p,T) surface is limited on the high-pressure
side by a curved surface

ZA(co, p, T) =0,
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perpendicular to the (p, T) plane, intersecting the latter
in the melting line p~(T). The intersection of the
Z (C„p,T) surface with the Zq surface is the C (p~ (T),T)
line, which projected on the (C„T) plane yields the
limiting curve of the spin heat capacities associated
with liquid He along the melting line, as C, (T) is the
other limiting spin heat capacity curve of saturated
liquid He'. The Z surface starts on the p axis, slopes
sharply upward, and develops a continuous ridge-like
line of constant altitude, that is of constant C„equal
to 0.24R, given by (55b). This ridge is the locus of
contacts of the C,=0.24J' plane, perpendicular on the
C axis, and the 2 surface. It will be seen, again by
Eq. (55), that this ridge-like line of the Z surface starts
at the limiting Z~ surface, Eq. (57a), at low pressures,
at a temperature of about 0.43TO or with To equal, in
the saturated liquid, to about 0.45'K, at about 0.194'K.
It then curves toward lower temperatures on the
Z surface to come to a stop on the high-pressure side
of Z, that is on the Z~ surface, Eq. (57). In our Fig. 4,
we have taken (To/2) for the apparent degeneration
tempera, ture of the limiting high-pressure C (p, T)
curve, along the melting line, with To standing for the
apparent degeneration temperature of the saturated
liquid. Since the p axis belongs to the Z surface, as
mentioned above, this 2 surface starts on this line,
slopes upward fast at the low temperatures toward the
ridge, and then downward gently, on the high-tempera-
ture side of the ridge, reaching only asymptotically,
in the limit of high temperatures, the (p, T) plane.
The low-temperature slopes of the 2 surface become
steeper as one approaches the higher pressure regions,
showing that the Z surface slopes upward in pressure on
the low-temperature side of the ridge. The opposite
behavior is realized on the high-temperature side of the
ridge, where the Z surface slopes downward both in
temperature and pressure.

Consider now a series of planes perpendicular to the

p axis, intersecting the Z surface along the C (p, T)
lines. The lower the pressure, the higher is the tempera-
ture at which the planes p=const intersect the ridge
In other words the maxima of the C, (p, T) lines, all of
the same value or height, are displaced toward lower
temperatures as the pressure p increases. The perpendic-
ular projections of these intersections on the (C,T)
plane are the various C,(T/To(p)) curves of t:he Fig. 4.
It is realized now that the C (p, T) curves never intersect
in the (C„p,T) space, because they are located on
parallel planes. Only their projections on the (C.,T)
plane intersect.

We are ready now to discuss the variation of C (p,T),
at a constant T, as a function of the pressure p. For this,
it appears convenient to consider three temperature
regions:

T&To(p~); To(p.) &T &To(p~) T &To(p~) (5g)

To(p&) is the highest temperature of the ridge of the
Z surface, associated with the saturation vapor pressure,

and To(pa) is the lowest temperature of the ridge,
associated with the melting line, as discussed above.
Let the three planes be perpendicular on the T axis at
T= T&, T= T2 and T= T3, respectively, with Ty) To(p]),
TQ(p/a) & T2& To(pq), and T3& To(p,). The T& plane
intersects the Z surface on the high-temperature side
of the ridge, so that the curve of intersection Co(p, T)
falls uniformly with increasing pressure. Hence,

$8C.(p, T)/Bpg&&0, T) To(p&). (59a)

The trace of this plane on the (C„T) plane is a straight
line to the right of the last maximum associated with
C (T) or C, (T/To) in Fig. 4. An isothermal compression
starting from the saturated vapor pressure, or the
condition of the saturated liquid represented by the
curve No. 4, Co(T/Tp), is this downward directed
straight line, perpendicular to the T axis or the (T/Tp)
axis. Clearly, as evident on Fig. 4, C, decreases with
increasing pressure, the curves 3, 2, and 1, of increased

p values, are intersected successively.
Let now the plane T=T~ intersect the Z surface,

between the two end points of the ridge. Starting from
the Zj surface, or a point of C, (T) at T2, it is seen that
the curve of intersection first increases toward higher
values than C, (T2), as the curve approaches the ridge,
or

[BC,(p, T)/Bp7r) 0, p& p(C.. .„,T), (59b)

on the low-pressure side of the ridge, the right-hand
side of the second inequality being that pressure at
which, for the chosen T value, C has its ridge value,
that is its maximum. At the ridge,

t BC.(p, T)/Bp7r=0, p= p(C.. .„,T), (59c)

since C, is maximum there. On the high-pressure side
of the ridge, the curve of intersection decreases mono-
tonically, since the high pressure-high temperature
(that is T)T„a„)side of the Z surf. ace is sloping down-
ward both along increasing temperature and pressure
lines, as pointed out above. Hence, one has here

LBC.(p T)/Bp7r&0 p)p(C. , ' T)
(59d)

To(p~) &T &~To(pi)

Finally, in third or lowest temperature interval, the
behavior of C, (p, T) is such that

PBC, (p, T)/Bp7r)0, 0&T&TO(p~), (59e)

as the discussion of the T= T~ planes intersection with
the Z surface of known shape on the low temperature
side of the ridge, described above, would show. This
state of affairs is again clearly visible on Fig. 4, where
at temperatures lower than the maximum of curve 1,
the assumed limiting curve, an isothermal compression
follows a straight line, perpendicular on the T or
(T/To) axis, upward, showing a monotonic increase of
C (p, T) with p, as expressed by (59e).

Finally, it may be shown easily that as a result of
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the properties expressed by (43), (44), and (46), the
partial spin heat capacities at constant pressure are
lower by a finite amount than the C, (T) values along
the vapor pressure line, at the same temperature. At
the melting line, in the abnormal case, they are lower
than along the melting line, and higher than along the
latter line in the normal region of this line, always at the
same temperature. These differences in the spin heat
capacities are actually discontinuities.

We have seen above, Eq. (36), that

(BS,/Bp) r ———(8U,/BT) „&0, 0&T& ~. (60)

Since

lirn (BS,/Dp) z
——0, lim (BS,/Bp) r ——0, (61)

T large

it is seen that (BV,/BT)v, being always negative,
vanishes also at these two limits. Hence, it has at
least one minimum. Now, at 0&T&TO(pi), by (59c),
C, (p, T) is a monotonically increasing function of the
pressure, at all pressures in the liquid region of the
phase diagram. According to thermodynamics, one has

$8C, (p, T)/Bp Jp T(B'V———./BT')„(6.2)

Hence, in this low-temperature range, both (BV /BT)„
and (O'U, /BT') „are negative, or V, (p, T) is a decreasing
function of the temperature, being also concave
downward there. Specifically, C, (T) associated with
the saturated. liquid is such that the preceding relation
(62) is satisfied by it over the whole low-temperature
side of its maximum, but (BC /Bp)T vanishes at the
temperature of the maximum, to become negative on
the high-temperature side of the maximum, as discussed
above. At the position of the maximum of C (T),
(O'V, /BTi)„vanishes, or V, (p, T) has an inflection
point at this temperature, (BV,/BT) „having a minimum
there. Also, V, (p, T) becomes concave upward at
temperatures higher than the one at the maximum of
C,(T). These various thermodynamic conditions im-

posed upon V, would allow, on the basis of the previous
discussion" of the nuclear spin system of liquid He', a
more complete study of the volume anomaly arising
from the spin system. This problem, however, falls
outside the scope of the present work and its considera-
tion will have to be reserved for subsequent work. *

We should like, at this point, to close the present
discussion of the remarkable properties of the spin
entropy and spin heat capacity, and to return to a
further analysis of the saturated liquid He' constant
volume heat capacity.

4.4 On the Partial Constant Volume Heat
Cayacity of Liquid He' Associated with

Its Normal Degrees of Freedom

We have pointed out above that the C ., heat
capacity appears to be a roughly linear function of the

*L. Goldstein, accompanying paper, Phys. Rev. 112, 1483
{i958).

temperature, in a limited temperature interval,

C„., /R~yT,
0.40/'K &~y&0.44/'K,

0.4-0.5'I & T & (.5-&.7'K.

The physical signiicance of the approximately linear
region of C„,, might be connected with the following
state of affairs. Inasmuch as we are dealing with bound
atoms, it might be justiied to some extent to associate
-', kT for the thermal energy of excitation per transla-
tional and potential degree of freedom. Then Eo
being the total number of atoms of the system and v

the effective number of excited degrees of freedom,
v &~6, one may write

NokyT= (v/2)N(T)k,

N (T)/N p (2y/v) T,——
(64)

giving the fraction of atoms LN(T)/No) which are
t:hermally excited below about 1.5—1.7'K. The remain-
ing atoms are in the ground-state con6guration of the
system. Clearly, this is a rather extreme interpretation
whereby it is assumed that the atoms of the liquid are
capable of taking on the full classical thermal excitation
energy of -', kT per effective degree of freedom. If some
of these cannot be fully excited, v would decrease
accordingly. This semiclassical picture is intended only
to visualize the characteristic degeneracy in liquid He'
exhibited through its C„,, partial heat capacity. Here,
the lack of thermal excitations as compared with the
full equipartition is tentatively described as a kind of
division of the normal degrees of freedom into those
fully excited and those which are in their fundamental
state. As a result, the thermal energy of these normal
degrees of freedom is

E..(T) =-', vN(T)kT, (65)

and the temperature rate of the thermal excitations is
composed of two terms, assuming for simplicity that v

is practically independent of T,

C... = (dE„,/dT)
= vk[ T(dN(T)/dT)+N(T) t,

(66)

which exhibits the qualitative constant-volume heat-
capacity behavior of degenerate systems, whereby the
thermal excitations result in removing atoms from the
ground state and in increasing the thermal energy of the
already excited atoms. This semiqualitative description
of the thermal excitations of the normal degrees of
freedom tends to enhance the autonomy of the two
component systems of degrees of freedom, those
associated with the spin system and those belonging to
the former class of degrees of freedom. This autonomy
is particularly emphasized at the low temperatures,
where the spiri entropy tends to become dominant
together with the thermal energy of the system in
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comparison with the corresponding properties localized
on the collection of the normal degrees of freedom.

be justi6ed if

n„X&-,', n~X&-,', (n„+n~))«1. (68)
4.5 Further Analysis of the Liquid He' Constant-

Volume Heat Capacity in Terms of
Elementary Equations

This section will be devoted to the examination of the
possible existence in liquid He' of partial phonon type
of thermal excitations and their contribution to the
constant volume heat capacity. Clearly, a rigorous
solution to the problem of existence of phonon type of
excitations can only be based on an approach governed
by first principles. The problem in question may,
perhaps, be restated as follows: let liquid He', a collec-
tion of bound atoms subject to the Pauli principle, be
in its ground state; are there excited states in the
spectrum of this system describable in terms of phonons
which obey Bose statistics'

In attempting to analyze the constant-volume
heat capacity of liquid He' in terms of a component
phonon type of heat capacity, one should endeavor to
justify that compressional waves of small amplitude in
this liquid may indeed be considered to be quantized.
That is, that their mean free path should be at least
equal to, or larger than, a fair fraction of their wave-
length, over the whole allowed spectrum. " For more
simplicity, we will assume that no transverse elastic
waves are propagated in liquid He'. The problem is
now to compare the mean free path of the small-
amplitude compressional waves with their wavelength
in as wide a region of their spectrum as possible. No
measurements have as yet been made on the absorption
of either low- or high-frequency ultrasonic waves in
liquid He'. In the absence of any data it would seem
justified to estimate the mean free path of these waves
with the help of the absorption laws derived on the
basis of the classical dissipation processes arising from
internal friction and heat conduction, first considered
by Stokes and KirchhoG, respectively. " In so doing,
however, the limitations inherent in these arguments
will have to be kept in mind.

The absorption coeKcients of compressional waves
arising from viscous dissipation and heat conduction
are given, respectively, by"

n„= (8w /3) (t)/puX'),

nrc= 2w't E (y —1)/copu)t'j, (67)

where g and X are the coeKcients of viscosity and heat
conductivity, and A. is the wavelength of the sound
waves, the other symbols have been used already. The
quantization of waves of wavelength X may be said to

2' A number of authors have used, in a purely ad hoc manner,
the partial phonon constant-volume heat capacity in liquid He'
without any attempt at justifying it. See, for example, K. S.
Singwi, Phys. Rev. 87, 540 (1952) and, more recently, Flicker
and Atkins, reference 5.

~ See, for instance, Lord Rayleigh, The Theory of Sogged
(Dover Publications, Inc. , New York, 1945), Vol. 2, pp. 312—322.

X& ()t„+Are), (70)

or only waves of wavelength larger than (X„+X&)will
have mean free paths longer than their wavelength,
that is the length of their wave train will be at least one
wavelength. If the classical absorption processes were
operative throughout the whole compressional fre-
quency spectrum of the liquid, then (70) states that
only frequencies.

o & ~- ~= (pu'/2+)I 'an+(&(7 1)lc,—)j ' (71)

can be propagated and, also quantized, The portion
of the spectrum

vcrit ~~v ~~ vms, x (72)

cannot be propagated. The maximum frequency v,„
of the compressional waves which can be propagated,
in a structure of identical atoms separated by a given
distance d, is defined by the minimum wavelength of
the spectrum X;„as

2d=X;„o, =u/2d=kO/1's, (73)

where I is the appropriate velocity of these waves and
O~ the Debye longitudinal characteristic temperature
associated with the structure. It shouM be remembered
though that the very concept of structure in liquids,
above all at increasingly high temperatures, is an
uneasy one, at best. Hence, a clear-cut definition of
X;„or v, does not really exist in liquids at higher
temperatures, even though a numerical definition is
possible with the help of some average interatomic
separation dA, .

The assumed extension of the validity of the classical
absorption laws of compressional waves over the
whole frequency spectrum of the liquid is based on the
additional hypothesis that the viscosity coefficient p
and heat conductivity coeS.cient E remain independent
of the frequency. Clearly, this hypothesis appears, at
first sight, to be a highly fragile one, and its possible
invalidity could remove, at high frequencies, practically
all physical signi6cance attached to the classical
absorption laws. However, at the present time, there is
good experimental evidence in liquid He I for justifica-
tion of the validity of the classical absorption laws up
to a frequency of 1.5&(10~ cycles per second.

First of all, the essentially static viscosity measure-
ments'-' yield values of the viscosity coeKcient which
are in complete agreement with those resulting from
measurements with a quartz cylinder performing

"R.D. Taylor and J. G. Dash, Phys. Rev. 106, 398 (1957).

De6ning the critical wavelengths

X„=(8w /3) (rl/pu), Xrr =2m'E(y —1)/copu, (69)

the conditions (68) become
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torsional oscillations'4 at a frequency of about 3&204
cycles/sec. It is of great interest that these measure-
ments agree also in the liquid He4II range. In liquid
He'I, the kinetic relation connecting the coefFicient of
heat conductivity E with the viscosity coe@cient q and
the constant volume specific heat c„

+= aCvgp (74)

is fairly well verified, ""with the numerical coe%cient
a having an average value, over the explored tempera-
ture interval, which is in fair agreement with the
limiting gas-kinetic value of ~ of Maxwell. In liquid
He', the c, values obtained by us have been used to
verify again with a fair degree of approximation the
kinetic relation (74) with the recently measured
viscosity coefFicients" and heat conductivity coeKcient
values. "This state of affairs tends to suggest that in
liquid He' also, the frequency range over which the
transport coefficients remain independent of the
frequency of the sound waves is as large as in liquid
He I. In the latter liquid, there is, finally, indirect
experimental evidence, through the measured absorp-
tion coeflicient of sound waves" of 1.5X10' cycles/sec
frequency, for the complete validity of the use of the
static transport coefficients at this high frequency.
This is a rather important argument in the present
discussion of the possible division of the thermal
excitations in liquid He' into phonon and other types
of components. Indeed, this appears to prove that in
liquid He4I, and, indirectly, in liquid He' also, that the
classical sound absorption laws remain valid in the
frequency range extending from zero up to 2.5)&20'
cycles/sec, a rather wide spectrum, and offers a rather
solid basis for their assumed validity at even higher
frequencies. To be sure, the use of the classical absorp-
tion laws at frequencies higher than 1.5X10' cycles/sec
rests, at the present time, on an extrapolation.

The calculated critical wavelengths )„and X~ and
their sum (),+Ax), in liquid He, are given in Table IV.
They have been obtained in the temperature range

TAszz IV. Approximate classical short-wavelength limits of the
allowed spectrum of the longitudinal elastic waves in liquid He'.

T
(ore)

1.0
1.5
2.0
2.5
3.0

51.9
52.0
54.2
68.2

137.0

Xz'
|,'angstrom units)

0.76
5.30

18.1
52.2

199.0

(X&+X~)

53
57
72

140
336

a The kinetic relation (74) has been used in this calculation with the
smoothed data of reference 25 extrapolated to 3.0 K.

u B. Welber and S. L. Quimby, Phys. Rev. 107, 645 (1957).
~~Lee, Donnelly, and Fairbank, Bull. Am. Phys. Soc. Ser. II,

I, 64 (1957); and H. A. Fairbank and D. M. Lee, Symposium ou
Liquid aud Solid He (Ohio State University Press, Columbus,
1958), p. 26. See also, L. J. Challis and J. Wilks, Symposium on
Liquid aud Solid He (Ohio State University Press, Columbus,
1958), p. 38."J.R. Pellam and C. F. Squire, Phys. Rev. 72, 1245 (1947).

1.0—3.0'K, using smoothed values of g and E, as well
as the y and c„values calculated above. Since the
calculated minimum wavelengths, using the average
interatomic separations in liquid He, amount, by (73),
to about 10 A, Table IV shows that as the temperature
increases, on the basis of the stated assumptions, the
soundwave spectrum which can be propagated in the
liquid becomes narrower. It will also be seen that the
allowed shortest-wavelength limit of the spectrum
increases rapidly toward very large wavelengths, that is
very large in comparison with the structural limit of
about 10 A. On the basis of these results, the validity
of the assumption of a complete elastic frequency
spectrum excited according to the Planck-Debye
distribution and its use as a partial thermal excitation
spectrum becomes questionable, to say the least.
However, as pointed out at the start of the discussion
of this problem, the above arguments and results
tending to withdraw all physical significance of the
phonon excitations and their contribution to the
constant volume heat capacity of liquid He' are not
absolute enough to allow a definite exclusion of phonon
participation in the thermal excitations of this liquid.

It seems of interest to invoke here a somewhat
different type of semiquantitative but fairly general
argument tending to oppose also the justification of
phonon types of thermal excitations in liquid He' as
well as in liquid He4I. The directly computed apparent
characteristic temperatures O~ in liquid He' between
0.5 and 3.2'K are 13.8 and 6.8'K, respectively. In
liquid He4I, the 0 values at 2.2 and 5.0'K are, respec-
tively, 18.3 and 9.2'K, approximately. Over these tem-
perature intervals, the 0' values decrease by a factor of
about two. This emphasizes the instability of the struc-
tures to which one attempts to assign, in a highly ad hoc
manner, phonon types of excitations. This instability
manifests itself more strongly through the increasingly
large values of the volume expansion coeKcients at rising
liquid temperatures. Both expansion coefficients, tr, (T)
and a„(T), tend smoothly toward infinity as T ~ T„
rr„(T) increasing faster than n, (T) by Eq. (4).Now if the
whole or part of the large expansion coefFicient were
attributed to the anharmonic terms in the expression of
the elastic energy of the liquid, then it seems inescap-
able that the very large values of the expansion coeKc-
ient would, at high liquid temperatures, tend to deny
the dominance of the harmonic term in the elastic energy
expression when compared with anharmonic ones. It
would then follow that the very concept of harmonic
oscillations has to lose its sharpness and with it a good
deal of its significance, at these high temperatures. This
argument based on the instability of the liquid structure
at increasingly high temperatures, though not completely
quantitative, seems to be of some potency in attributing
only arithmetic significance to the phonon type of
partial constant-volume heat capacity both in liquid
He' and in liquid He4I.



S. CONCLUDING REMARKS

On the basis of the results obtained in the present
work, it appears justified to state that the thermo-
dynamic derivation of the constant volume heat
capacity C„(T)of saturated liquid He', from the various
data accumulated recently on its thermal properties,
had led us to recognize the existence of at least three
inflection points of this elementary heat capacity.
The data available at the present time were not
suflicient to obtain precise values of C, (T) beyond
2.0'K. The C„(T) values given above at temperatures
higher than 2.0'K are based on analytically extra-
polated, approximate C, (T) or saturated-liquid heat
capacity values. These extrapolations may become
worse at increasingly high temperatures. In particular,
the fairly sharp maximum of C„(T) at about 2.4'K
could be spurious, to some extent. Of the three definitely
established inflection points of C, (T), the first at about
0.35—0.40 K coincides with the location of the inQection
point of the component heat capacity of spin disorder,
C,(T). The inflection point occurring at the highest
temperature receives a thermodynamic explanation,
through an investigation of the behavior of C„(T) at
the approach of the critical temperature T,. It is thus
shown that C, (T) reaches its flnite limit C„(T,), at T„
with positively infinite erst and second temperature
derivatives.

Besides the elementary partial heat capacity of spin
disorder, the thermal excitations of the more conven-

tional degrees of freedom of the liquid appear to

correspond to those of a degenerate system whereby the
number of frozen degrees of freedom is smoothly
decreased with rising temperatures. This qualitative
picture seems to remain valid approximately up to
temperatures close to, or even higher than, that of the
middle inflection point of C,(T).

It is felt that definite progress could be achieved in
the understanding of the entropy and heat capacity of
the spin system throughout the liquid region of the
phase diagram of this substance. The C, (p, T) spin heat
capacity exhibits, as a function of the external pressure

p, a series of remarkable properties, in various precisely
defined temperature intervals. This behavior should
manifest itself through the pressure dependence of the
total observable heat capacity of compressed liquid He',
at the lower temperatures. On the basis of the rather
meager data on the thermal properties of solid He', it
would appear that in this phase too, the spin system
becomes dominant at low temperatures, through its
entropy and heat capacity. The description of the
thermal properties of the normal degrees of freedom
in this antisymrnetric solid appears to be a most
interesting and challenging problem.

Finally, various arguments, of qualitative or semi-
quantitative character, have been advanced, all tending
to exclude partial phonon type of thermal excitations
in liquid He', as well as in liquid He4I. These arguments
cannot yield, however, the rigorous solution to the
problem of whether or not this antisymmetric collection
of bound atoms can possess a group of partial element-
ary excitations subject to symmetrical statistics.


