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Plasma Oscillations with Diffusion in Velocity Space
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A model of plasma oscillations in the presence of small-angle collisions is presented which admits of exact
analytic solution. Certain features of the true collision terms are preserved. Namely, the effect of collisions
is represented by a diA'usion in velocity space, which makes the distribution function tend to the Maxwell
distribution, and which conserves the number of particles. In the limit of infrequent collisions the results
of Landau are recovered.

neglecting induction eGects, are~~~F importance in the physics of fully ionized gases
is the question of the eAect of smaIl-angle col-

lisions on longitudinal plasma oscillations. A proper
treatment of the problem requires solving for the elec-
trons the linearized Boltzmann equation' with a
Fokker-Planck collison term' representing electron-
electron and electron-ion encounters. This has not
proven mathematically feasible, and it is of interest to
investigate a qualitatively similar problem which is
amenable to exact solution.

Those features of the Fokker-Planck terms whi. ch
one would like to preserve are the following: the
property of conserving the number of electrons; the
property of representing a diffusion in velocity space;
the property of yielding the Maxwell distribution for
the equilibrium state. An equation which achieves this'
ls
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8—S= 4n eN~~—d'v fi.
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It is convenient to solve this system of equations by
means of a Laplace transform with respect to time, and
Fourier transforms with respect to velocity and position.
That is, one defines
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where f=fp+fi is the joint distribution in position and
velocity divided by the equilibrium density E, and
r)/r)v means the gradient in velocity space;

fo=(2 vo') "'«PL—-'(v/ o)'j

e is the magnitude of the charge on the electron, ns is
the electron mass, s the electric field, p an effective
collision frequency, ' and e0 the root mean square speed
corresponding to the equilibrium distribution fp. The
perturbed distribution function fi is assumed to be
very much smaller in magnitude than fo, of the same
order of smallness as 8. As usual in the theory of longi-
tudinal plasma oscillations, Eq. (1) must be solved

jointly with the appropriate Maxwell equations which,

' L. Landau, J. Phys. (U.S.S.R.) 10, 25 (1946).
'Rosenbluth, McDonald, and Judd, Phys. Rev. 107, 1 (1957).
3 The greatest defect of this model of small-angle collisions is

that the "diQ'usion coeKcients" v and vo2 do not fall oG with
increasing velocity, as do those given by Fokker-Planck equation.
This particular form for the Fokker-Planck terms is essentially
the same as that used in the theory of Brownian motion LS.
Chandraselthar, Revs. Modern Phys. 15, 1 (1943), Chap. IIj.

4 The order of magnitude of P can be obtained by a comparison
with the true Fokker-Planck equation of reference 2. One gets
approximately p—%re'N/m2v03.
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G=G(k, e) = d'k e"'"' ~d'a e'rr'f (r,v|0). (10)1

It follows from Eqs. (8) and (9) that

E=—4nNeFok/&,

whence Kq. (7) can be written

(Pe—k) (BF/Be)+ (s+Pv pso')F

=G—(p~ '/too)k rsFo exp( —tvp o. ) (12)

In solving Eq. (12) it is convenient to choose units
such that no=1, p=1, to define the plasma frequency
p&„= (4n.Ne'/m)&, and to set

F(k,a,s) =p(k, e,s) exp( ——,'o' —e.k), (13)
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whence Eq. {12)reads

(~ k—) (~.4/~o)+(s+k')0
=G exp(-,'a'+o k) —(co„'/k')k. eype~ ". (14)

It simplifies matters to write p as the sum of two scalars
which will later admit of simple physical interpretation.
To this end, choose a Cartesian coordinate system with
its z axis along k, and define P(k,o.,s) and y(k, e,s) such
that

p' plane

P-"P

Re P

(o,—k) (8$/Bo,)+ (s+k')P= A

=G(k, (0,0,o,)) exp(-', o,'+ko,)
—(co '/k)o. e"Q(k,O,s), (15A)

I'IG. 1.Path of integration c& in the complex p' plane.

(o—k) (ax/ae)+ (s+ k2)~=a
=G(k,o) exp(-,'o'+k o)
—G(k, (0,0,o,)) exp(-', o,'+ko,). (15B)

if one inverts the Laplace transforms in terms of these-

poles in S or s, there results for the contribution of x
to the double Fourier transform of fi terms of time
dependence

p(8x/8 p)+Sx =8, (16)

where, for convenience, we defme S=s+k'. The solution
of Eq. (16) is

(e2mis 1) ip 8 I dp p (s 1)P(p )
4 gy

(17)

Equation (15B) can be readily integrated by intro-
ducing the variable p=e—k. Observe that F is the
Fourier transform of a distribution function which for
large v behaves like exp{—const w'). It must thus be an
entire function of e, with corresponding properties in y.
Hence Eq. (15B) reads

exp{—[(k~vo'/P)+eP]t), e= 0, 1, 2, , (19)

where we have restored the units. Now 1/kwo is the time
required for an average particle to move the distance
1/k characteristic of the spatial variation of the kth
Fourier component, while 1/P is the time characteristic
of relaxation via collisions. Thus expression (19) is in
accord with the physical picture that a distribution of
particle tends to become smooth via convection, owing
to the proper motion of the particles, in competition
with relaxation via collisions.

Return to Eq. (14) and suppress the subscript z. The
solution can then be written

where the contour of integration is chosen as indicated
in Fig. I.

Observe that x(k, (0,0,o,),s)=0, since the factor 8 in
the integrand of Eq (17) v.anishes identically for this
choice of o. Thus g(k, O,s)=P(k,0,s) (essentially the
perturbed electron density appropriately transformed)
and the solution of Eq. (13) can be written

f
(e' 's 1)—'(o —k)

—s do'(o' —k) s—iA (o'), (20)J„
where the contour c2 is taken in the 0-' plane in analogy
with the contour cj in the p' plane of Fig. I. Equation
(20) can then be employed to solve for f(k,O,S) which

occurs as a coeKcient in A. The result is

(18) f(k,O,s) =C(S)/D(S), (21)
Note that Eq. (15B) is effectively Eq. (13) with the

coupling to the electric field deleted. It thus describes
the relaxation due to collisions of an initially nonequi-
librium distribution. Also observe that Eq. (15A) is
essentially Eq. (13) with the o, and o„dependence
deleted. It thus describes the behavior of a one-dimen-
sional distribution of electrons in the presence of col-
lisions and electrical coupling.

Observe that if the function 8 is entire, as is physi-
cally reasonable since one anticipates that

f(v) =exp( —v'/2),

then x as given by Eq. (17) is an analytic function of s
except for simple poles at the points S=s+k'=0, —1,
—2, ~ . Those points S=+1,+2, +3, ~ for which
the function e' '8—1 vanishes are not poles, for at these
values of S=s+k' the numerator also vanishes. Thus

where S=s+k' and

C(S)= (e'w's 1)—( k)
—e do (o k) e-iGLk, (0,0,o')],f

(22)
D(S)=1+co '(e'"'e —1) '(—k) e

X do'(o' —k) e—'(o'/k)H". (23)
J 2

Observe that f(k,O,s) has no poles in s at the points
S=s+k'=0, +1, &2, since both C and D have
simple poles simultaneously. Moreover, when Eq. {21)
is substituted in Eq. (20) to solve for f(k,o,s), it is

readily demonstrated that P(k,o,s) also has no poles
at the points S=O, &1, &2, ~ . Rather, f(k,o,s) is
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an analytic function of 5 everywhere except at those
points where D(S)=0. There it has simple poles.

Let us now derive certain general properties of the
roots of the secular equation (dispersion relation)
D(S)=0. First it is possible to show that there are no
roots for which Re s)O. In order to eGect this latter
demonstration, observe that inversion of the Laplace
transform of f, in terms of its poles is equivalent to an
expansion of the solution of Eq. (1) in normal modes
of space-time behavior e+"'+'~ ', if we identify the
eigenvalues X with the roots s of D=0. Thus if one
writes in units in which oo ——1, P= 1

ft(r, v, f) = exp(ltf+ik r ——,'v')g(v), (24)

then it follows from Eqs. (1), (2), (3), and (4) that g
satisfies

(X+ik v) exp( ——'e')g+ (to '/k') (2x)~ 'ik. v

X exp( —to 9)
J

"d'v exp( —r2n )g

8 Bg
exp( —r2v') —. (25)

BV BV

Integrate Eq. (25) over all v. There results

X d''o exp( ——,'v')g= ik —d'v v exp( ——,'v')g. (26)

Multiply Eq. (26) by g* and integrate over all v. There
results, on employment of Eq. (26),
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Clearly Re X ~( 0, as was to be proved.
In order to proceed it is convenient to derive a dif-

ferent representation of D(S) than that of Eq. (23).
Namely if Re s) k', Eq. (23) can be written in terms
of an integral over the upper lip of the branch cut,
namely

The series above and al 1 its derivatives converge uni-
formly for all values of s except about the points
s+ks= 0, —1, —2, —3, ~, where the function D(S)
has simple poles. Thus, if one restores the dimensions,
the equation D(S)=0 reads

where we have set 1—o'/k= x. But
X =Q+ 1. (32)

s/P+ k",'/P'+ ~

k''oo s «1 ( k'vo'q "
D(S) = 1+to„s dx x (1—x) exp[k'(1 —x)), (28) 1+ =—exp(k'eo /P') P —

I

p
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Observe from Eq. (32) that as to~s —+ 0, the other
parameters being kept Axed, the left-hand side ap-
proaches ~ ~ Thus roots can occur only in the vicinity
of the poles of the left-hand side, namely when s/P
=—(k'mo /P') ss; n =—0, 1 2 . Thus, as expected,
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Thus Eq. (28) can be written

COp Gl jp

D(S)= 1+ — s dx xs—' exp[k'(1 x)) (3—0).
k2 k2

I.O 2.0 4 01 5,0

If one expands exp( —ksx) in its power series and
integrates term by term, there results

k' k' (—k')" 1
D(S)=1+ —s exp(k') P . (31)
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FIG. 2. Plot of Q os —s/p for k'oo'jp'=0. 1.
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In the limit of weak collisions, p —+ 0, one expects to
recover the result of Landau. ' This is indeed so as can
be seen by making in Eq. (28) the transformation
@=e '& and restoring the dimensions. There results for
the dispersion relation

IOO .
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Fro. 3. Plot of Q vs —s/p for kspp2/P'= 2.0.

the roots reduce to those found in the case of no coupling
with the electric 6eld.

In order to see what happens as one increases ~„',
consider Fig. 2 or 3 where Q is plotted vs —s/p real for
some representative values of kpvp2/P2. Any real roots
are given by the intersection of the Q curves with the
horizontal line Q= kpvp2/rp„2. For small &p„2, the roots are
clearly given by the asymptotes s/P+k'vp2/P'=0, —1,—2, . As co„' increases, one acquires a pair of complex
conjugate roots whenever k'vP/&p„2 drops below a
positive minimum of Q. It is physically reasonable to
believe that for small kpvp/P (frequent collisions) the
roots found in this way are all the roots.

When k'vp'/P'=0, it is possible to find readily the
root with the smallest real part, for in this case Eq. (28)
can be approximated by

= 11rp„2 dt expL —st —22kpvppt +O(P) jPt+O(P) j.
0

(35)

When Re $)0, in the limit P=O, Eq. (35) above can
be written

dv(22r) "'

XexpL ——', (v/v p)'- ikvt]

or„2 f' d'0 8
=1+ —((22r) "' exp( ——,'(v/vp)'j} (36)

ik ~ „s+ikv Bv

Equation (36), apart from notation, is Landau's result.
The collisional correction to the usual long-wavelength

plasma oscillation result can be readily obtained by
integrating Eq. (28) by parts in such a way as to
develop a series in descending powers of s. There results
from the first of Eqs. (35)

coy2
0= 1+ dx(1 —x)x'e—'

p2

rp
2

~

P2 Pp P4 3kpvp2P-0=1+,——+
p2 1$2 $2 $4

(37)

Goy=1+
P' s/P s/P+ 1.

whose solutions are

(38)s= +2'4d~ P&3ik'v p2/—rpp

Equation (38) is the usual result modified by a col-
lisional damping term.

whence, solving by successive approximation, one
obtains

33

s 1 (
p 2 0 p2J

(34)

Equation (34) shows clearly the coalescence of the two
real roots and their bifurcation into two complex con-
jugate roots near rp~2= 24p'.
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