
ONE —DI MENSIONAL SYSTEMS TO EQUILIBRIUM

is actually shown to occur using two essential as-
sumptions:

i. The initial fine-grained density is a reasonably
smooth function of its arguments, i.e., while it may have
discontinuities, it is not a 6 function in all its variables.

2. The linearized equations of motion are valid for a
statistical calculation as long as the dependence of the
Poincare time on initial conditions is included in the
approximation.

Assumption (1) implies that the present theory is a
statistical one which refers to ensemble rather than time
averages. It might be mentioned, however, that the
initial distribution can be made as close to a 8 function
as we please. Assumption (2) is the key assumption
made in the paper. For a single anharmonic oscillator,
it can be proved. It is the suggestion of this paper that
it may be true for more general systems.

The dependence of the Poincare recurrence time on
initial conditions is the essential source of irreversibility
here. Because of this dependence some equilibrium
distribution is approached whether or not the system is
quasi-ergodic. Of course, if the equilibrium distribution
is to depend only on the energy of the system, then the
system or its representative ensemble must have a
quasi-ergodic character.
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The surface energy Ee of a system of interacting particles is Ez=j'"„dz(e(z) —ezPp(z)/peg), where

e(z) and p(z) are the energy and particle densities along the axis normal to the surface. eo and po are the
corresponding quantities in the bulk. Alternatively one may formulate an exact expression for the surface
tension defined as y= (BF/BS)v, with the result that

00 1 d87= &* 2o t'& —
& (')j+- A(' —& ')- —p"'(, *+ )).

00 4 r dr

t (z) are the components of the average kinetic energy density and p&'&(r&rs) is the pair distribution function.
In the ground state &=Es. We have applied these formulas to liquid He' and He' assuming that p~'& =p(z)
Xp(z+r, )gz(r). The bulk radial distribution gz(r) is obtained from x-ray data. Use of the thermodynamic
data ez and p=0 gives tz and checks grs(r). Further we assume a free-volume form of the kinetic energy
density t(z) =tzQ(z)/pz)~s and an exponential density fall-off p(z) =pse *~~ Calculated .values of Eo show
a minimum at a= 2.0A. Ez and v ditfer by 20% at this value, with v being 0.38 erg/cm' for He'. The experi-
mental value of y is 0.35 erg/cmz.

I. INTRODUCTION

HE purpose of this paper is to describe a simple
method of calculating the surface properties of a

quantum mechanical Quid, when the bulk properties
are theoretically or experimentally known. Several
quantum-mechanical approaches have been used' ' to
calculate the surface properties of the ground state of
nuclear matter, whereas, for molecular Quids, the use
of classical statistical mechanics has been found
adequate. 4'

* Supported in part by the joint program of the OfIjce of Naval
Research and the U. S. Atomic Energy Commission.

' C. F. von Weizsacker, Z. Physik 96, 431 (1935).' W. J. Swiatecki, Proc. Phys. Soc. (London) A64, 226 (1951).' R. Berg and L. Wilets, Phys. Rev. 101, 201 (1956).
4 J. G. Kirkwood and F.P. Buff, J. Chem. Phys. 17, 338 (1949).
e F. P. Butf, Z. Elektrochem. 56, 311 (1952).

Starting with Swiatecki's expression for the surface
energy of a system in a single quantum state, we derive
an alternative expression, which gives the surface
energy directly in terms of the anisotropic part of the
pressure tensor. The canonical ensemble average then
gives the surface tension, identical in form to the
classical expression of Kirkwood and Bu6'.'

If approximate wave functions are used, these two
expressions for the surface energy will give diGerent
estimates. A parameter 8, describing the skin depth, can
thus be chosen at that value for which these expressions
are closest. Moreover, if we consider the ground state,
the surface energy should have a minimum as a function
of 8, according to the variational principle. In all cases,
it is, of course, required that the bulk data be adequately
fitted.
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We have applied this procedure to a calculation of
the surface energy of liquid He4 and He', where the
interaction potential is well known and simple. In spite
of the roughness of the approximation used, good agree-
ment is found with the experimental value of the surface
tension. In fact, our calculation yields a minimum in
surface energy as a function of 8, despite the fact that
we did not use an explicit wave function. We expect
that this technique can also be applied successfully to
the nuclear surface.

II. THEORY

We present a derivation of Swiatecki's expression for
the case of a finite system of E identical particles each
of mass ns. We assume that the Hamiltonian can be
written in the form

N gg2

X=P — V,s+ U(ri. tv).
251

Let f (ri riv) be the normalized ground-state wave
function of the system, and E the total binding energy.
Then

It is clear that the integrand vanishes in the bulk.
Swiatecki points out that whereas the surface energy
and the bulk energy density are uniquely dehned, this
is not true for the energy density e(r). Instead of Eq.
(4) for e(r), the form

e'(r) =IV V'Pt. Trodi+) Qt Ups
~ 2m

has also been used. Of course, this form still leads to the
same value of E,.

Ke proceed now to derive an expression for the
surface energy of the ground state in terms of the aniso-
tropic part of the pressure tensor. For this purpose we
divide the skin region into cylinders normal to the
surface which extend from the bulk to infinity (see
Fig. 1).

For each cylinder we choose a frame of reference with
the s axis along the axis of the cylinder. The origin is
located so that the volume V enclosed by the x-y plane
through the origin and the base of the cylinder contains
the same number of particles at the bulk density p& as
the average number of particles in the cylinder, that is

where

fE= e(r)d'r, (3)

Multiplying each side by ft and integrating over all
coordinates, we obtain

ds dxdy p(r) =ps V.
—F/8

(9)

The integration over x and y is confined to the area S
of the base of the cylinder.

The total energy E(V,S) in the cylinder is given by

(4)
E(V,S)= ds dxdy e(r)

v/8
(10a)

h' i
H= — 7„'+ U(r, l—)

2m N

f denotes the X—1 variables rsrs. riv and

dl =dvs dr~

Taking partial derivatives with respect to S at constant

(5) V and substituting Eq. (9) gives

(BE) " ea
«e(&)——p(&) .

48S& v " pa

e(r) is the energy density of the system. We shall also
need the particle density p(r), given by

r

p(r) =& 4t(rf)4(rl)dl

Over most of the volume occupied by the system we
expect that e(r) = es and p(r) =pii, where en and pii are
the constant energy and particle densities in the bulk.
The volume contribution to the total energy per particle
is therefore en/ps and consequently the surface con-
tribution per particle must be E/E —es/ps. Substi-
tuting Eqs. (3) and (6) we obtain for the total surface
energy

e(r) ——p(r) dsr.
Pa

Hr, ) =Z

FIG. 1. Schematic diagram of the volume occupied by the
system showing one of the cylinders referred to in the text, end
the corresponding frame of reference.

The lower limit of integration has been extended to
—~ since the contribution comes only from the skin.
It is assumed that 5 is sufficiently small so that varia-
tions of e(r) and p(r) along x and y can be neglected.
Comparing this expression with Eq. (7) we 6nd that
(BE/BS)v is the contribution per unit area to the total
surface energy, as expected.
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(BE) I" t BH
~l gt(rf)s f(ri)dt

Eas) r & & BS

All of these considerations apply equally well for any I. Equation (13) then becomes
excited state P„and corresponding energy E„of the
system. Ke may then form the statistical mechanical
expression for the surface tension p by noting that p
is the canonical ensemble average of (BE /as)r'.

(18a)

P„(BE„/BS)re

e
—ErdkT

(12)
«EP**—2 (P**+P-)l. (18b)

Each (BE„/BS)r is given by an expression of the form
(11) where all averages are taken with f„.It is under-
stood that the unbound states are constrained to a
fixed volume. At zero temperature the surface tension
and surface energy are equal, a well-known fact in
thermodynamics.

An alternative expression for (BE/as)r may be
developed by making the following change in the
variables of integration'. x'= x/gs, y'= y/Qs, s'

=Ss/V, then

p, , p», and p.. are the diagonal components of the
pressure tensor, de6ned by

A' 8' x BU
p„(r)=E ft (rf) — —— p(rf) di, (19)

2ns Bx' N Bx

with similar expressions for p» and p„. Again the
contribution of the integrand in (18) comes entirely
from the skin region so that it is possible to extend the
integration (18b) over the whole sphere for large radius
of curvature, viz. ,

t r

E(V,S)= V ds' dx'dy' e(s&x', S&y', Vz'/S),J,
unit surface

(BE/BS)v= Lp.. P~ifd(r—n), (18c)

and
(10b)

Using Eqs. (4) and (5), we can write

pp i $2 p ()2

+
BS 2' S ax' ay' as'

and

i i BU i BU BU
+ —x +—y —s

SN2 ax 2 ay
(15)

Bz

af 1'1 ap 1 ag ap—=——x—+—y—s—.
BS S2 Bx 28y Bz

(16)

a e f BH alp Bl//—=E ' ft P+ HP+PtH df', —
BS ~ BS BS BSJ &= e Z'~ e(r'~), (20)

where e(r) is spherically symmetric, we ftnd that for a
plane surface

/BE)
ds

l 2f.(s) —&,(s) —f„(s)j
&BSi r

where

id'+- ' dr(r 3r,)-—p& &—(s s+rp) (21)
4 J

*
r dr

' l*

8'
f,(r) =N

J~pt(rp) — y(rl)dg2' Bx
(22)

where n is the unit vector normal to the surface. F. and
S are now the total energy and surface, respectively. p «
and p„„are the tangential and normal components of
the pressure tensor.

Equation (18) is completely analogous to the clas-
sical expression for surface tension obtained by Kirk-
wood and BuG.'

If the potential U is of the form

Returning to the original variables, we note that

t' 'ait' af
ds dxdy HP+PtH df =0—

. as as.
(r»r2) 2+(+ 1)J~ lit'(rt "r~) I'«&' ' 'dr% (23)

The variational principle cannot be invoked to prove
Eq. (17) since H is not the total Hamiltonian and the
region of integration over the variable r is confined to
the interior of the cylinder. A proof is given in Appendix

is the pair correlation function. Equation (21) is valid
only if the range of e(r) is small compared to the radius
of curvature of the system, since we have neglected
contributions of the N —1 variables when any of these
is outside the cylinder.

' This change of variable was carried out on the classical par-
tition function by F. P. Buff (reference Sl.

is the x component of the kinetic energy density, with
corresponding expressions for the y and z components,

(17) and
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Another interesting relation can be obtained in the
following manner. Assume that the system occupies a
sphere of radius E and volume V. Using Eq. (3) for the
energy E and a coordinate transformation which
reduces all variables by R, we find

dE
Lp-(r)+ p-(r)+ p.*(r)3«;

dR
(24)

also

dE ]BEq dS pBEq 4f V
E =) [ R +) /

E =2/S 3pBV—.(as), dz &av), ~z

Using (24) in conjunction with (18b), we see immedi-

ately that

pBV= p~s«, (25)

where the subscript indicates the direction normal to
the surface. For the ground state pB=O and we findfp„„izr=0. This condition could be used to determine
a parameter in the theory if desired. We have not found
this practical, since p„„ is an extremely sensitive
function of the skin depth.

Equation (25) resembles the classical condition that
p„„=pB. This is not so, however, owing to the definition
of V, V=fLp(r)/pBjdr. Apparently, the difference
arises from the fact that we are-constraining the "con-
densed" phase. The usual thermodynamic theory deals
with the "condensed" phase in equilibrium with its
vapor. We have not yet resolved this question. Of
course, for the ground state pB= 0 in any case and this
question is not of importance.

III. CALCULATION OF THE SURFACE TENSION
OF LIQUID He4 AND He' AT 7=0'K

To calculate the surface tension of liquid He4 at
zero temperature, wt. used the Slater-Kirkwood poten-
tial

i.49
v(r)= 770e 4'"— &10 "erg

g6
(26)

where
eB 1B+VB4

d'V

1B &PB
~

gB (r)~d»
e 0 dr

(27)

(28)

between two helium atoms, and the bulk radial dis-
tribution function gB(r) obtained by Goldstein" from
x-ray analysis.

The bulk energy density ~& can be written in the form

t& and v& are the kinetic and potential energy densities
in the bulk. To obtain Eq. (28) we used the virial
theorem, noting that in the ground state the pressure
is zero. By slight adjustments of gB(r) at small r where
it is not well known and where dv/dr is very large, we
were able to compute tj3 and eg so as to give approxi-
mately the observed value' of —14 cal/mole to eB. We
And t~=28 cal mole, e~= —40 cal mole.

For preliminary calculations, of p we have made
several simplifying assumptions:
P~ (a) We have assumed that the radial distribution
function gB(r) is independent of the position of the
pair with respect to the surface. In all probability the
error introduced here is not serious as evidenced by the
classical calculation of Kirkwood and BuG on liquid
argon.

(b) We have assumed that the kinetic energy is

isotropic, i.e., t,= t„=t, . The assumption of isotropy is
very poor if the surface turns out to be relatively sharp.
However, on physical grounds alone one expects the
surface region to be at least one interatomic distance
in depth, which one hopes will be sufhcient to smooth
out anisotropy. A method which would allow for aniso-

tropy in t would be to assume an independent-particle
central potential of varying steepness related to 8 in
an obvious way in the manner of Swiatecki.

An alternative method, applicable at higher tem-

peratures, has been worked out by Oppenheim' who

estimated the anisotropic contribution of the kinetic
energy to p in liquid H2 at about 20' K by using the
first-order quantum corrections to the Wigner dis-

tribution function. He has found a very small eGect of
less than 10%. In view of the above results, one may

hope that anisotropy in t will play a relatively unim-

portant role.

(c) The functional form we have used for t is t(z)
—'1B/p(s)/pB)si'. A more correct form is given by the
free-volume expression t(z) =p(z)A{Lps/p(s))'is —1) '
which was found by Rosenbluth to give a density
dependence in good agreement with the Monte Carlo
calculation of the ground-state energy of a Bose gas
of hard spheres. "After adjusting the constants 2 and

po, to ht the bulk properties, this form did not yield
results noticeably different from the more simple ex-

pression. It is of course understood that these functional
forms only make sense for sufFiciently disuse surface

regions.

(d) Finally we have assumed for analytical con-

venience that p(z) drops off exponentially, assuming of
course that f rp(s)dz= pBI-.

and

vB=24rpB) gB(r)v(r)r 4Er;

0

r L. Goldstein, Phys. Rev. 98, 85/ (1955).

(29)

s W. H. Keesom, Heii444a (Elsevier Publishing Company, New
Vork, 1942), p. 231.'I. Oppenheim (private communication). We are grateful to
Dr. Oppenheim for informing us of his results.

"M. Rosenbluth (unpublsihed). We thank Dr. R. Mazo for
this communication.
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Summarizing our assumptions below, we have set

p"'(s, s+r.) =p(s)p(s+~.)gn(~),

I*=f,= f.= sf= sf.Lp(s)/p. j"',
p(s)=pn for s&8

=p"-' f".»b.

.6-

5-

S (8)

With these assumptions we have calculated the surface
energy Es(8) from Eq. (11) and the surface tension
y(8) from Eq. (21) as a function of the skin depth
parameter b. In the exact calculation, there will be a
value of 8 for which these are the same. The results
are shown in Fig. 2.

The observed surface tension of the He' extrapolated
to T=O'K is 0.35 dyne/cm. " The two curves come
closest at about 80= 2 A which corresponds also to the
minimum of the surface energy Es(8). This is somewhat
less than the range of the potential between helium
atoms. For this value the calculated value of y is 0.38
in good agreement with experiment. The calculated
value of the Es(8) here is 0.5, indicating that y is
probably a more reliable function to calculate surface
energy than is Es(b). We computed the binding energy
and surface tension of He' by replacing the bulk
particle density of He4 by that of He', leaving all other
quantities the same. .We found en ———5 cal/mole and
&=0.18 dyne/cm. Experimentally s& ———5.05," and

y =0.152," again indicating good agreement with
experiment.

IV. CONCLUSION

The encouraging results of this paper indicate that
a thorough knowledge of the bulk properties of a
quantum Quid seems to be suKcient to estimate surface
properties rather well. Rough guesses of the functional
dependence of density and energy based on physical
arguments, when employed in the formal expression
developed here, seem to lead to fair quantitative
estimates on surface energy and probably also on
surface depth.
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APPENDIX I

To prove Eq. (17) we sum the contributions of all
cylinders into which the skin region was divided. Then

ds dxdy HP+PtH df—
BS

r Oft Bg
d'r, HP+PtH dl . —

BS BS

We can replace now the "one-particle" Hamiltonian B
LEq. (5)j by 1/X times the total Hamiltonian K LEq.
(1)].Since K is Hermitian and lt "is an eigenstate, we
obtain

8
EQ ' ds

'

dxdy (ftP)df—
J a J J

I f I

2 3 4
8 Skin Depth [A]

Fio. 2. Calculated values of the surface energy Es(S) and the
surface tension y(e) for He4 as a function of skin depth s

We wish to thank Dr. E. F. Salpeter for some inter- Using Eq. (16), we integrate by Parts and find

esting discussions.

Reference 8, p. 263.
"Progress of Los-Temperature Physics, Vol. VI, p. 90.
'3 K. N. Zinov'eva, J. Exptl. Theoret. Phys. U.S.S.R. 29, 899

(1955) [translation: Soviet Phys. JETP 2, 774 (1956)g.

—Vpn+ ds
~ v]s

according to Eq. (9).

dxdy p(r) =0,


