
UARlATIONAL M ETHODS FOR SCATTERI NG PROBLEMS

Below we give the variational principles analogous to (6') and (7):

4srf(k, ko) =— e""o @'U(r)dr—

e 's'U(r)y(r, ko)dr e' "U(r)ij (r k)—dr

l g(r —k) Drs+O' —U(r)$&(r, ko)dr

and

4srf(k,ko) = — e"'&"o s"U(r)dr+ G(r, r') U(r) U(r')e "'"'e"'"o'"drdr'
J

G(r, r') U(r) U(r')e '"'cjs(r' ko)drdr' G(r, r') U(r) U(r')e'sot'p(r', k)d—rdr'

~tp(r, ko)g(r, —k) U(r)dr —I, l G(r, r') U(r) U(r')p(r, ko)g(r', k)dr—dr'

To compare these methods we present the results for
tanbo (1=0) for U(r)=-3e "and k=1 in Table I.

As a second example we consider the Yukawa po-
tential

U(r) = —1.5e r/r and k= 0.8.

With the trial function (A= variation parameter):

rSo——L1—e '+)I.(e "—e '")]cositr,

the variation principle (6') yields

tanbo ——i.i09086.

Numerical illtegration gives'

tanbo= i.i09103.

P.-O. Lowdin and A. Sjolander, Arkiv Fysik 3, 11, 155 (1951).
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If one assumes that the eff'ect of an alternating electric field on an electron in a slightly ionized gas is on
the average an addition, in the direction of the field, of a velocity component, the magnitude of which is
dependent on the speed of the electron, then it is possible to derive very simply the expression for con-
ductivity obtained earlier by Margenau. In addition an alternative expression is proposed which is of
interest because it avoids di%culties with negative conductivities encountered by Margenau's formu?a.

'I'

4

INTRODUCTION.
' QREVIOUSLYi s an expression was derived for the

conductivity of a plasma to microwaves in which
the electron distribution function is not restricted to'be
Maxwellian, and the collision frequency is not neces-
sarily constant. In certain cases this expression leads
to negative conductivities. If one assumes that the
eBect of an alternating electric held on an electron in a
slightly ionized gas is, on the average, an addition, in
the direction of the field, of a velocity component, the

~ Supported by the Mice of Naval Research.' H. Margenau, Phys. Rev. 69, 508 (1946).
s H. Margenau, Phys. Rev. 109, 6 (1958).

magnitude of which is dependent on the speed of the
electron, then it is possible to derive the conductivity
formula very simply. In addition this method suggests
an alternative expression which in most cases agrees
closely with the earlier result, but which avoids the
diKculties of negative conductivities. The present
method differs from the, . rformer in two respects. First,
instead of expanding the distribution function in
spherical harmonics a/out the axis of the electric field,
we allow the field to cause a change in the velocity
component along its axis. Secondly, in the absence of the
orthogonality properties of the spherical harmonics, we

explo&t the parity of diGerent parts of the distribution;
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function, which makes the calculation even simpler direction. We thenhave for this term
than before.

THE EOLTZMANN TRANSPORT EQUATION f(v, t)
~

~~ W(v, v')dv'= f(v, t) v(v) (6)

Consider a plasma in an oscillating electric field of
strength E coscA. If the x axis is taken in the direction
of the held, the Boltzmann transport equation may be
written

Bf(v„v„,v„t) 8f(v„v„,v„t) Df(v„v„,v„t)

~f ~f
y cosset + =G+—H fv (v)—,

Bv, Bt
(7)

Combining Eqs. (1) to (6), we obtain for the Boltzmann
transport equation

where G+H is some unknown even function with
respect to v, .

%hen
f+= 2Lf(v*)+f( v*)j—

where f(v, v„,v„t) is the electron distribution function,
which we will consider to be normalized to one, Df/Dt
is the change in f due to agencies other than the

andelectric field and y= eE/m. Let

Df D,f Df
+

Dt Dt Dt

are substituted in (7), the Boltzmann equation takes
the form

=G+II ()Lf++—f j(1o)-
On replacing e by —e, and subtracting the resulting

(3) equation from (10), one 6ndsD.f/Dt =G(v),

8 8
where D.f/Dt is the change in f due to collisions, and
D,f/Dt is the change in f due to agencies other than Be Bt
collisions and other than the electric field. Ke now
assume that Dof/Dt is a function of the absolute value
of the velocity and not of its direction, vis. ,

where G(v) is some unknown function of v.
Let W(v, v')dv'dt be the probability that an electron

with velocity v will undergo a collision in time dt
resulting in a final velocity between v' and v'+dv'. We
then obtain for the change in f due to collisions the
following expression:

~f+ ~f-
y cosset + = —v(v)f .

Bv, Bt

BASIC ASSUMPTIOHS

Ignoring diffusion, the assumption will be made that
for arbitrary a and b

=, f(v', t) W(v', v)dv' —f(v, t) W(v, )vd'.v(4)
Dt

~ b -g(b, hatt, Itz.t)~b

f(v,v„,v„t)dv, =
~ a -g(a, y„,p, &}

fo(v, v„,v„t)dv„(12)

The first term on the right side of (4) when multiplied
by ndv represents the rate at which electrons are enter-
ing the velocity range v to v+dv due to collisions. To
calculate the average velocity of an electron immedi-
ately after collision we would multiply this expression
by v, integrate over all of velocity space, and divide by
the average collision rate. Ke shall assume that this
term is an even function with respect to v„ i.e.,

' f(v', t)W(v', v)dv'=H(v„v„, v„t)=If(—v„v„,v„t) (3)

The validity of this assumption is examined in the
appendix. If (5) is true, then the average z component
of the velocity of an electron immediately after collision
is zero. The converse is of course not necessarily true.
The integral in the second term on the right side of
Eq. (4) is just the collision frequency v(v). We shall
assume that this is a function of e only and not of

where fo(v„v„,v.)= fo(v) is the equilibrium distribution
function and g=g(v, t) This is equi.valent to assuming
that all of the electrons which were in a given velocity
range in the equilibrium distribution have been shifted

by the electric held to a new range in which the
x component of velocity divers f'rom the originaI
x component of velocity by an amount g, and the y and
s components of velocity are unchanged. The physical
argument for this assumption is that the eGect on an
electron of the held in the v direction and of collisions
is on the average an addition of a velocity component g
in the v direction. The magnitude of this component
would be a function of the time only if there were no
collisions. However collisions inQuence g, and since the
collision frequency is a function of e only, it is plausible
to assume g= g(v, t).

~
Equation (12) may also be written

f(v„v„,v„t)= fo(v.—g, v„, v.) (1—Bg/Bv.). (13)
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and
=fo, (17)

f = (Bfo-!»—*)g, (18)

Substituting (17) and (18) in (11) and solving the
resulting differential equation for g, we find

g = cosoIt+ slnoot.
too+ vs M2+ V2

(19)

CURRENT DENSITY

To calculate the current density, we use the relation

J=ne, ' v,f(e„v„,e„t)dege„de,dab

t i f=ne e,f derv„dv, . (20)

However there are several expressions one can use for
the distribution function f If we let.

f=f++f =fo (Bfo/»—.)g— (21)

we obtain Margenau's formula

t' Bfo t' BfoJ= —-,'ne g vdv = —~3m et, ge' dm.

Bv
'

~ Bv

The use of (14) in (20) followed by a translation in
which g(e,) is approximated by g(e,—g) leads to

This can be seen by replacing e, on the right side of (12)
by e,'—g(v, '). The occurrence of the factor (1—Bg/Bv, )
in (13) arises from the fact that, although all of the
electrons in a given region in the equilibrium distribu-
tion are shifted to a new region, the volumes of these
two regions are in general not equal, and consequently
the density in velocity space, represented by the
distribution function, changes in the shift.

If (Bg/Bv. ~&&1, then

f(e„v„,v„t) =fp(v, g,—e„, v,), (14)

a, result which recalls I angevin's' original approach to
the mobility problem. In this approximation Eqs. (8)
and (9) become

f+= 2Lfo(v. g)+fo—(v*+g)j
f =2Lf-o(v* g) f—o(e*—+g)j

If f+ and f are expanded in powers of g and one
assumes rapid convergence of the resulting series, then

Equations (22) and (23) are identical since (23) can
be obtained from (22) by an integration by parts.

However, if we use (13) instead of (14) in (20), then
by a translation of axes, on assuming g(e,) approxi-
mately equal to g(v, —g),

J=4nne .
gv fpde. (24)

In deriving this, one regards (17) and (18) as valid
approximations for determining g, but not necessarily
good approximations for determining Bg/Bv In. fact
it would be surprising if good values of Bg/Be resulted
from this method, since approximations (17) and (18)
are obtained by neglecting terms in Bg/Bv, . The
accuracy of (24) depends on the accuracy of g only,
whereas the accuracy of (23) depends on the accuracy
of g and Bg/Bv; hence one would expect (24) to give
more reliable values for the current than (23), provided
of course that (13) is judged to be a physically more
reasonable assumption than (14) for the form of the
distribution function.

It is interesting to note that (24) could have been
obtained by a simple physical argument from the
Lorentz equation. The Iorentz equation yields the
drift velocity i for an electron with collision frequency
v through the differential equation

one+ vnu= eE coscot. (25)

Solving for i and identifying i' with g, we obtain the
result (19).Multiplying by e to obtain the current due
to a single electron with collision frequency v, and then
summing over all of the electrons, taking into account
their velocity distribution, we obtain directly (24).

If
~
seBg/Bv

~
&&g& expressions (23) and (24) are

approximately equal. This would be the case if v were
constant.

The nature of the approximations involved in the
derivation of (23) and (24) makes it diKcult to appraise
the validity of each on purely mathematical grounds.
We have therefore compared them for special forms of
fp and v(v). Certainly (23) is in error when it predicts
negative conductivities. This happens, for instance, if
one uses the experimental values of the collision
frequency for electrons in air and lets fp 42v"8(v v')—— —
Here Eq. (24) gives of course positive values for all v,
and it differs from (23) by 50% even at velocities where
both expressions are positive. To be sure, this is an
extreme example which may be only of academic
interest, especially since for a delta function (18) is not
a good approximation to (16).On the other hand, if one
uses the same collision frequencies together with a
Maxwellian distribution, then (23) and (24) agree
within the accuracy of the saddle point method. 'of

evaluating the integrals. '
J=42rne $g+ IsvBg/Bv je'fpdv. -

' P. Langevin, Ann. chitn. et phys. 8, 245 (1905}.

(23) APPENDIX

In this Appendix we shall examine conditions under
which H in Eq. (5) may be expected to be an even
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function with respect to s,. Using (8) and (9), we write The suKciency of these conditions is clear from the
8 in the form following:

H(v) =
J

~f+(v') W(v', v)dv'+ f (v') W(v', v) dv'. (26)

If, as is generally true,

W(v', v)=W( v',
v,

v' v),

then the first term on the right side of Eq. (26) is an
even function with respect to e because

t' t'
H = f (v')W(v', v)dv'

J

r
f (—v')W( —v', v)dv'

f+(—v, ') W( —i.', v,)dv. '
J „

f+(&*')W(&*' —&*)d&*' (28)

where
(29)

and

H+ = f~(v') W (v, 'v) dv',

H = t f (v')W(v', v)dv'

(30)

(31)

B will vanish if

(32)

Here use has been made of (8) and (27). In similar
fashion, the second term on the right side of (26) is
shown to be odd with respect to v, . Equation (26) may
now be written

f (v')W(v', v)dv'= H=0. —(35)

Assumptions (32) and (33) follow from (18). Assump-
tion (34) together with (27) imply that the probability
of scattering at a deQection angle 0 is equivalent to the
probability of scattering at an angle x —0. This would
be true in the case of scattering from rigid elastic
spheres.

If H does not vanish, then it must be included as
an added term on the right side of Eq. (11) whence it
makes a contribution to Eq. (20). For the case in which
the electrons are considered to be scattered elastically
from rigid scatterers, inclusion of the term H in
Eq. (11) will result in the collision frequency in (19)
being replaced by the collision frequency for momentum
transfer. In general H may be expected to be negligible
when the average x component of velocity of an electron
immediately after collision is much less in absolute
value than the average x component of velocity before
collision.
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