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the parameters j and x approach

j~ 4.23(a/Z),
and

(A29)

the degenerate phase there is a sudden unphysical drop
of the pressure of the order of (a/X)',

(pe),—(po), = 29—.3(a/) )'p,xT. (A35)
x —+ 0.66. (A30)

(=0. (A33)

As the density p approaches the critical value p„ the
pressure p, and Q ' lnQ approach

0 ' lnQ-+ I)i '(1.342) —Ssrap sP

—(23.6))i '(a/X)'j, (A34)
aI1d

P, ~ (Po),=Z 'xT(1.34-2)+Swap, s (7.4) (a—/X)'p, KT.

Correspondingly, 0 ' lnQ and the pressure pz approach

Q
—' lnQ ~ P, '(1.342) —Ssrap sP—23.6X s(a/X)s j, (A31)

pe —+ (Pe),=X 'xT(1.342)

+Ssrap r—(36.7) (a/X)'p~T. (A32)

(ii) On the gaseous side, the parameter $ is always
given by

This shows that although to first order of (a/X) the
thermodynamical functions are correctly evaluated by
using the energy spectrinn [Eq. (Al)], the higher order
terms of this model do not correspond to any real
physical system.

On the other hand, one may use the grand partition
function instead of the partition function, to calculate
the thermodynamical functions for this model. It is
easy to show that the use of the grand partition function
leads to the well-known application of Maxwell's rule
of equal area on the Van der Waals type isotherm ob-
taii1ed from the partition function. From the previous
results for the partition function one finds that the
resulting isotherm by using the grand partition function
has no discontinuity in pressure, but, instead, a dis-
continuity of density

(pe p.)-o(a—l) '),
Thus we find that as we change from the gas phase to which occurs at a pressure p, given by Fq. (A4).
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Certain phenomena in nature, such as the 50- to 100-kev electrons of the aurora, suggest that there are
plasma-dynamical processes which can quickly transfer the translational energy of the ions in a plasma
stream to the electrons (some 20 kev/ion for a 2000-km/sec solar wind). It is shown that two interpenetrating
streams of noncolliding and initially neutral plasma can achieve this energy transfer with a characteristic
time comparable to (M/m)& times the plasma period. The process is closely analogous to the excitation of
plasma oscillations by two interpenetrating electron streams, but of course proceeds to much greater electron
energies because the ion components of the streams carry so much more kinetic energy than do the electron
components. Hence, besides the auroral electrons, it is probably responsible for solar radio emission, rather
than the electron streams implied in current theories.

Further, the process is probably the dominant interaction in shock fronts, particularly in astrophysical
cases where neither direct collisions nor the existing weak magnetic 6elds can give sharp fronts. The char-
acteristic thickness of a shock front in the solar wind is of the order of 10' cm due to the above plasma
excitation whereas the Larmor radius of the ions, which would otherwise determine the shock thickness in
the absence of collisions, is 100 km or more.

I. INTRODUCTION

E have previously noted the common appearance

~

~

~

~ ~

in nature of charged particles with energies very
much in excess of the general thermal background. .'
Cosmic rays from interstellar space and from solar
Qares' represent the most extreme case of high ion

*Assisted in part by the Office of Scientific Research and the
Geophysics Research Directorate, Air Force Cambridge Research
Center, Air Research and Development Command, U. S. Air
Force.' E. N. Parker, Phys. Fluids 1, 171 (1958).' Meyer, Parker, and Simpson, Phys. Rev. 104, 768 (1956).

energies. More moderate examples are the primary
auroral protons' (with energies up to a few hundred
kev) and the deuterons responsible for the neutron
production observed in laboratory electrical dis-
charges. " The soft x-rays observed by van Allen

s J. W. Chamberlain, Astrophys. J. 126, 245 (1957).
4Thonemann, Butt, Carruthers, Dellis, Fry, Gibson, Harding,

Lees, McWhirter, Pease, Ramsden, and Ward, Nature 1SI, 217
(1958).

~S. Colgate, Lockheed Symposium on Magnetohydrodynamics,
Palo Alto, Califoraia, December ld, I957 (to be published).' Meredith, Gottlieb, and Van Allen, Phys. Rev. 97, 201 (1955).
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above the atmosphere in the northern auroral zone,
and by Winckler' beneath an auroral arc at middle
latitudes, indicate that 50- to 100-kev electrons are
commonly abundant in the vicinity of Earth. The
Crab Nebula' appears to be a more extreme case, in-
volving electron energies of perhaps 200 Bev.

%e have collectively called' such ultra-speed particles
supratheresa/ particles to indicate their appearance as
a high-energy non-Maxwellian tail on the general ther-
mal velocity distribution function. To understand their
origin we have started with the simplest idealized case
first. ' We have regarded the electrically conducting
gases filling all of space, except for planetary atmos-
pheres and interiors, as an ohmic-conducting Quid, so
that the usual hydromagnetic condition obtains,

E= —vX B/c,

relating the electric, magnetic, and gas velocity fields.
Then the equation of motion of a particle with mass iV,
charge q, and velocity w reduces to

dw/dr= (q/M)LE+ wXB/c$
(q/Mc) (w —v) XB.

Forming the scalar product with w yields the energy
equation

d(-,'Mw')/dt= (g/c) v (wXB), (2)

which tells us that in the presence of hydromagnetic
fields deaned by (1), the kinetic energy of a charged
particle can be increased only by the Quid motion v

working against the Lorentz force on the particle. This
is the Fermi acceleration mechanism, of which the
betatron eGect is a special case."

Consequently we began our investigation by includ-

ing the Fermi acceleration in the general Fokker-
Planck equation for the velocity distribution func-
tion.""It seems, on the basis of our crude theoretical
models, that Fermi acceleration can account for the
high-speed ions of solar and galactic cosmic rays, for
the primary auroral protons, and for the general heating
and non-Maxwellian velocity distribution of high-

density electrical discharges in laboratory plasmas. In
order to establish experimentally the eGectiveness of
suprathermal particle generation in the simplest (hydro-
magnetic) case, we have suggested" that laboratory
discharges can be probed with high-speed particles to
ascertain in a quantitative way the eGectiveness of
Fermi acceleration under various conditions of macro-
scopic gas motions.

But while it seems not unreasonable to suppose on
theoretical grounds that the suprathermal ions can be
accounted for in the hydromagnetic approximation, it

' J. R. 1Vinckler and L. Peterson, Phys. Rev. 108, 903 (1957).
8 J. H. Oort and T. Walraven, Bull. Astron. Soc. Netherlands

12, 285 (1956). See also G. R. Burbidge, Astrophys. J. 127, 48
(1958).' E. N. Parker and D. A. Tidman, Phys. Rev. 111,1206 (1958)."E.N. Parker, Phys. Rev. 109, 1328 (1958).

u E. N. Parker and D. A. Tidman, Phys. Rev. 112, 1048 (1958).

is certainly clear that the observed suprathermal elec-
trons cannot be so accounted for. An electron is
handicapped in at least two ways. The Larmor radius
of a thermal electron of mass m is smaller by the factor
(m/3E)l than the Larmor radius of a thermal ion of
mass 3f. Therefore, the electron generally does not
penetrate very far across the gradients in the gas ve-
locity field to experience "collisions" with the rela-
tively moving magnetic field, with the result that the
electron gains velocity by Fermi acceleration only very
slowly, if at all. Also, apart from the difhculty of
penetration across the magnetic field there is the fact
that the Fermi acceleration process is essentially a
velocity-increasing mechanism. A head-on "collision"
of a particle, with a magnetic field moving with ve-
locity v, results in a particle velocity increase of 2v

regardless of whether the particle is an electron or an
ion. Thus at best we could hope to find electrons with
the same velocity as the suprathermal ions, and this
yields trivial electron energies.

As a matter of fact, in auroral phenomena we find
electrons with energies (up to 100 kev, or P—0.3)
comparable to the ion energies. Therefore, we believe
that there is some mechanism other than Fermi ac-
celeration which is available for suprathermal electron
generation. The mechanism lies outside the hydro-
magnetic approximation of (1).

The fact that the suprathermal electron energies are
comparable to the ion energies suggests an electrostatic
interaction, though obviously a truly static electric
field is ruled out by the high electrical conductivity of
the gas. What we have in mind, then, are plasma
oscillation eGects, and it is the purpose of this paper to
show that two interpenetrating streams of neutral
plasma (such as the solar wind' " "blowing against the
outer terrestrial atmosphere) produces suprathermal
electrons with energies comparable to the streaming
kinetic energy of the individual ions.

II. INTERPENETRATING PLASMA STREAMS

It is well known" '" that two interpenetrating elec-
tron streams will convert the kinetic energy of their
relative motions to plasma oscillations. It has further
been pointed out" that a single stream of electrons
passing through a cloud of ions will also yield plasma
oscillations, and Buneman" has suggested that this
may be of interest in current-carrying plasmas. But
these processes can do no more than convert the initial
kinetic energy of the electron stream into plasma

u E. N. Parker, Phys. Rev. 109, 1874 (1958)."E.N. Parker, Astrophys J. (to be pub. lished).
'4 E. N. Parker, Phys. Rev. 110, 1445 (1958).
"A.V. Haeti, Proc. Inst. Radio Engrs. 37, 4 (1949);Phys. Rev.

74, 1532 (1948);?5, 1546 (1949).
"V.A. Bailey, Phys. Rev. 78, 428 (1950); 83, 439 (1951).» D. Bohm and E. P. Gross, Phys. Rev. 75, 1851, 1864 (1949);

79, 992 (1950)."J.R. Pierce, J. Appl. Phys 19, 231 (194.9); J. R. Pierce and
W. B. Hebenstreit, Bell System Tech. J. 28, 33 (1949).

"O. Buneman, Phys. Rev. Letters 1, 8 (1958).
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BN2/Bt+ UBu2/Bx —(e/M) E=0,

BN2/Bt UBN2/Bx ——(e/M) E=0,

Bv4/Bt, +UBe4/Bx+ (e/224)E =0,

Bs,/Bt UBv2/Bx—+ (e/224) E = 0,

and the linearized equations of continuity are

BN2/Bt+ UBN i/Bx+N28ug/Bx = 0,

BN2/Bt UBN2/Bx+N28u—2/Bx= 0,

8222/Bt +U8242/Bx +N28v2/Bx =0,

Bn2/Bt —UBn2/Bx +NpBn2/Bx =0.

(5)

(6)

(7)

(8)

(9)

As is well known, the large ion mass maintains the
initially steady Qow of the ions, with N&=N&=E&
=E&=0, while the electrons quickly convert the kinetic
energy of their relative streaming motion into plasma
oscillations (amounting to 10 ev per electron for a
2000-km/sec solar wind). The halting of the relative
motion of the electron streams is illustrated, from (3),
(6), (7), (10), and (11), in the appendix. The char-
acteristic time is of the order of a few electron plasma

oscillations, and we know from the astrophysical ex-
amples already cited that electrons actually achieve
very much more energy than this. In particular it
appears that the electrons have as much energy as the
initial translational motion of the ions: Solar winds of
the order of 2000 km/sec are responsible for the aurora
in middle latitudes, with which are associated~ the
bremsstrahlung of 50-100 kev electrons; the kinetic
energy of a 2000-km/sec hydrogen ion is 20 kev (a
2000-km/sec electron is only 10 ev) so that the observed
electron energies prove to be of the same order of magni-
tude. %ith this situation in mind we shall now under-
take an investigation of the dynamics of two inter-
penetrating streams of initially neutral plasma.

Suppose that we have a stream of ionized hydrogen
moving in the positive x direction with velocity U. We
assume that the stream is initially of uniform density,
being composed of Eo electrons and ED protons per
unit volume. Suppose that a similar stream is moving in
the negative x direction also with velocity V. If U is
suQiciently large, then the collisions by Coulomb inter-
action may be ignored.

%e. shall use the subscripts 1 and 2 to refer to the
streams moving in the positive and negative x direc-
tions, respectively, and we shall consider small devia-
tions from the initial uniform streaming. Thus we let
the ion velocities be U+242, —U+N2, and the electron
velocities be U+v2, —U+v2. The ion densities are
N21 N2 and N2+N2, and the electron densities NO+22~
and N0+n2. Then if the electric field is E, we have the
Poisson equation

BE/Bx = 4%8 (N 1+N2 421 222) .
The linearized equations of motion are

82/Bt+ (e/222) E=0, (13)

Bn/Bt+ 2N28v/Bx =0 («)
We now consider the simultaneous solution of (4),

(5), (8), (9), (12), (13), and (14) to determine whether
the two oppositely moving ion streams will induce
plasma oscillations in the electron gas in which the
individual electrons receive a nontrivial fraction of the
ion energy ~~MU'; thus in the case of the solar wind we
are looking for 20-kev, rather than 10-ev, electron
motions.

Ke represent the solutions involving Ni, N~, e, E~, E~,
22, E in the form exp(icvt+ikx) with amplitudes A~, A2,
3, 8&, 8&, 8, C, respectively. Ke put 0= kU and obtain
the seven equations

A 22 ((a+0)—Ce/M =0,

A2i (o&—0)—Ce/M =0,

Am +Ce/424 = 0,

A2NPk+Bg(&a+0) =0,

A2N2k+B2(a) 0) = 0, —

A2N pk+Bs)

B2+B2 8 Cik/42le= 0—. —

(15)

(16)

(17)

(18)

(19)

(20)

(21)

The determinant of the coeScients must vanish, yield-
ing the dispersion relation

0—(&2 Q2)2(& 2 &2)+&& 2~2(~2+@2) (22)

where 4=222/M and &o. is the plasma frequency for the
electron gas of density 2EO,

(o.2= 82rNpe2/224. (23)

The dispersion relation is readily solved for 0, yielding
the roots

k2U2 —~ 2 4M 2G)2/2(~ 2 442)

184(d 2404(~ 2 442) 42~ 4~4j,/2(~ 2 402)

YVe see that we have complex roots when or'&or. ',
indicating exponentially growing oscillations. We note
that the rate of growth over distance becomes infinite
as or'~ or.'. It is shown in the appendix that inclusion
of the thermal, or oscillatory, motion of the electrons
eliminates the singularity as oP ~ or,' and does not alter
the general unstable character of the solutions. There-

periods, (2r222/N2e2) &. Thus, before the ions have time to
respond, the two electron streams have come to rest to
form a static (except for plasma oscillations of a few
volts energy) electron gas of density 2N2. We ignore
the plasma oscillations and consider only the smoothed-
out electron density 2/0 to see if it will eventually be
perturbed by the ion motions. If the perturbed electron
density is 2N&+22 and the velocity is v, then in place
of (3), (6), (7), (10), and (11) we have

BE/Bx= %re(Ng+N2 —n), (12)
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fore we shall pass over this singularity in the cold
plasma model by considering the rate of growth in
time, which remains finite.

Since c«1, it is possible to compute the roots of (22)
by expanding co' in ascending powers of e. Discarding
all terms third order in e, we obtain the two real roots

1+1I,
00=&M0 1+5

2(l —1I)'

(1+II) (1+1211+3112)—0' +0(e') I, (24)
8(1—II)5

and the four complex roots

1 112+II'+31II—1
0)=+0 1—6 +e

2(1—II)' 16(1—II)'

(Ir—11)(II+ 1)-
1+5 +0(e&), (25)

2&(1—II)& 16(1—II)'

where II~02/0/62.

The expansion in powers of ~ converges rapidly
unless (1—II)' is small compared to one. When 11=1
it is obvious that (24) and (25) are completely invalid.
We obtain instead

0/= a0$1+e' //25"+ 0"/2'"+ 0/24+0(e'/') g,

and the complex roots

~—~0 pl 01/2/25/8 02/2/210/3

+ie1/5 (31/2/25/2) (1—er/5/22/2)+ O (0)g (26)
=+0/0. 97&i0.042j.
We see from (25) and (26) that we have complex

roots provided II &1.To a useful degree of approxima-
tion we may write the unstable roots of (25) as

I=~0—hei/2i(1 —n) i+ O(.), (27)

noting from (26) that even at II=1 the real part
of co is very nearly O. Thus the amplitude grows as
exp f0/Le/2(1 —II)j&}.The ratio of the imaginary part
to the real part of or is shown in Fig. 1 for II &1. The
ratio reaches a maximum value of 0.044 at 0= 1 and a
minimum of 0.016 at 1I=0. The approximate form (27)
is invalid for G&0.8, as may be seen from Fig. 1, and
riumerical methods were used in 0.8(H(1.0.

Now consider the mode for which & is —in (27).
Then we have a wave propagating in the positive x
direction w'ith velocity U. From (15)-(17)we find that

tive x direction is hardly perturbed at all, its amplitude
being smaller by (2/2/M)& than the stream moving in
the positive x direction,

~a,/a, ~=t /gM(1 —Ir))&.

Thus, in this mode the exponential growth exp(Qf
XLe/2(f —II)g**} aGects principally the electrons and
the stream moving in the positive x direction. Note
that the velocity amplitude of the electron oscillation
is larger by the factor LM/22/5(1 —II)]' than the ve-
locity amplitude of the positive moving ions. Thus the
electrons receive the fraction 1/L2(1 —II)j of the initial
kinetic energy of the ion stream, and this demonstrates
that the electrons can'be accelerated to energies com-
parable to the initial ion energies in two interpenetrating
streams of plasma.

Hence we have shown that in a tenuous-'plasma there
is rapidly (characteristic time comparable to the ion
plasma period) achieved an approximate equipartition
of energy between the electrons and the kinetic energy
of the relative motion of the ions of two interpenetrating
streams. This equipartition is expected in. any. iriegelar
plasma motion in which transverse. magnetic fields
and/or small collision lengths do not prevent the inter-
penetration of plasma clouds.

We expect that the solar wind, impinging upon the
tenuous gas" moving with Earth, would automatically
yield 20-kev electrons, which we would associate with
the high-energy electrons of the aurora. "

We suggest that in any tenuous "turbulent" body of
ionized gas, such as the solar chromosphere and corona,
or such as the Crab Nebula, the interpenetration of
relatively moving bodies of plasma may yield sig-
ni6cantly non-Maxwellian electron velocity. ..distribu-
tions. The effect may perhaps be important in the
theoretical analysis of the observed optical spectra of
such objects. Finally, we suggest that because it is the
ions, rather than the electrons, in a stream which carry

0-05

o.o4
I~~
Re ~2

0.03

0.02

041

2,=2 (2/5/M) Lo//(0/+0) j
= —ia (m/M) i2i(1—11)iL1+O(e&)3,

0 OP 0.6 O.g I.O

alld
a,=~(m/M)L /(~ —0)j

=A (2/2/2M) Ll+0(e&)j.
We note first that- the ion stream moving in the nega-

Fxo. i. The solid curve represents the ratio of the imaginary
to the real part of cu for two interpenetrating plasma streams, The.
broken curve represents the approximate form (2'/) where it.
deviates signi6cantly from the correct value.

~ L. R. 0. Storey, Trans. Roy. Soc. (London) A246, 113 (1954).:
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the kinetic energy to excite plasma oscillations, it is
high-speed ion streams which are responsible-for much
of the observed solar nontthennal radio emission.

Going back to our rerriark concerning transverse
magnetic fields, it is, of course, obvious that a magnetic
field parallel to the direction of motion will have little
eBect on the plasma oscillations. It turns out that even
a transverse magnetic 6eld generally does not alter the
over-all dynamical situation, because the principal
e8ect of a weak transverse magnetic field is only to
change the- eGective plasma frequency from co. to
co, (1+co,'/co, z)& where co. is the electron cyclotron fre-
quency. " In most cases of astrophysical interest the
electron frequency is smaller even than the ion plasma
frequency, and very much smaller than the electron
plasma frequency. For instance at the interface be-
tween the geomagnetic field and the solar wind, some 6
or 8 Earth's radii distant from Earth, the geomagnetic
field is about 10 ' gauss, yielding an electron cyclotron
frequency of only 1.8X10'/sec. On the other hand, the
ion plasma frequency in an enhanced solar wind of
Pe=10'/cm', such as is presumed to be responsible for
the energetic aurora, is 1.5X10'/sec. In interstellar
space where Eo 1/cm' —a—nd 8= 10 o gauss, the electron
cyclotron frequency is 1.8X 10'/sec and the ion plasma
frequency is 1.3X 10'/sec.

We see then that in most cases the plasma inter-
action dominates the sects of transverse magnetic
Gelds. Suprathermal particle production is unhindered
by the presence of the magnetic fields. The thickness
of shock fronts is determined by the plasma interaction,
which has a characteristic exponential rise time com-
parable to the ion plasma period, (M/m)l/co. . Thus
the characteristic scale of a shock front is (U/co, )
X (M/sn)'*. For the solar wind with Xo= 10' ions/cm'
the thickness of a shock front may be of the order of a
few times 50 meters.

III. CRITICAL CONDITIONS

We can expect that when the collision period of the
electrons is les's than the characteristic time of the
exponential growth of the plasma oscillation, the nature
of the oscillations will be 'modified.

Spitzer" gives the characteristic time t, in which a
test particle of mass m and velocity m will be slowed
down while moving through a region containing n~
field particles per dnit volume, of mass m~ and thermal
velocity C&,

t,= ssszw/(1+ sn/snt) 8sre4n~ ink /PG(l~w),

where 1nA. is the usual factor giving the increased colli-
sion rate due to encounters of:small deQection, discussed

» For a more complete discussion of the eR'ect of a transverse
magnetic field, and of the role of the plasma interaction in shock
fronts, see a forthcoming paper by E. N. Parker, Astrophys. J.
129, (1959).

zz L. Spitzer, Physics of Psstty Ionized Gases (Interscience
Publishers, Inc. , New York, 1956), p. 79.

below. The function ltoG(l, w) is related to the error in-
tegral; we are interested in the case where the velocity m

of the test-particle is large compared to the thermal
velocity of the gas (2000-km-sec motion through an ion
6eld at 10o'K for which Cq=50 km/sec) in which case
lPG(l, w) 1/2w' and

t,—sn'w'/(1+ sst/ns, )4zre'ss, ink.

We see immediately that the collision damping occurs
first for the electrons, whose collision period is less than
that of the ions by the factor (tn/M)z. The problem of
the modifications in the plasma oscillation which occur
when election-electron and electron-ion collisions are
frequent is taken up in the appendix, where it is
shown that, while we do not expect suprathermal elec-
tron production, we do still expect the ions to interact
with each other to give shock thicknesses of (U/co, )
X(M/sN)&. Only when the densities become so high
that the ion 'slowing-down time becomes comparable
to the characteristic'time of growth do we lose the
plasma interaction, and the shock thicknesses become
determined principally by the mean free path of the
lons.

In order that the electrons may oscillate su%.ciently
freely to become suprathermal, then, we must require
that the electron slowing-down time t, exceed the char-
acteristic time of exponential growth, the ion plasma
period (zrM/Toe') &. Hence we must require that

U') 16sr'eoMSo (in')'/ost4,

upon equating n& to Xo and m to U. Since

h.= (3/2e') (kzTz/zoo) i= 1.24X 104T'/Eoi,

we have the numerical requirement

U )1 5X10"Xoln'$1. 24X10'Ti/Xoij cm'/sec'

for electrons streaming with velocity U through protons
of density Ã() and temperature T.

Consider the solar wind with density NO=10' per
cm' and To= 10"K.Then we must have U in excess of
14 km/sec. Since U is actually of the order of 10'
km/sec, so that t, is larger by a factor 3.5X10' than
the plasma period, we conclude that collision damping
will be entirely negligible so far as the initial exponential
growth is concerned. And once the exponential growth
has progressed very far, the electron velocity will exceed
U, vastly increasing t, .

Similar conclusions may be drawn for jets of gas in
the solar corona where 1Vo(10 /cm' and T~10 'K

But now consider the solar chromosphere where
Xo—10"/cmz and T is of the order of a few times
10"K.We require that U be in excess of 300 km/sec in
order to excite the plasma oscillations. There are ob-
served jets of gas with such velocities, but they are not
commonly occurring.

Finally, consider the solar photosphere, or a labora-
tory shock tube, where Eo may be of the order of 10"
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and T may be 104'K. Then we must have U&10'
km/sec, and conditions do not appear favorable for the
generation of suprathermal electrons in such gases. As
is observed, the principal effect is a classical shock
wave in which collisions predominate over the other
forms of interaction.

We conclude, then, that suprathermal electrons are
to be expected in the regions around, but not inside,
stars and around any tenuous atmospheres subjected
to the impact of high velocity stellar or solar winds.
We suggest that the 50-kev auroral electrons originate
in this way. It is probably high-speed plasma streams,
rather than electron streams, which are responsible for
much of the observed solar radio emission, since the
ions in a plasma stream, with their greater transla-
tional kinetic energy, can put 10' times more energy
into the plasma oscillations.

We probably cannot produce the suprathermal elec-
tron in the laboratory because of the difhculty in
achieving suSciently high-speed streams of neutral
plasma. The experiment has essentially been done in
reverse, "of course, exciting ions to plasma oscillation
with high-speed electron streams; just a few volts will

yield the necessary 10'-km/sec electrons.

APPENDIX

A. Deceleration of Interpenetrating
Electron Streams

The mean kinetic energy density of the plasma
oscillation is

—,'Npm ((ei2)+ (@22))= $1VpEp'e /4mk'U2] exp2k Ut,

and its time derivative is just LNpe2Ep2/2mk U] exp2k Ut.
On the other hand, the work done by the streaming
velocity U against E has a mean, value

a{U(E(Np+ni)) —U(E(Np+n2)))
=$N pe2Ep2/2mk U] exp2k Ut,

which is, of course, just the rate at which the kinetic
energy of the plasma oscillations is increasing. Thus the
two electron streams are decelerated according to

2d(2NpmU2]/dt ——(Npe2Ep'/2mkU) exp2kUt.

B. Effect of Electron Velocity Dispersion

It is physically obvious that inclusion of an electron
velocity dispersion, such as thermal motions, will result
in a hnite rate of growth over distance as co'~or, ',
because each electron sees co Doppler-shifted by its
own thermal motion. Only an infinitesimal fraction of
the electrons can have their effective co exactly equal to

To demonstrate this formally we suppose that
initially there is an electron velocity dispersion %(v') so
that the number of electrons per unit volume with
velocities in (v+p', v+ p'+de') is %(e')de'. 4'(n') is
normalized so that

Consider the well-known solution for the excitation
of plasma oscillations in two interpenetrating streams
of electrons. We have equations (6), (7), (10), (11),and
the Poisson equation

BE/Bx= —4m e(ni+ n2).

Assuming solutions of the form exp(~t+ikx), the dis-

persion relation is

(~2 Q2) 2 ~ 2(~2+Q2) —0

where cu, is given by (23). Two roots are real and, if
0'«, ') two are imaginary,

~1——Wi (pi,/V2)((1+SQ2/(v P) &—1—2Q2/pi 2]&

giving exponential growth of the oscillations, exp(
~
pal j t).

If 0'((cv,', so that the growth takes place over many
plasma periods as our linearized equations tacitly
assume, then

du'+(e').2EO=

This distribution will be perturbed by the plasma
oscillations so that subsequently it will be of the form
%(p')L1+f(e',x,t)]. The first-order equation of con-
tinuity, or Liouville equation, is

Bf/Bt+2i'B f/Bx+ Bv/Bx= 0,

and the equation of motion is

B2//Bt+ v'Bv/Bx —Ee/m= 0.

Assuming solutions of the form

e=A exp(upt+ikx),

f=8 exp(ip&t+ikx),

E=C exp(2pit+ikx),

Ai (pi+ kp') Ce/m= —0,
B(ra+kp')+A k =0.

B= iCek/m(—pi+ kp')'

and the electron density is

ek t.+" dv'4 (2')
de%(e') $1+f(2i',x,t)]=2N p

—iC—
m~ (pp+kv')2

Cdl—&l+)

and the growth is &expOt. we haveIt is readily shown, then, that a solution of the
initial equations is

E=+Ep expkUt coskx,

vi= —Ep(e/V2mkU) expkUt sin(kx+$2r),

ii2 +Ep(e/V2mkU) exp——kUt sin(kx —x2r),

ni=+Np(Epe/2mkU2) expkUt coskx,

n2= —Np(Epe/2mkU') expkUt coskx,

to the order we are considering.
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The Poisson equation for 8 becomes

ek t+" dw'+(e')
rikC =4n e

I

Ng+N2+i C
m „(co+he')'

which we now must solve simultaneously with (15),
(16), (18), and (19).

The dispersion relation is

0= (aP —0')'
47re' t+" de+(v')

m & „((o+ke')'

and

0'= —o)PmU/(3MkT) &

0' =Gl 8'L1&i (2m'U'/3Mk 7)&].

Thus high electron temperatures do not destroy the
unstable character of the solutions.

C. Collision Damping

%hen the electron collision frequency becomes com-
parable to, or greater than, the ion plasma frequency,
then the electrons will make at least one collision in the

+a),'(m/M) ((v'+0') .

Regarding the electron velocity dispersion as the
thermal velocity due to some small temperature T, so
that ke'«~, we expand the integrand in a power series,
discarding all terms third order and higher in kv'/cs.
If (e") is the mean square thermal velocity in the x
direction, then m(e") =kT and we have

0= (cv'—0') 'La),'—oP+30'a), 'k T/aPmU'j

+ (m/M)(o. '(o'((v'+0') .
We see immediately that the coeKcient of (oP—0')'
does not vanish, and hence 0' remains Rnite, as m' —+ co,'.
H we put co'= or,', we obtain the finite roots

0' Rico,'mU/(3MkT) &

for small electron temperatures, and for suKciently
large electron temperatures that kT&mU' we have
the roots

time that the oscillations would otherwise grow by a
factor of e. %e expect, therefore, that the oscillations
will not proceed according to the free-electron equation
(13). To obtain some rough idea as to what we might
expect we represent the e6ect of electron-electron
collisions as a viscosity term 88'v/Bx' in the electron
equation of motion (13). We represent ion-electron
collisions by a drag term ~(N~+N2), so that in place of
(13) we have

8v/Bt+Ee/~ =b8'v/Bx'+~ (Ng+N2),

to be solved simultaneously with (4), (5), (8), (9), (12),
and (14). The vanishing of the determinant of the co-
efFicients yields the dispersion relation

0 (&2 02)2(& 2 &2)+&~ 2&2(&2+02)

+ikey(gg(~2 —02)2—~y 2(gP/02) j+j2$g~ 2~(4P—02)

which reduces to (22), of course, when the damping
constants 8 and ~ go to zero.

Consider the case where 8 and/or ~ are exceedingly
large. Then we have 3ust

~k2)L(~2 02)2 CM 2((d2 +02) j+2tK&d 2(~2 Q'2)

Solving for co', we obtain

aP =0'+-,'ere.2 (1—2~/bk')

~ ~gL8f02~ 2+ $247 4(1—2g/bk2)2j&

%e 60d that cv'&0, so that we have exponentially grow-
ing oscillations, for

0 (Gl 6(1+2K/8k )

Since k and 8 are both positive quantities, we see that
it is sufhcient to require that

0'&o),'e.

Friction and viscosity of the electron component do not
alter the growth of the ion oscillations, though obviously
it prevents the electrons from sharing the ion energy.
The eGect of 8 is to immobilize the electron gas so that
the ion streams interact in a manner analogous to two
interpenetrating electron streams.


