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By a generalization of the method used in a previous paper the distribution of energy levels of a dilute
Bose system of hard spheres is found. These energy levels are then used to compute the statistical properties
for the system. A phase transition is found, and the transition point is calculated to the lowest order of a,
the diameter of the hard spheres. Furthermore, the thermodynamical functions of the system in both the
gas phase and the degenerate phase are obtained, provided (a/A)<1 and pa’<1, where A is the thermal

wavelength and p is the particle density.

1. INTRODUCTION

N a recent paper! the energy levels of a dilute Bose

system of hard spheres near the ground state were
calculated using the pseudopotential method.? From
the distribution of these energy levels, it is possible to
calculate the thermodynamic behavior near 7=0. To
extend these considerations to higher excitations and
higher temperatures, and especially to investigate the
phase transition of the system corresponding to the
Bose-Einstein condensation of a free Bose gas is the
aim of the present paper.

For the free Bose gas it is well known that between
the transition temperature and T'=0 there is macro-
scopic but incomplete occupation of the free-particle
ground state. It turns out that this possibility of a
macroscopic but incomplete occupation of a micro-
scopic state can be incorporated into the method of
reference 1. One obtains in this way a calculation which
furnishes a natural connection between the concept of
the degenerate phase in the sense of London’s work?
and the concept of phonon excitations in the sense of
Landau’s treatment.* The latter is particularly useful

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

t Permanent address: Columbia University, New York,
New York.

{ Permanent address: The institute for Advanced Study,
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1Lee, Huang, and Yang, Phys. Rev. 106, 1135 (1957). We
adopt the notation of this paper in the present work.

2 Kerson Huang and C. N. Yang, Phys. Rev. 105, 767 (1957).

3See, e.g., F. London, Superfluids II (John Wiley and Sons,
Inc., New York, 1954).
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in the 720 region, the former at higher temperatures.
The dual applicability of both concepts in the present
calculation therefore makes possible a discussion of the
thermodynamical properties of a dilute (i.e., pa’X1)
hard-sphere Bose system at all temperatures for which
/X1, where a is the diameter of the hard spheres,
pis the particle density, and A is the thermal wavelength.

The system is found to exist in two thermodynamical
phases, which correspond to the two phases of the free
Bose gas. In each phase, corrections to the thermo-
dynamical functions to the lowest order of @ are ob-
tained. The change in the transition point pressure and
density is also obtained. In Sec. 8 a comparison is made
between the calculated change of the transition point
and the results of the binary collision method.

The method of the present paper for obtaining the
excited energy levels can be easily generalized by a
Galilean transformation. This will be discussed in a
subsequent paper (paper II) and leads to the two-fluid
concept® and to superfluidity.

If one continues along the line of approximation used
in reference 1 and in this paper, one arrives at calcula-
tions concerning phonon scatterings and phonon life-
times, which will be described in detail in future
communications.

2. REVIEW

The method used in reference 1 for computing the
ground-state energy and the distribution of energy

8 L. Tisza, J. phys. radium 1, 164 (1940).
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levels near the ground state are based on the following
points:

(i) The use of the pseudopotential in higher approxi-
mations. This was discussed in detail in reference 2. The
crucial point is that the correct pseudopotential

V=8ra 3 &(ri— l’j)’a—(fii) 1)

<7 ar ij
must be used. If one uses instead

V'=8ra} 8(r;—1;),

<7

then in higher approximations spurious infinities are
encountered. In most computations, however, it is a
great practical convenience to use V' first and to switch
to V in the end. '

(ii) In considering the Hamiltonians (in units
2m=h=1),
H = Z V,i?‘*{‘ V .
and (2)

H=—Y V24V,

one chooses the free-particle representation with peri-
odic boundary conditions. (The importance of choosing
the periodic boundary condition was emphasized in
reference 1, footnote 17.) An off-diagonal matrix ele-
ment of .

V'=Q4ra Y a*ag*a,a,0%(kat+ks—k,—k;) - (3)

then characterizes the collision of two particles of
momenta k,, k, going into the individual particle states
with momenta k., kg, while all the other particles
preserve their momenta. The value of such a matrix
element is

Qralnang(n,4+1) (1) (4)

Through such matrix elements one mixes states with
different free particle occupation numbers. However,
we saw in reference 1 that the states that need be mixed to
form an eigenstate of the Hamiltonian have occupation
numbers which are the same to the order of N, if the
parameier (pa®)} is regarded as small.

- We recall in fact that in reference 1 one starts from
the free-particle ground state and combines it with other
states .S that can be reached from the free-particle
ground state through a series of off-diagonal elements
(4). The assumption is made that all such states S
have as the occupation number for the free-particle
ground state no~N. This assumption is later justified
because to deplete the ground state of 2m particles
one must go through the off-diagonal elements (4) at
least m times. Since @ is a small parameter, this gives a
small probability for those states S for which 7, is
much different from N. In fact, it was shown that the
probability falls off in a geometrical series with increas-
ing m, making it a good approximation to take no~N
for all states S of importance. :
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(iii) A further simplification occurs when one first
drops all the off-diagonal elements (4) except those
for which two of the four occupation numbers #,, #g,
7, 1, are of the order of a finite fraction of N. The
dropped elements are smaller than those kept by a
factor of at least ~N?% However, there are more of
these dropped elements than of those kept by a factor

. of at least V. It is not immediately obvious that these
__more numerous smaller matrix elements contribute less

than the large off-diagonal elements. This question
was discussed in reference 1, where it was shown that
by treating these small matrix elements as a perturba-
tion one obtains correction terms in the form of an
expansion in powers of the parameter (pa?)?.

Based on the points reviewed above, calculations
were made in reference 1 for those states for which
the .occupations of the free particle ground state is essen-
tially complete. The ground-state energy was found to be

Eo=4mapN[1+(128/15v/7) (pa*)*+0(pa®) 1. (5)

The excited states near the ground state were shown
to have energies and momenta

E(m)=Eo+ Y mu(bi-+16wapkd)’,
k#0 (6)
P(my) =3 mik,

where- my are any positive integers that satisfy the
additional condition

N7 me=0(N7Y). )

k=0

Furthermore, these states were shown to correspond to
states with my quanta of compressional waves with
wave number &/27.

3. MACROSCOPIC BUT INCOMPLETE OCCUPATION
OF THE FREE-PARTICLE GROUND STATE

We shall show now that the method of approximation
reviewed in the last section is applicable to states for
which there is macroscopic but incomplete occupation
of the free-particle ground state, i.e., states for which
the free-particle ground state occupation number #g is
essentially N& where £ is a finite fraction, and for which
no other state is occupied by a finite fraction of the NV
particles.

To discuss such states, we start from a state with the
following occupation numbers:

no=n=N§,
- nk=nk°, N_1”k0=O(N_1) (k?SO), (8)
Z nd= (1_$)N~
k<0

Similarly to point (ii) of the last section, we need only

consider states for which, to the order of V, the occupa-
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tion number 7y does not drastically differ from ..
Writing
(k5=0), ©)

it is possible to show in the same a posteriori manner,
as done in Sec. 3 of reference 1 for the problem when
£=1, that

1= 10+

()=0(1) for ks=0,
R Z (8x)=0L (pa®)*].

and
(10)

The diagonal elements of V' were computed in
reference 1:

|V | n)y=0"4ra(2N*— N~ 2.
Using (8) and (9), one can write this as
(n|V'|n).

=QUra[ N>+ (1—- 2N 26N 3w+ V3, (11)
, . k0 SR

where . - ,
V1= —9—147I'GEN+Z 'ﬂk2+ (Z 51;)2] i (12)
‘ k740 k0 .
will be neglected because (10) shows that its contribu-
tion is of higher orders in (pe®)!. One then has

(n|V'|ny=4rapN[14+ (1—£)2]+8ma.¢ 3 ax*ax
k0

~+negligible terms. (13)

To discuss the off-diagonal matrix elements of ¥’ we
take advantage of the simplification discussed in point
(iii) of the last section. We keep, therefore, only those
off-diagonal elements that correspond to a collision of
two particles with momenta 0, going into momenta
states k and —k or vice versa. All states that can be
reached from the state (8) by such off-diagonal ele-
ments have the same value for (nx—n_x)= (n"—n_x).

It is not difficult to see that for these states the
Hamiltonian assumes a form very similar to that dis-
cussed in reference 1 (which in fact is'a special case of
the present problem corresponding to £=1).

H' =4wapN[ 14+ (1—£)2]+2 > ' av*ax (k2+8matp)
+2.'8matoBso(k), (14)

where the 3’ extends over half of the k space excluding
k=0, S(k)=|nd—n_«|, and Bs(k) is defined in Eq.
(A3) of reference 1. It is important to notice that Bg(k)
and Bg(k’) for different k and k’ operate on different
occupation numbers, and therefore commute with each
other.

Equation (14) can be written as

H'=4mapN[ 14+ (1—£)%]
+2 3/ (k*+8ragp) a*axtyi'Bsaoy (k)], (15)
where
yi' = (k*+8wagp)4matp.
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The individual terms in the summation in (15) com-
mute and can be simultaneously diagonalized.

The eigenfunctions and the eigenvalues of these
terms have been evaluated in the Appendix of reference
1. As remarked in Sec. 2, calculation of the energy levels
using V’ lead to spurious terms which are divergent.
The substitution of the true pseudopotential V for
the V' lead to the correct final answer for the energy
spectrum. Following arguments which run exactly
parallel to that of reference 1, we find the energy spec-
trum to be

E(Eymk) = EO(E)_,-EPIIOHOH(E)) (16)
where
Eq(§) =4mrapN[14(1—§)?
: +(128/15v/7) (pa*&)1+0(pa®) ],  (17)
and -
Ephonon(£)=:2 myk (k2 16makp)t. (18)
0
Here my are positive integers satisfying
N7 me=(1—8)+O0(ND. (19)
k0

The momentum of the system in the state specified
by &, my is

P(¢mi) =3 mik. (20)

We remark that for £=1, these results reduce to those
obtained in reference 1. It is furthermore important to
remember that these equations do not give correct
results to the order @, unless k¢<<1, which is a condition
for the applicability of the pseudopotential.

The physical interpretation of (16), (17), and (18) is
exactly the same as before: my is the number of ele-
mentary excitons with wave number (k/27). One
notices, however, that the energy of the excitation is
now (k*+16matp)tk which depends on &. For £#0, this
excitation energy varies linearly with & for small & and
represents phonons. For £=0, the excitations assume
the character of individual particle excitations.

The parameter £ is, according to the spirit of the
calculation above, the fraction of particles that are in
the unperturbed ground state [neglecting terms of
O(pa®)t]. Also the fraction 1—¢ is, according to (19),
the ratio of the total number of excitations to the total
number of particles. That the two are related is a
natural consequence of the method of approach adopted
above. It is perhaps worth emphasizing that the present
calculation thus provides, in the model under discus-
sion, a link between the two different viewpoints that
have greatly influenced the development of our under-
standing of HeII: the concept of the degenerate
occupation of a single state, which led to London’s
proposal® that the A transition in He is a consequence
of Bose-Einstein condensation, and the concept of
elementary phonon excitations, which led to Landau’s
theory* of liquid _He. The dual applicability of both
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concepts in the present calculation also enables us to
carry out calculations at all temperatures, including
both the transition region and the region near 7'=0.
In a subsequent paper where transport phenomena are
discussed it will become clear that the parameter £
corresponds to the fraction of superfluid, a concept
first phenomenologically introduced by Tisza.®

The two terms Eo(£) and Epnonon(£) in (16) are
accurate to the order of N (and not 1), which is sufh-
cient for the calculation of the thermodynamical
properties of the system. However, from the derivation
it is clear that (16) can also be used to compute the
energy difference (which is of the order of 1) between
two states for which there is only a difference in a
finite number of m.’s. For example, two states with a
difference of one phonon belong in this computation
to the same value of ¢ and consequently their energy
difference is

k(k+16mapt)t,

which is of the order of 1.
4. PARTITION FUNCTION

Using the energy spectrum, Egs. (16)-(19), we pro-
ceed to calculate the partition function Q for a dilute
system of hard spheres obeying Bose statistics. We
first define

Q(8) =2 expl—BE(£my) ], (21)

where 8 is related to the Boltzmann constant «x and the
temperature 7" by
B=(xT)7, (22)

and the sum over my extends over all positive integral
values provided

Nt éﬂmk= (1-9. (23)

The partition function Q is a sum of Q(§) over all
allowable ¢’s. However, for an infinite sytem (N — oo,
but keeping p finite) the logarithm of Q is replaceable
by the maximum of InQ(#) with respect to &.

InQ (é) =InQ, (24)
where the most probable value £ is determined by the
condition

InQ (&) =maximum[InQ(£)],

for all values of £ between 0 and 1.
The quantity InQ(¢) can be readily evaluated by
means of the method of steepest descent. We have

_KTQ_I th(E) =f(£}§‘)7

(25)

where

f(&0) =4map 14+ (1= 5]+ (11— O«Tp Ing

4 (87T f In(1—¢ef)d%. (26)
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The parameter ¢ is related to £ by

(8f/85)¢=0,
Cal 27
(1= (o) JE=)m osssn.
— g—ﬁ
The quantity w is given by
w=k(k?416matp)t. (28)

Equation (27) is the condition for steepest descent.
We notice that the free energy per unit volume takes
the maximum value of the function f(£,¢) with respect
to ¢. In Eq. (26), as in all subsequent calculations, we
neglect terms of higher powers in (pa?).

It is convenient to introduce a £—¢ plot in which,
for fixed T and fixed p, £ is plotted against { as a graphi-
cal representation of (27). Along each curve one locates
the most probable (i.e., equilibrium) ¢ by minimizing f.
For orientation purposes one first investigates the case
of free Bose particles (i.e., a=0). At fixed T the locus
of the equilibrium points in the graph is easily seen to
be the curve OBCDE in Fig. 1.

To investigate the change in these equilibrium points
brought about by the introduction of the hard-sphere
interaction, we notice that along the £—¢{ curves, one has

— R )d%.  (29)

We take a point P along the curve OBCDE and study
the locus of this point at fixed T and p for infinitesimal
values of a. [Tt is important to notice that the extension
of this neighborhood is nonuniform in P.] It is con-
venient to divide the curve OBCDE into three sections:

¢
e D E
\\\ \\
\\ \\\
N \ P>P
N\ ‘\
PP\ \
BT~ \
>~ \\ \
N
P<F, AN \\
\ \ \
\
A
o} i Ve

Fic. 1. Schematic ¢—¢ plots for a free Bose-Einstein gas. The
dashed curves 4B, AC, and AD represent the relation (1—£)p
=X"3g(¢) [Eq. (27) with a= =0] for the same value of A but dif-
ferent p. p.=\"3(2.612). Curve OBCDE represents the locus of
gxe (eé;;)lhbnum points for the free Bose gas, determined by

q. .
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(i) P is in the section OC open at C. For sufficiently
small values of @ the general shape of the £—¢ curves
follow their counterparts in the case of ¢=0. Further-
more, for a=0, by (29), the value of df/d¢ along any
curve AB in Fig. 1 is always bigger than —px7 In(¢) 5
which is positive. For sufficiently small values of a,
therefore, df/d¢ remains positive and the minimum of
f occurs always at £=0. Thus the locus of equilibrium
points remains along OC (open at C). In algebraic
language this means that

£=0. (30

(ii) P is in the section CE open at C. To find the
equilibrium value of { we must solve the equations
df/dt=0 and (27) for ¢ and ¢. It follows from (29)
that for df/dg=0,

¢=1-0[(pa®)*].

Substituting this into (27), one obtains

(31)

E \3
1— £=(2.612) (p\3)1—8 —‘E) +0(ap)?), (32)
mpA?

where
A= (4= /«T)%.

The equilibrium point £—¢ thus follows a curve slightly
below the line CE in Fig. 1.

(iii) P is at C. This is the region near the transition
point in which the behavior of a model satisfying
strictly the spectrum (16)-(19) is very complicated. It
will be discussed in detail in the Appendix.

In the gas region (i) and the degenerate region (ii) it
is straightforward to substitute the equilibrium condi-
tions (30), (31), and (32) into (26) and obtain the
free energy of the system. The results are summarized
in the next two sections.

5. GASEOUS PHASE

This is the phase satisfying £=0. The Helmholtz
free energy F, for the system is given by

Q1F = —\"3%T gs({)+pxT Ing

+8rap’+OLa?\%7], (33)
where the parameter { is related to p through
p=N":(5), (34)
and
g () =2 It (35)

=1

Correspondingly, the energy E,, entropy S, pressure
pgs, and specific heat (C,), and the compressibility
(8p4/9p) 71 are given by

Q1 E, =N Tgs(¢)+8map?, (36)
@18, =3\ kgs(¢) —px Ing, (37
0, =N"%Tgs($)+8map?, (38)
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(@7Co) o= (15/HN g (§) — (9/Drogs e () I, (39)

and
(8p4/3p)r="4mpA[g3($) ]+ 16map.

6. DEGENERATE PHASE

In this phase, (31) and (32) obtain. The thermo-
dynamical functions can again be calculated by using
the results obtained in Sec. 4 provided

pa’K1l and (a/N)<K1. (41)

In the following, we list the explicit forms of the thermo-
dynamical functions for this dilute system at moderate
temperature apA2<X1, [case (i)], at fairly low tempera-
ture apA®~1 [case (ii)], and at very low temperature
apAP>1, [case (iii)].

(i) The Helmholtz free energy Fq in the degenerate
phase for (pa®)<<1 and apA’<1 is given (neglecting
terms proportional to ¢?) by

Q1F 4= — (1.342)A=3 T+ 4ma (0*+2pp.— pc2),

where

(40)

(42)

pe=(2.612)\~%. (43)

The other thermodynamical functions are given by

Q1Eqs=3(1.342)N T+ 4ma(p?— pp+-20.2),  (44)
Q184=5(1.342)N "3+ 3kaN> (p2— pp.), (45)
pa= (1.342)\"%T+4ra(p*+p2), (46)

Q1(Cy)a= (15/4) (1.342)X3+3kaN? (4p2—pp.)  (47)
and
(8pa/0p)r=8mnap. (48)

(ii) At much lower temperature aph\?~1 but pa’<1,
the Helmholtz free energy becomes

QF g=4rap[1—4(20a*)%1G()+0(pa®) ], (49)
where
t=2ap\?, (50)
and
2 o (2 1)i—17
=—— | sln(l—et)|———|dr. (51
0= hnti—c )| | o

The series expansion of G(¢) for small and large
values of ¢ are given by

g(t)=1.342t1—2.612t~

+4§(2r)?—$(1.460)82+- - -, (52)
and :

5()= (2/w)*[”—4——“6—+ S -

458 6348

respectively. For intermediate values of ¢, G(f) can be
evaluated numerically.
The other thermodynamical functions are given
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[neglecting terms of higher orders in (pa®)] by

Q1E =4mwap 1—4(20a%)¥d g/dt], (54)

@ 1S4=x(2ap)} Q—tdg/dt], (55)

4 pa=4map’[1—2(2pa*)}(t71G+2dG/dt)], (56)
an

Q1(C,)a=«(2ap)}2d*g/d. (57)

In this low-temperature range, Eq. (32) is not useful;
instead one obtains from (27)

(1— o= (2ap)}3(2), (58)
where
__2_ © oz l'(x2+1)*——1]*
F(2) dx. (59)
Vado etr—1l w41
For small values of ¢
F(f)=2.61263—4(2/7) 4146004 — - .-, (60)
and for large values of ¢
F(t)=(2/7) (2.404)t-3— (15.5535)¢%+---].  (61)

(iii) In the extremely low temperature region apA>>1
(but pa*«<1), the Helmholtz free energy becomes

Q‘1F¢=47rap2[1—%(;)(api>\2)m]. (62)

The other thermodynamical functions are

QB = drap? [1+—( )( ) ] (63)
ap\?
2 a
9‘15d=——1rplc( )(——-) (64)
a5 \\/J \gpn
pa=4map? [H——( )( ) ], (65)
ap\?
and
a1(C,) il (a)( . )m (66)
EAETE PV A W
At these very low temperatures, £ is given by
; 1.202
Y e
p)\3\/1r ap\?

It is interesting to notice that in both the gas region
and the degenerate region at moderate temperatures,
(i.e., apA?<1) the thermodynamical functions listed
above, to the order included, are the same as the results
of a calculation by Huang, Yang, and Luttinger.® This
is not really surprising because the relevant excitations
in these regions have momenta k~X"13(ap)’. The

¢ Huang, Yang, and Luttinger, Phys. Rev. 105, 776 (1957),
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spectrum (18) used in the present paper than reduces to

Ephonon (E)EZ mkk2+Z mk81ra$p
k=0 k>0

=3 mk*+N8mwapt(1—§), (68)
)
which, when added to (17), gives
E(§m)24maNp(2— )+ myk2 (69)
140

This formula is exactly identical with the spectrum
from which reference 6 starts. It differs from the spec-
trum (16)-(19) of the present paper because it does
not take into account the off-diagonal elements of the
potential in Eq. (1). One concludes that for the tem-
perature region under discussion in this paragraph,
these off-diagonal elements do not lead to important
contributions.

The situation is completely different, however, for
the very low temperature region [case (ii) and case
(iii) above] which is characterized by phonon excita-
tion with long wavelengths. One observes, for example,
that in the degenerate phase C, varies at moderate
temperatures as 7%, but at extremely low temperatures
as T%. This difference of temperature dependence stems
from the fact that for long wavelengths the phonon
energy is linear instead of quadratic in the momentum.
We shall see in a subsequent paper that this change of
the energy spectrum is also responsible for the super-
fluidity of the system.

7. PHASE TRANSITION

By comparing the thermodynamical functions for the
two phases, one finds that the phase transition occurs at

Npo/kT=1.342+2(2.612)2(a/\)+0[ (a/N)¥], (70)

and
Np,=2.6124+0[a/\], (71)

where p. and p, are the pressure and density or densities
at the transition point. It is important to notice that to
the order (a/\)? there is no discontinuity in density at
the transition point. However, this does not mean that
in higher orders there will be no discontinuity in the
densities of the two phases. Similarly one sees that to
the order (a/A) there is no discontinuity in entropy, and
to ‘the order that we have calculated there is a dis-
continuity in the specific heat and a discontinuity in
the compressibility. These discontinuities” are given by

7 The exact meaning of (72) is as follows: Consider (C,)s and
(C,)g as functions of T, p, and a. Then

lim lim (Cy)a— lim hm (Co)g=
p—pct+ a—0+ p—rpc— a—0
and
im  m 2 gy g 2 9(7 612NNk,
p—pct a0+ 0@ p—pe— a0+ 00

Similarly one can write down the exact meanings of (73). In these
equations the order of the two hmxts p — p. and ¢ — 0 may not
be exchanged. Consequently it is not possible to state the exact
order of the transition for a finite ¢,
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(C)a— (C.)o=(9/2)(2.612) (a/M) N,

ap ap
(1) (2) -
9p/ a 9/

at the transition point.
These properties are illustrated by Fig. 2 and Fig. 3.

(72)

and

(73)

8. COMPARISON WITH BINARY COLLISION METHOD

The thermodynamical functions in the gaseous phase
and the transition point have previously been calculated
by a different approach using the binary collision
method.® The results, of course, agree with that ob-
tained by the present method. It is of interest to com-
pare these two different approaches.

First we compare the present results with the virial
type expansion for the gaseous phase displayed in
reference 8:

Np/kT = gi(2)—2(a/N)gs(2) P+8(a/M)Lg1(2) Py (2)

+8(a/MN?F (2)+0[(a/N)*], (74)
where
o /9
=—(=), 5
? alnz(KT) (3)
z is the fugacity, and F(z) is
% grtstt
F(2)= —_—— 76
) r.§=1 (rst)(r+s) (r+0) 76)
We remark that if we set
Inz=1In{+4(a/Ng3($)+0L(a/N)?], (77)

then, neglecting O[ (¢/A)%], (74) and (75) are identical
with (38) and (34). That (77) holds is to be anticipated
since the parameter { was introduced in (27) in a
steepest-descent calculation while the fugacity z is
defined by

(8/0N)[InQ+N Inz]=0. (78)

A comparison of (78) and (27) leads immediately to
77).

pc'i ’7P'I

Fic. 2. Schematic p—V diagram for a dilute Bose gas with
hard-sphere interactions. The dotted line is the corresponding
isotherm for the free Bose gas at the same 7.

8 Some results obtained with the binary collision method have
been summarized in T. D. Lee and C. N. Yang, Phys. Rev. 105,
1119 (1957). Notice that Eq. (5) of this reference was incorrect.
It should read like Egs. (70) and (71) of the present paper.
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Cy

P =CONST.

o
z
S

T

Fr16. 3. Schematic C,—7T diagram for a dilute Bose gas with
hard-sphere interactions. The dotted line is the corresponding
curve for the free Bose gas at the same p.

In the treatment of the binary collision method it is
pointed out that if we write the virial type expansion
in the form

w/a:é (/N (19)

then as z— 1_ the function f;(z) becomes singular for
all values of /=2. Furthermore, it is proved that if we
set

z=e"",

then as e— 0y, f; can be expanded as a series. For
1= 2, we have

file)=e A1+ Bi+Crett-- -],

where 4;, By, etc., are independent of e. Thus we may

regroup the series in (79) and write

Np/kT=1.342— (2.612)e—2(2.612)*(a/N)
+etFy(a/eN)+ e Fa(a/N)+ -,

(80)

(81)

where

Fi() =X A,
= 82)

F:(x) =§: B, etc.

1=0
In (82), 4o and By are coefficients of ¢! and ¢ in the
series expansion for fo for small ¢; A; and Bj are the
corresponding coefficients of ¢! and e in the series ex-
pansion for fi. The other 4; and B; are defined by (80).

These functions can be explicitly calculated by using
the binary collision method. They are found to be

F;(a/Ae)=47[144(2.612)a/Ae]},
and (83)

F.:(a/Ne)=Bo+Bi(a/Ae)+Ba(a/Ne)?,
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where
By=—0.730,
B;=—2[47+2(1.460)(2.612)],
B,=—2327(2.612)—8(1.460) (2.612)*+8F (z=1),
B;=0, for 1=3.

Thus, we find that Np/kT is regular at e=0 and that
the singularity occurs at

e=—4(2.612) (a/\)+0[ (a/N)1],

which is identified as the transition point. The pressure
and density at the transition point are given by (81):

N (po/kT)=1.342+42(2.612)%(a/N\)+O[ (a/M)*],
d
o Mpe=2.61240(a/)),

(84)

which are identical with those obtained in Sec. 7. We
remark that it is indeed gratifying to find the results
obtained in Sec. 7 not only agree with the virial-type
expansion to order (a/X) for all values of <1, but also
agree with the sum of the most singular part of (a/A)*
X f1(2) (including all values of /) as z is near 1.

9. DISCUSSIONS

We make a few remarks in this section about the
present paper.

(i) The general line of reasoning described in Sec. 2
and developed in detail in the subsequent sections is
also applicable to those states for which there is an
incomplete but macroscopic occupation of a state of
momentum k>£0. Such states lead to superfluid flows
and will be discussed in detail in a subsequent paper,
For equilibrium thermodynamics, however, they are of
no importance.

(ii) From the energy spectrum (18), we find the
velocity of phonons of very long wavelength to be
(16mapg)?. Thus, if the system is in thermodynamical
equilibrium, the velocity of long-wavelength phonons
has a statistical value Dphonon, given by

5phonun= (167[‘(14) g) %’ (85)

which varies from (16map)? at T=0 to zero at the critical
temperature. The interesting relationship between
Dphonon and the macroscopic sound velocities will also
be discussed in detail in the subsequent paper.

(iii) In Sec. 2, it was pointed out that for a dilute
system of hard spheres one need only include those off-
diagonal matrix elements of V for which two of the four
occupation numbers 7, ng 1, n, are of the order of a
finite fraction of N. The inclusion of the other off-
diagonal matrix elements of V contribute to higher
order corrections in energy. They also give rise to the
scattering of the phonons and to the decay of a single
phonon into two or three phonons of longer wavelengths.
Let k be the momentum of the initial phonon and
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ki, k; that of the final two. These momenta are related
by

k=k;+k,,
and (86)

k(k +16matp)t=k1(k:’+16matp)d+ka(ks?+16makp).

Summing over all final states of ky, k, we find the mean
life 7 of a phonon to be® (at 7=20)

7=(1607/3)pk™® for k<K (8map)t,
and

(87)
7= (16ma’ok)™ for k>>(8map)?.

As is expected, the smaller the value of ¢ the longer is
the mean life.

The existence of these lifetimes throws new light on
the nature of the “eigenstates” that were obtained in
Sec. 3. Strictly speaking, these states are not eigenstates
of the entire Hamiltonian. Transitions between them
take place because of the decay, recombination and
scattering of the phonons. The fact that one obtains
states which are not eigenstates of the Hamiltonian is
not really surprising. In fact, the exact eigenstates of
the system are boundary-sensitive and are of no great
physical interest. Furthermore, to the lowest order in
a the approximate eigenstates give the equilibrium
thermodynamical properties of the system. The situa-
tion is quite similar to a system of one hydrogen atom
and the electromagnetic field : The excited states, 2s, 2p,
etc., of an isolated hydrogen atom do not correspond
to any real eigenstates of the system. However, if one
neglects high-order terms in the fine structure constant,
the eigenstate of the system becomes the product states
of the free electromagnetic field and the isolated hydro-
gen atom. One can then compute the approximate
thermodynamical behavior of the system using these
metastable states.

(iv) We have seen that the presence of hard-sphere
interactions for a dilute Bose gas gives rise to, on the
one hand, phonon excitations which are superposable
collective modes (i.e., that behave approximately as
independent free modes), and also on the other hand,
interactions between these modes which cause their
scattering and their instability. It seems extremely
plausible that the existence of certain superposable
excitations that scatter and decay is a general char-
acteristic of any nonlinear quantum mechanical system
with a large number of degrees of freedom. In such a
system, then, the problem of the interactions and the
instability of the excitations and the problem of the
very existence of these excitations must both go back
to the nonlinearity of the original system, and cannot
be separately understood.
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APPENDIX

In this Appendix we shall study the behavior of a
model whose energy spectrum is given exactly as

E=4rapN[1+4 (1— )T+ muwr, (A1)
where
N3 me=(1—§)+0(N7),
<0
and

wr=Fk (k24 16wakp).

To the first order in (a/A) [for pa’<1] the thermo-
dynamical functions E, S, p, etc., of this system have
been calculated in the text. These first-order results are
the same as that of a dilute system of hard spheres
obeying Bose statistics. To higher orders in (a/A) the
thermodynamical functions of a physical dilute system
of hard spheres are not expected to be the same as that
of this model. In fact, we shall show that if we take
this model seriously and evaluate the partition function
to higher orders in (a/A) the resulting p—V diagram
exhibits unphysical behavior of the Van der Waals
type. In particular, the results of the partition function
of this model show that as one follows the isotherm
from the gaseous phase to the liquid phase there is a
sudden drop of pressure. This discontinuity of pressure
occurs at a critical density

pe=N"3(2.612)— (9.63)A=%(a/N)+O0[a?/\5], (A2)
with an amount
pa—po=—1(29.3)xTp.(a/N)? (A3)

where pq and p, are, respectively, the pressures in the
degenerate phase and in the gaseous phase as the
density approaches p..

On the other hand, one may use the grand pariititon
function, instead of the partition function, then the
corresponding p— V diagram would exhibit a flat por-
tion. There will not be any discontinuity in pressure,
but instead a discontinuity of density with the density
po of the degenerate phase different from the gas density
pg. Both pg and p, differ from A—3(2.612) by an amount
O(a/AY). This discontinuity of density occurs at a
pressure

Npo/kT=1.342+(2.612)2(2a/N)+O[ (a/N)?]. (A4)

To prove (A2), (A3), and (A4), let us first consider
the partition function. It is necessary to investigate in
the (£¢) plane the detailed behavior of the curves
£=¢£(p,t) [Eq. (27)] and to find the maximum value
of @1 InQ(¢) along these curves for fixed values of p.
The functional form of @71 InQ(£) is given by Eq. (26).
We notice that at £=0 and { <1

a
a—flzﬂ‘1 InQ (%) ]<0. (AS)
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Since & cannot be less than 0, the points with £¢=0
and ¢<1 always correspond to local maxima of
Q1 InQ(#). It is easy to show that for low density,

[pA2—(2.612)]<0(a/N), (A6)

these local maxima are also absolute maxima of
271 InQ(£). The above condition [Eq. (A6)] is satisfied
in the gaseous region. The most probable value of £ in
the gaseous region is, then,

£=0. (A7)
However, as we increase density such that
[poA3— (2.612) ]~O(a/r), (A8)

then these local maxima may not be the absolute
maxima of @1 InQ(%).

To investigate the detail change of £ in the liquid
phase near transition, it is necessary to calculate the
integrals @1 InQ(¢) and (1—¢)p [Eqgs. (26) and (27)]
to very high orders in (a/X). Let us write

f=e (A9)
It is convenient to define a parameter x,
x=¢/(2a£p)?). (A10)

Equations (26) and (27) can then be written as

Q7 InQ(§) =N"3gs () —4map?B[1+ (1—£)* ]+ (1—£)pe
—2atpN g3 ()4 (2a8p) B ()

. +3(2a£0)A\[:(5)— (x/ ) ]H+-O[ (a6)¥], (A11)
an
(1= 8p=2"3g1(5)+1"*(2ap) 4 (x)

—2aipN [ g3(5)— (w/ )1 ]HO[ (ad)%], (A12)

where A (x) and B(x) are defined as

2 ™ ¢ E+1)i—1q}
A(x)=—o- —l[————] ~f‘*]dt. (A13)
\/7r o x+t¢ 241
and s ey
B@=— [ —@Le+0i-17-3+8a (A19)

Vrdo xtt
The functions 4 (x) and B(x) satisfy the relation
dB/dx=—A(x)— (x/x)% (A15)
The integral 4 (x) can be evaluated explicitly. It is
A(x)=—42/m)}2(rx)— 4a[w (22+1) T

_f 1mrt @+
XE1+ (x2+ 1)*]%[ tan 1(‘72%—]-.-:":(?_'?@)

x
+tan™! (——————)
, V2[1+ (a24-1)4]}
—3a[ 14+ (@+ 1) In@ ' [1+ (224-1)1]

+V2a {1+ (2 1)1]) } (A16)
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Fr16. 4. Schematic plots of £=£(¢,p) [Eq. (A19)] for the model

(discussed in the Appendix). Figures 4(a), 4(b), 4(c), 4(d), are

for the density ranges (a) 0<—8p<(16/7)(a/N*), (b) (16/)

X (a/A) < —8p<(10.4)(a/AY), (c) (10.4)(a/A\*)<—dp<4w(a/AY),

and (d) —8p>4w(a/)%), respectively. The points 7 and M denote
the minimum and maximum of @ InQ(¢) along these curves.

Let us define
Sp=p—A"3(2.612). (A17)

In the following we shall consider only the region near
the transition point, i.e.,

A8p~0(a/N),
and (A18)

&~0(a/N).

For these ranges it is easy to see that Eq. (Al2)
becomes

—tp+0p=—N"2(we)?
+X"2(2a£p) 4 (x)+0(a?/N%).  (A19)

In Fig. 4 we plot the curves £§=£(p,¢) in the (&) plane
for the various values of p. In the following we discuss
the different physical conditions for these four figures:
4(a), 4(b), 4(c), and 4(d).

1. In Fig. 4(a), we plot schematically a typical curve
£=£(¢,p) [Eq. (A19)] for a p value which satisfies

0< —0p<1671(a/A%). (A20)

We see that since

this curve is broken into two pieces. The maximum
value of @' InQ(£) along this curve can be found by
setting the derivative of @'InQ(¢) with respect to £
equal to zero,

i}
—[Q 1 1nQ(¥)]=0. (A21)
9¢
Upon using Eq. (A11), (A21) becomes
e=(2a)}(£) 3B+ (14+x)A+-(rx)¥].  (A22)
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Combining with (A19), (A22) yields two roots £, and
£y corresponding to a minimum and a maximum of
271 InQ (%), respectively. In Fig. 4(a) we denote these
two points as m and M. As explained before, the point
M which denotes £=0 corresponds to a local maximum.
However, by using the above expressions, it can be
proved that

0 InQ (£20)>2 InQ (£=0).
Thus the most probable value is

(A23)

£=tu.
Figure 4(a), then, corresponds to the degenerate phase.
2. In Figs. 4(c) and 4(d) we plot the curves &= £(p,{)
for
10.4(a/\) < —dp<4m(a/\), (A24)
and
—8p> 4 (a/)\Y), (A25)

respectively. In both cases, (A21) and (A19) yield only
complex solutions for £ Consequently, along these
curves

I}
52[94 InQ(¢)]<0. (A26)
Thus we have
£=0, (A27)
provided
—8p> (10.4) (a/)Y).

Figures 4(c) and 4(d), then, correspond to the gas phase.
3. In Fig. 4(b) we plot the curve £=§£(f,0) for a

density
16771(a/A) < —8p<10.4(a/N). (A28)

In this case (A21) and (A19) still determine two real
roots &, and &, correspond to a minimum value and a
maximum value of @1 InQ(¢). However, if

—6p<9.63(a/\Y),
then we have
Q1 InQ (£2) >0 InQ (£=0).
For densities with
—6p>9.63(a/N\Y),

we have
@ InQ (&) <@ InQ(£=0).
Consequently, we have for the most probable value of ¢,
=gy for —\%p<(9.63)(a/N),

and

£=0 for —A%p>(9.63)(a/)).

Thus at the critical density value,
Ppe=N"3(2.612)— 9.63 (a/\)+0(a¥/A%),

there is a discontinuity of £ and a discontinuity of
pressure. -
(i) On the degenerate side, as the density p — p.+,
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the parameters £ and x approach

E— 4.23(a/)), (A29)

and

x— 0.66. (A30)

Correspondingly, 2! InQ and the pressure p4 approach

Q1 InQ — [N3(1.342) — 8map2B—23.6A%(a/N)*], (A31)
pa— (pa)e=N"%T(1.342)

+8mwap2— (36.7) (a/N)%oxT. (A32)

(ii) On the gaseous side, the parameter £ is always

given by
£=0. (A33)

As the density p approaches the critical value p,, the

pressure p, and ! InQ approach

Q1 InQ — [A3(1.342)— 8map 2B
—(23.60)A%(a/N)*], (A34)

and

po— (Po)e=N"T(1.342)+8map2— (7.4)(a/N)*pkT.
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the degenerate phase there is a sudden unphysical drop
of the pressure of the order of (a/A)?,

(pa)e— (po)e=—29.3(a/N)’pexT. (A35)

This shows that although to first order of (a/A) the
thermodynamical functions are correctly evaluated by
using the energy spectrum [Eq. (A1), the higher order
terms of this model do not correspond to any real
physical system.

On the other hand, one may use the grand partition
function instead of the partition function, to calculate
the thermodynamical functions for this model. It is
easy to show that the use of the grand partition function
leads to the well-known application of Maxwell’s rule
of equal area on the Van der Waals type isotherm ob-
tained from the partition function. From the previous
results for the partition function one finds that the
resulting isotherm by using the grand partition function
has no discontinuity in pressure, but, instead, a dis-
continuity of density

(pa—pg)~0(a/N),

Thus we find that as we change from the gas phase to  which occurs at a pressure p, given by Eq. (A4).
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Certain phenomena in nature, such as the 50- to 100-kev electrons of the aurora, suggest that there are
plasma-dynamical processes which can quickly transfer the translational energy of the ions in a plasma
stream to the electrons (some 20 kev/ion for a 2000-km/sec solar wind). It is shown that two interpenetrating
streams of noncolliding and initially neutral plasma can achieve this energy transfer with a characteristic
time comparable to (M /m)* times the plasma period. The process is closely analogous to the excitation of
plasma oscillations by two interpenetrating electron streams, but of course proceeds to much greater electron
energies because the ion components of the streams carry so much more kinetic energy than do the electron
components. Hence, besides the auroral electrons, it is probably responsible for solar radio emission, rather
than the electron streams implied in current theories.

Further, the process is probably the dominant interaction in shock fronts, particularly in astrophysical
cases where neither direct collisions nor the existing weak magnetic fields can give sharp fronts. The char-
acteristic thickness of a shock front in the solar wind is of the order of 10* cm due to the above plasma
excitation whereas the Larmor radius of the ions, which would otherwise determine the shock thickness in
the absence of collisions, is 100 km or more.

I. INTRODUCTION

E have previously noted the common appearance
in nature of charged particles with energies very
much in excess of the general thermal background.!
Cosmic rays from interstellar space and from solar
flares® represent the most extreme case of high ion

energies. More moderate examples are the primary
auroral protons® (with energies up to a few hundred
kev) and the deuterons responsible for the neutron
production observed in laboratory electrical dis-
charges.*® The soft x-rays observed by van Allen®

3J. W. Chamberlain, Astrophys. J. 126, 245 (1957).
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