
1404 H. M. FRIED AND D. R. YENNIE

d4k

(a k)(b k)$ =
~ p k'k' 2Pn—l

rrsi t
'

l
(a S=r)(b P=r)

e~
dY„r dx[D„(x))—"-,'(a b) (1—x)—(1—2x) (A-4)

I
d'k

(a k)(b k)(c k)$„=,~ dF~ r dx[D„(x))" -', x(1—x)[(a b)(c p„r)"s k'k'
(a pe r)(b ps r)(c p r)+a„(b.p„r)c„+(a.p„r)(bc))+x(3x—2)

2Pn—l
(A-5)

(a 'k) (b 'k) (c'k) +n, d+fl—1 x dxP4(x)) (a'ps —1) (b 'ps —1) (c 'pn —1)
I. d'k 7rsi

p k2 B 0

7r2i pl

+ ' dI'.-1 +dx[D-(x)) '"-"L(a b) ('P=r)+as(b 2 --r)"+(a P--r) (b'))
2e(rs —1)» o

The term a„(bp r)c„is written in this form, rather than (a.c)(b p r), to insure obtaining the correct expression
when any two or more of the u, b, c are, or contain, p matrices.

PHYSICAL REVIEW VOLUME 112, NUM BER 4 NOVEMBER 15, 1958

Ehmination o& Ghosts in Propagators*

P. J. REDMOND

Department of Physics, University of California, Berkeley, California
{Received July 21, 1958)

Within the general framework of perturbation theory a method
for calculating modified propagators in terms of proper Feynman
diagrams is derived. This method differs from previous approaches
in that one insists that the propagator have the correct analytical
behavior as a function of p'. As a result one gets an expression for
the propagator which is similar to a conventional term-by-term
perturbation theory expansion except that it is only necessary to
consider proper diagrams and that the iteration of the proper
diagrams is represented by a damping factor. As an example, the
meson propagator for a pseudoscalar meson coupled to nucleons
with a pseudoscalar coupling is approximated by considering
only the lowest order proper diagram, a nucleon-antinucleon
bubble. The resulting expression for the propagator has the

following interesting properties: (l) by construction it has the
proper analytical behavior as a function of P', (2) the result has a
singularity at gs=0 when considered as a function of gs, and (3)
the wave function renormalization is finite. These three properties
are intimately connected and when this connection is realized
it is easy to understand why the usual methods of expressing
propagators in terms of proper Feynman diagrams leads to ghosts.
It is the purpose of this paper to understand this connection and
to indicate how it is possible to take into account consistently the
iteration of proper Feynman diagrams without ever having ghosts
appear. It is also found that an asymptotic expansion valid in the
region g'=0 is possible and that this asymptotic expansion is
identical with the perturbation theory series.

I. INTRODUCTION
' ~OR definiteness in what follows, and for simplicity

in presenting the arguments, we shall consider a
pseudoscalar boson field with mass p represented by
the renormalized Heisenberg operator p(x). The

dependence on isotopic spin will be suppressed in what

follows since for the propagator this dependence is a
trivial 6 p. The extension of the methods developed in

this paper to fields with additional degrees of freedom

such as the electromagnetic field, or to fermions, is

straightforward and will not be discussed.

We wish to find an expression for the modified

propagator hs'(p') which is defined in terms of the

* Supported in part by the Once of Ordnance Research, U. S.
Army.

vacuum expectation value of a time-ordered product;

The lowest order approximation to this function is
given by As (p') where 4&(p ) = (p'+p' —ie) '. Histori-
cally the first attempts to calculate the corrections terms
were based on a term-by-term perturbation expansion
in the coupling constant. In electrodynamics the
corrections thus obtained were found to be small and
reasonable in that, for example, they led to small
terms in the Lamb shift which due to the precision of the
experiments could be seen to be necessary.

For strong-coupling meson theories it is readily
seen that such a simple procedure does not prove to be



ELI M I NATION OF GHOSTS I N PROPAGATORS 1405

In this equation the kernel E(p') is determined by
considering only diagrams which do not involve
iterations, i.e., only the proper Feynman diagrams.

More recently Lehmann4 has made a very important
contribution to the understanding of the properties of

propagator s. This contribution is of a somewhat
diferent character from the techniques discussed above
and concerns the analiticity properties of 6&'(p') as a
function of the complex variable p'. For the meson

propagator Lehmann's result can be summed up in the
equation

DF'(p') = + dm'

P+p se (s )'

y(m')

p'+m' —ie
(3)

In this equation the function 7((ms) is real and positive
for m') (3p)' and vanishes for m'= (3p)'. This equation
states that Ap'(p') has a pole at p'= —p' with residue

1, a branch-point going from p'= —(3p)' to p'= —~
and no other singularities. The assumptions made by
Lehmann in deriving (3) are such that one would

expect the propagator given by any "physically
reasonable" local Geld theory to have this form except
for the possibility of the theory having bound states
which can virtually go into the one-meson state.
Bound states would lead to additional poles with

residues not necessarily equal to one. Although the
presence of such bound states would not cause any
great difhculty in what follows, we shall assume they
do not exist.

Lehmann has shown that the term-by-term per-
turbation series expansion for hF'(p') has the form

given in Eq. (3). From this it is possible to deduce

that, after renormalization, E(p') has the form

p(m')
E(p') = (p'+p') dm'

4 (s~l~ p +m se
(4)

with p(ms) real and non-negative. Combining Eqs. (2)

' K. A. Brueckner, Phys. Rev. 91, 761 (1953).
s F. J. Dyson, Phys. Rev. 76, 1 (1949).
~ J. Schvrrnger, Proc. NatL Acad. Sci. U. S.37, 452 (1951).' H. Lehmann, Nuovo cimento ll, 342 (1954).

adequate. It is true that EF(p') is an excellent approxi-
mation to As'(p') in the region p'= —p'. However, for
values of p' which contribute significantly to the results
of meson theory calculations it was noted that the
corrections to hs(p') can be large compared to the
leading term. ' Dyson' and Schwinger' found that with
very little effort it is possible to iterate the simple
perturbation theory result and they obtained an
algebraic equation which the propagator must satisfy.
Thus

~~'(p') =~~(p')+~~(p')&(p')~~'(p') (2)

and (4), it is then possible to write'

AF (P2) (P2+fs2 se)
—1

p(m')
X 1—(p'+ps) dm' — . (5)

~ (s„) p'+m' —ie.

In the past' ' ~ attempts to improve the term-by-term
expansion for the propagator have consisted of using
Eq. (5) and approximating p(m') by the sum of a small
number of terms corresponding to the simplest proper
diagrams.

In renormalizable theories where perturbation theory
suggests that the wave-function renormalization con-
stant Z ' is logarithmically divergent, such a procedure
yields a propagator which does not have the desired
form. That is, since p(ms) in such a theory behaves as
1/m' for large m', it is found that the denominator in

(5) vanishes for some value of P') —p'. s In pseudo-
scalar meson theory with pseudoscalar coupling and a
reasonable value of the coupling constant, it is found
that the actual root occurs at p') 0.' Hence the doubtful
and undesirable explanation that the root represents
a stable bound pseudoscalar particle with isotopic
spin 1 and a mass less than the meson's mass is not
possible. For a nucleon propagator which has a more
complicated form, it is possible to have two complex
conjugate roots for p'. Also the wave function re-
normalization constant Z ', which can be defined as
the limit Psd ~'(P') and which must be greater than one,
as can be seen from Eq. (3), approaches zero through
negative values. The properties of such approximate
solutions have been discussed extensively' in connection
with the Lee model, m for which Eq. (5) provides an
exact solution with only one proper diagram con-
tributing. Also Feldman has shown that when one
uses such an approximation for the propagators in
attempting to calculate the magnetic moment of a
nucleon one is led to new infinities in the theory,
and he was unable to eliminate these infinities in any
consistent way.

It is possible to arrive at any one of several, not all
consistent, conclusions from an examination of the
above results. (1) It is possible to suppose that the
unphysical features of the approximate solution, which

are collectively known as ghosts, are a characteristic

s Equations (4) and (5) are characteristic of perturbation theory.
The author does not believe that they can be proven in a more
general sense. However, if the exact propagator is such that it
does not vanish in the region ps real and —(p)'&p') —(3p)',
then the arguments used later in this paper can be reversed to
prove Eq. (5) and hence Eq. (4) as a consequence of Eq. (3),
which of course can be established generally.

s Ning Hu, Phys. Rev. 80, 1109 (1950).
7 S. Kamefuchi and H. Umezawa, Progr. Theoret. Phys. Japan

9, 429 (1953).
s G. Feldman, Proc. Roy. Soc. (London) A223, 112 (1954).' G. Kallen and W. Pauli, Kgl. Danske Vidensdab. Selskab,

Mat. -fys. Medd. 30, No. 7 (1955).
'0 T. D. Lee, Phys. Rev. 95, 1329 (1954).
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of the exact solution if such an exact solution exists
and that the ghosts cannot be eliminated. In this case
it would be necessary to abandon local field theory. "—'4

(2) It is also possible to surmise that the field theory
does not in itself completely define the solution but

„
that one can in some self-consistent way impose
additional restrictions corresponding to additional
physical assumptions which permit one to infer results
which can be compared with experiment. (3) Finally,
one can assume that an exact solution exists which
does not have any "unphysical properties. "

We shall find that the assumption of a well-behaved
exact solution, i.e., a solution with no ghosts, permits
us to rewrite Eq. (5) in the form given by Eq. (3) and
to determine y(ns') in terms of p(nz'). Although these
two forms are equivalent for the exact solution, the
effect of making approximations to p(m') in the two
solutions can be quite different. The difference between
the two approximations thus obtained gives consider-
able insight into why the ghosts appear when one
approximates to Eq. (5). We believe that the insight
thus gained gives a strong argument that an exact
solution does indeed exist and that many of its proper-
ties can be inferred.

It should also be remarked, however, that the weaker
postulate numbered 2 could also be adopted and would
yield the same results. The equations would remain
the same but the text would have to be changed.

II. ARGUMENT

We shall assume therefore that for the exact solution
the denominator in Eq. (5) never vanishes. (That is
there are no additional bound states and no ghosts. )
This implies that the integral

de p(m')
(3e) '

is finite, since otherwise there would be a real root for
some p') —p'. The function AF'(p') can then be
continued for complex p and it has the following
properties:

For p'& —(3p)' the Feynman function is defined as the
limit obtained when p'~ m' —ie. The function 7c(m')
can be expressed in terms of p(m') by using the
relationship

~X(m') =imaginary part lim
p2 ~ —m& —i~

~~'(p') (~)

Thus

where

and

x(~') =i (~')/D(m'),

D(rrr2) gr(~2)+~2(r12 p2) 2(~2)

c(p)
E(m') =1 (m'—IJ,2)P—l~ dP

(3p) 2 ss P

where P indicates that the principal value of the
integral is to be taken. The fact that x(rid) is obviously
real and non-negative completes the identification of
Eqs. (3) and (6).

Therefore the form of h~'(p') we wish to discuss is

p(re')
+

~

dm' . (11)
& (3„l* D(m') (p'+m' —ie)

III. PROPERTIES OF THE RESULT

In order to illustrate the difference between Eq. (5)
and Eq. (11) when an approximation to p(m') is
inserted in the respective equations, we shall consider
the contribution from the nucleon-antinucleon bubble.
This approximation we shall denote with a subscript 0,
and it is found that

g' m(eP —4M')&
po(m') = m'&4%2

4'' (m' —p')'
(12)

arrives at an equation of the same form as Eq. (3):

1 r
" g(m')

ag'(p') = + dm'
p'+ p,

' ~ (3„)~ p'+m'

1. It has a pole at Pr= —pr with residue 1.
2. It has a branch line from p'= —(3ii)' to p'= —co.
3. It is of the order 1/p' as p' -+ ~ .
4. It has no other singularities.

=0, m'~& 4M'

where M is the nucleon's mass. Then

l(P 43P)—
X dP . (13)

4m* (P—ii')'(m' —P)

g2

From these properties we can rewrite A~'(p') as a +&(rid) =1,(re &)P
Cauchy integral, deforming the path of integration so
that it goes along both sides of the branch line, and
closing the contour with an infinite circle. Thus one

"Landau, Abrikosov, and Khalatnikov, Doklady Akad. Nauk
S.S.S.R. 95, 1177 (1954);96, 261 (1954).' Abrikosov, Galanin, and Khalatnikov, Doklady Akad. Nauk
S.S.S.R. 97, 793 (1954).

'3 J. C. Taylor, Proc. Roy. Soc. (London) A234, 296 (1956).' For a contrary opinion, see N. N. Bogolyubov and D. V.
Shirkov, Nuovo cimento 3, 845 (1956).

When m'~ ~ it is easily seen that Eo(m')~in''.
We shall also verify this by calculating Ro(m') in what
follows. Therefore Do(ns') behaves like (in'')' for
large m'.

The general expression for the wave-function re-
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normalization constant is Thus~5

p(m2)
Z '=1+ dm'

D (m')

When one substitutes ps(m2) and Ds(ms) in Eq. (14),
one finds that the damping factor Ds(ms) provides an
additional convergence factor which is just sufhcient
to make the integral converge. We thus arrive at the
surprising result that by considering only the single

proper diagram corresponding to a nucleon-antinucleon
bubble, one gets a finite wave function renormalization
which is in the physically sensible region.

HOWeVer, if ps(m2)/Ds(ms) iS ezpanded in pOWerS Of

g', a series of divergent terms for Z ' results.
Chew has pointed out that the approximations (12)

and (5) to 6„'(P2)are simply related, for g' real and
positive. Thus

2 1 rrp'+4M2q &

!X ——+—
!

1+LP'/(P'+4M') j'*
Xln

1—LP'/(P'+4M')3'-+; g') 0, p') 0. (16)—E2

This equation lends itself readily to the computation
of K' and Z '. For values of g2/42r&25 one finds that
E2))p2 and this permits further simplification of the
equation. One then finds the following relations by
locating the pole and finding its residue

1
dm

)i +p 42r'

pp(m') Z—'

Dp(m') (p'+m2) p' K2—
g' )1 1+y

4rr Ey 1—y
(17)

( )
(15)

p+m

po m
+ (ps+)i') ' 1—(p'+p') dm'

~ 4~'

where K' is the value of p' at which the ghost occurs
in the approximation (5). The residue at the pole in the
approximation to (5), (—Z '), is obtained by comparing
the behavior of both sides of Eq. (15) when P2 —+ +~.
Therefore it is possible to note that if an approximation
is made in Eq. (5) and the ghost pole is subtracted with
the correct residue, that a positive-definite density
function results.

The proof of Eq. (15) is straightforward. After the
pole is removed, the right-hand side of the equation is
su%ciently bounded that one may perform the Cauchy
integral and neglect the semicircle at infinity. The
extra term does not contribute to the imaginary part
and the pole has been eliminated so the result im-

mediately follows.
The relationship given by Eq. (15) is of course also

valid for any other approximation to p(m2) for which
the term in square brackets on the right-hand side of
Eq. (5) has only one zero. In particular it is true for
any approximation which satisfies the conditions
ps(m2)) 0 for m') ms') (3ii)'; ps(m2) =0 for m'&ms2
and ps(m2)~m 2 for large m.

The above result provides a convenient tool for
examining the relationship between the two approxi-
mation methods. If one makes the very valid approxi-
mation that m2))p, in the region of integration m') 4M
then the right-hand side of Eq. (15) is readily evaluated.

(1 1+y & ( (1—y') 1+y)
(18)

Ey 1—
y ) E 2y 1—y3'

and y is defined by

K2/4M2 —y2/ (1 y2) (19)

By varying y it is possible to determine E2 and Z '
as functions of g'. Thus for y =0.5 (g2/42r) = 16, Z= 0.894
and K'= 4M'(0.33), and for y= 0.6(g2/42r) = 10.1,
Z=0.845 and K'/4M'=0. 56.

It is much more interesting, however, to examine
the behavior of these constants in the region g'=0 and
hence y=1. Making these approximations one readily
finds that

Z=gs/42r2 —exp (—42r'/g2),

K2/4M2~exp(42r2/g2)

(20)

(21')

't' In spite of its appearance this expression has no singularity
at p'=0. The form given is suitable for p') 0 and its continuation
to other regions presents no di%culties.

' The first suggestion that held theories might be singular in the
region g'=0 was made by F. J. Dyson, Phys. Rev. 85, 631 (1932).
Also see W. Thirring, Helv. Phys. Acta 26, 33 (1933).

If these results are substituted into Eq. (16), we see
immediately that the result we have obtained using
only a slight modification of perturbation theory has
an essential singularity at g =0.'

A more precise description of the singularities in the
approximation to Az (p') can be obtained by inspecting
Eq. (11).The function is a singular function of g' for
all values of g' for which Ds(ms)=0 and for which m.'
is in the region of integration. It is readily seen that the
curve of singularities is a closed curve enclosing that
part of the real axis for which —go'(g2(0. —go' is the
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double root of the equation Ds(4M') =0. In the region
gp (g (0 there is no ghost and Eq. (15) is modified

in that Z ' must be set identically equal to zero. It is
clear that the curve of singularities is a natural boundary
with Eq. (15) holding for all points outside of the closed
curve and that for all points inside the curve of singu-
larities the ghost removing term does not appear.

Since, as is easily seen, the left-hand side of Eq. (15)
exists at the origin and all its derivatives exist at
g~=0, it is possible to define an asymptotic expansion
for the function. By evaluating the derivatives in the
region g'&0, it is immediately proven that this asymp-
totic expansion is identical with the usual perturbation
series expansion. LNote that by using the approximate
Eqs. (20) and (21) it is seen that the extra term which
occurs in the region g') 0 is dominated by exp( —4m'/g')
which vanishes and has only vanishing derivatives at
the origin. Therefore, to within the approximations
used in deriving (20) and (21), the result that the
asymptotic expansion coincides with the perturbation
series is again confirmed. ]

IV. DISCUSSION OF RESULTS

The essential point to consider, when one tries to
understand the significance of the fact that Eq. (5)
yields ghosts when p(res') is approximated by a finite
power-series expansion in g, is that the wave-function
renormalization is finite. The basis for believing that
the wave-function renormalization is finite is already
present in some work by Lehmann, Zimmermann, and
Symanzik" where they suggest that the vertex function
must go to zero as its argument goes to ~ instead of
remaining finite. If the vertex function goes to zero
sufficiently rapidly, then one can show that at least a
contribution to the wave-function renormalization,
which in perturbation theory is infinite, will become
finite. Equation (5) itself, if one accepts the fact that
it yields a As'(p') with the correct analytical form,
implies quite transparently that the limit of p'6&'(p')
as p' —+ ~ is finite. If the conclusion that the wave-

function renormalization is finite is accepted, this

"Indications that perturbation theory overestimates the
magnitude of the functions of 6eld theory are expressed in
Lehmann, Symanzik, and Zimmermann, Nuovo cimento 2, 425
(1955), where they discuss the vertex function.

must be reconciled with the fact that when one attempts
to expand Z ' in a power series in g', one gets a series
all of whose coefficients are infinite. The reconciliation
is simple; Z '(g') is not regular at g'=0. 's

When one substitutes into Eq. (5) an approximate
expression for p(res', g') which is a power series in g', it
must be realized that one is doing the following: one
is approximating 6F'(p', g'-) by a function which cannot
have the correct analyticity properties as a function of
g', and which does not necessarily have the correct
analytical properties as a function of ps. It should not be
considered surprising then if it fails to reproduce either
of the analyticity properties correctly.

V. CONCLUSIONS

Experience has shown that in fieM theory one must
be extremely careful when one attempts to go beyond
a term-by-term series expansion in the coupling
constant. As Feldman has shown, the most straight-
forward extension of perturbation theory when applied
to simple propagators leads to the appearance of
"nonphysical" infinities in the theory. As is well known,
the correct physical behavior of the functions of field
theory is intimately connected with their analyticity
properties. Since field-theoretical computations involve
integrations in the complex plane it is extremely
important, when one makes an approximation to a
function which is to be used in such a calculation, that
the approximation have the correct analyticity proper-
ties as a function of the momenta involved.

It is found that when one imposes the correct
analyticity properties on the propagator when con-
sidered as a function of p', it is possible to draw some
conclusions about its behavior with respect to the
coupling constant. One also obtains a form which is
suitable for further calculations.
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'8 One should note that this does not necessarily imply that
as'(p', g') has a singularity at g'=0 for finite p'. We have shown
only that one can expect lim„& „psas'(ps,gs) to he singular at
g'= 0. However, the form we have obtained implies that as '(p', g')
is singular at g'=0 for all p'


