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changed from (26) to

V,= (R'/S)LR~I'+Z'~, '—Z'(~s'+o) jq,
V,= (Rs/a) [R~,'UZI(~s'yo) —Z'~I'j~,

Vs= (R'/6) LR(4os'+o)+Z'toI' —ZItos'jy,

V4 ———cL1—R'o. (4os'+ o)/c'jy,
y= (1—(Rs/cs) j4o 's+.4o, 's+ (to '+o)s) )—

~2

(3o)

Thus in this case the relative velocity 0- does not occur
in the contravariant components explicitly, but instead
in the covariant expressions. Symmetry would be
achieved by using u' —~e instead of ~' —e in the
expressions (24) .

We denote once more S,'s rest mass of P by m, and
6nd for the energy the quantity —mcV4, but since as
before no= mop we have

ntoc'L1 —R'(eos'+o. )o/c'7y.

L1—(Rs/cs) {to 's+to 's+ (4os'+o)s}jl
This is easily verified to be the Lorentz transform by
(23b) of S 's expression for the energy of E; hence
agreement is again achieved.

The Clifford momentum-energy four-vector msR&o„
trtocy =E,/c could have been introduced for this
demonstration, but we did not wish to multiply symbols

any more than has been found necessary as it is.
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Based on the analogy between the calculations of radiative corrections to electron scattering and the
Lamb shift, a new procedure applicable to bound state self-energy problems is developed, wherein the
electron propagator is expanded in powers of the external potential. In the resulting sequence, a change in

the gauge of the virtual photon field conveniently removes from each term spurious lower order contributions
and yields a new and considerably simpler sequence; the expectation value of the 6rst two terms of the
latter is shown to account for the major portion of the Bethe logarithm. A simple method is developed to
sum all the n(Zn)'p dependence, and the result is the lowest order Lamb shift formula. The ease of the
calculation, as well as that involved in obtaining the relativistic level shift correction of order n(Zn)'t4

(not given in the present paper), indicates that the method may find application in the calculation of
further higher order effects.

1. INTRODUCTION

HERE is a close analogy between the calculations
of radiative corrections to electron scattering'

and those of the Lamb shift. ' ' This is because both
effects require the calculation of the vertex operator for
the interaction of an electron with an external potential.
In the approximation in which this vertex operator
depends only on the momentum transfer and not
explicitly on the electron's initial and final momenta,
it may be replaced by an equivalent effective potential
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which may then be used to predict both eGects. In
practice this approximation breaks down because of the
infrared divergence, which makes the vertex operator
depend logarithmically on the deviation of the electron's
four-momentum from its free value. In most of the
earlier calculations' the infrared divergence difhculty
was avoided by introducing a photon mass and by using

the resulting scattering operator to obtain only the
level shift contribution arising from the "high-energy"

virtual photons. In the calculation of the contribution

of the "low-energy" virtual photons, the intermediate

electron states were treated correctly in the nonrelativ-

istic dipole approximation; and the famous "Bethe
logarithm'" was obtained. When the two contributions

were added, using the connection formula of French, 4

the level shift was obtained correct to lowest order.

The more recent calculation of Karplus, Klein, and

Schwinger' avoids the infrared problem entirely by
evaluating the mass operator in the appropriate atomic

state. Baranger, Bethe, and Feynman' also evaluate

the mass operator; but as a matter of convenience, to
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FIG. 1. The pictorial equality demonstrating the result of
iterating the bound state propagator. The double-line notation
is used to denote electron propagation in the Coulomb field of
the nucleus.

~ See references 1 and 4, and also Schweber, Bethe, and de
Hoffmann, 3desorts artd Fields (Row, Peterson and Company, New
York, 1955), Vol. I, and J. M. Jauch and F. Rohrlich, Theory of
PhotoIts artd Electrorts (Addison-Wesley Publishing Company,
Cambridge, 1955).'E. E. Salpeter, Phys. Rev. 87, 328 (1952); 89, 92 (1953);
C. M. Sommerffeld, Phys. Rev. 107, 328 (1957).The most recent
comparison between theory and experiment for hydrogen and
helium is given in E. Lipworth and R. Novick, Phys. Rev. 108,
1446 (1957). The difference between the experimental and
theoretical values is —0.22+0.23 Mc/sec in hydrogen and—16.6a7.5 Mc/sec in helium.

make use of the techniques developed by Feynman,
they introduce a small photon mass. In the end, the
photon mass cancels out; but during the course of the
calculation it serves to prevent the separate contri-
butions from becoming divergent. The latter two
calculations were carried out to lowest order in the
number of virtual photons, and to order Zo. beyond the
lowest order level shift. When all other known correc-
tions are included, the theoretical results are in good
agreement with experiment for hydrogen, but there
exists a discrepancy in the case of singly ionized
heilum. '

There were two main reasons for undertaking the
present work. The first of these is mainly pedagogical.
It seemed interesting to carry out the level shift
calculation by making a straightforward expansion of
the bound state electron propagator in powers of the
external potential. It is well known, of course, that
such an expansion is not directly an expansion in powers
of Zo, because of the dependence of the atomic state on
the external potential. However, it would be interesting
to see from which order in the expansion the major
contribution comes. In the past, such a procedure
seemed doomed to failure because the contribution due
to the Bethe logarithm would be difficult to reproduce.
This contribution is nonrelativistic and depends on the
electronic wave functions at relatively large radii (Bohr
radius); this, together with the fact that the logarithm
has Zn as a factor of its argument, suggests that in the
intermediate states many scatterings of the electron by
the Coulomb potential may be important. In fact, as
will be seen below, the expansion can be carried out
and the bulk of the contribution comes from the first
two terms; however, in order to avoid spurious terms
of lover than the desired order in the separate parts of

the expansion, it is found necessary to make a special
choice of the gauge of the quantized photon field. The
second reason was that it was hoped that a more
straightforward procedure might lead to a simplification
of the calculation and permit the evaluation or esti-
mation of some of the previously neglected contribu-
tions. Although the present agreement between theory
and experiment for hydrogen is quite good, as a result
of the recalculation of the electron's anomalous mo-
ment, ' these neglected terms might be sufficiently large
to destroy the agreement. A few years ago, when there
was a discrepancy, it was commonly felt that the cause
might be found in higher order corrections. Aside from
this consideration, an estimate of the higher order
contributions is necessary for the evaluation of level
shifts in heavier elements and might resolve the
discrepancy between theory and experiment for ionized
helium.

In free scattering, the infrared divergence problem
arises because an electron can emit and absorb soft
photons without being displaced very far o8 the free-
energy shell. In terms of the formalism of Feynman, '
this results in electron propagators which have very
small denominators; and in combination with the
photon propagator, these lead to the infrared diver-
gence. By giving the photon a small mass X, the diver-
gence is eliminated; the resulting matrix element then
depends logarithmically on X. In the Lamb shift calcu-
lation, on the other hand, no infrared divergence arises
because the electron's four-momentum is o8 the free-
energy shell. Thus, even for very small photon energies,
the electron propagator has a nonvanishing denomi-
nator equal to (p'+tt'); the resulting vertex operator
then depends logarithmically on this quantity. As will
be demonstrated below, the expectation value of this
logarithm yields an appreciable portion of the Bethe
logarithm. These remarks may be summarized by
saying that the quantity In(X/tt) of the free-particle
scattering is eRectively replaced by a term of the form
InL(p'+tt')/tu']. Since p'+tt' is approximately p'+2tte„
where e, is the (positive) binding energy in the atomic
state a, the correspondence here is then

The expansion of the bound state electron propagator
S&' leads in a natural way to the terminology of
"zero-potential" (ZP), "one-potential" (OP), and
"many-potential" (MP) terms, represented in the
familiar way by the Feynman diagrams of Fig. 1. It
should be pointed out that this classification divers
from that of reference 6, because in that work the
equation satisfied by the atomic state was used to
rearrange the powers of the potential. After mass
renormalization has been performed on the ZP term,
there remains a spurious ultraviolet divergence of the
charge renormalization type. As in the case of free
electron scattering, this is cancelled by a corresponding
divergence arising from the OP term, as a consequence
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of Ward's identity. ' The usual scattering prescription"
for the isolation of these divergent terms will not be
followed, since this would have the immediate conse-
quence of introducing spurious infrared divergences into
the calculation.

One difhculty peculiar to this approach is the presence
of terms in the "zero- and one-potential" (ZOP)
contributions which are of order a(Z4r)'l4 and 4r(Zn)'f4

Xln(Z4r). Such spurious terms must be cancelled by
corresponding quantities in the remaining MP terms,
and it is not difIicult to see that contributions of this
order are, in fact, present in the latter. The presence
of these terms is related to the choice of gauge of the
virtual photon. By changing the gauge from the usual
one, a new sequence of ZOP and MP terms is obtained,
each of which is free of such lower order contributions.
In the new gauge, the operator whose matrix element
is desired is much simpler than the original operator.
The choice of a new gauge corresponds to using the
equation satisfied by the atomic state to rearrange the
powers of the potential, as in reference 6; but it is a
different, and perhaps simpler, rearrangement.

In this paper the aforementioned analogy will be
exploited to develop a new procedure for the Lamb shift
calculation and a simple means for the estimation of
the Bethe logarithm. Although the relativistic correc-
tions of order n(Zn)'l4, obtained in references 5 and 6,
may be found in a very straightforward manner using
a slight variation of the methods presented below, only
the lowest order Lamb shift formula will be derived

here; it is planned to include the former along with a
treatment Of the aS yet unknOWn 4r(Z4r)'I4 COrreCtiOnS

in a subsequent paper.

2. "ZERO- AND ONE-POTENTIAL" CONTRIBUTIONS

(2.3)

where V in turn is defined by the statement that

Vf(p) —= d'p' tt(p —y')f(p')

for all suKciently well-behaved f(p)."
Defining the function

p d4k

(2 4)I(p„p)= v„Sr'(pi It, p k)y„,— —
I- k'

one obtains, by the iteration of Eq. (2.2),

1(p,p) =b( )Io(P)+I (P—P)

equation
b(pt-p)

Sr'(P, It,—P—A.)= + d'P'
pi —fr ZI4 pi )4',

Xc(y,—p')Sr'(P' —k, P—k), (2.2)

where the quantity a(q) is the Fourier transform of the
Coulomb field V(r):

V(r) = iV4(Zc—4)/r,

a(q) = (2~) ' d'x V(r) e ''4'

=iv 4as (q) = —iv 4 (Zn)/2a'q'.

For the purpose of formal manipulation, it will often
prove convenient to replace the propagator Sr'(pi —ft,

P—A'.) by an operator SF'(P—ft), whose matrix elements
between momentum eigenstates yield the propagator
in the momentum representation. This operator is
defined by the formal relation

The expression for the energy level shift of the atomic
state c, due to the virtual emission of a photon of
four-momentum k„," is given by"

where
+Is(pt»)+ ' ' +~~(Pt»)+ ' '&

t- d4k
hE, = —2n d'pid'p q. (yi)J g k2

Xv.Sr'(Pt »P &)v.v.(p)— (2 —I) f t(pt, p) =
t. d4k

a(p, —p)
~ r k Pi A'. SI4 P It '4p

The bound-state propagator Sp' satisfies the integral

' J. C. Ward, Phys. Rev. 77, 293 (1950); 78, 182 (1950).
'P See, for example, Schweber, Bethe, and de Hoffmann,

reference 7, Vol. 1, Chap. 24, or Jauch and Rohrlich, reference 7,
Chap. 10.

"The relativistic notation used is such that a„=(a,eae), (a b)
a b a4be,=V„.V„—+V„y„=2S»,V„+=V„,a„V„=a,ip=rp+V4, d'k

=d4kdko. Natural units (A=c=1) are employed throughout.
"The equivalent equation is presented in reference 6, Eq. (10).

The momentum space wave functions used here are de6ned by
44 (y)=(24r) 4J'd4prP, (r)e '&'. The fourth components of the
momenta p& and p are the same: p&p= pp=p —~; this will be true
of all other momenta which appear upon iteration of the electron
propagator. The normalization of the latter di6ers from that of
reference 18 by a factor of (27r)4/2.

r d4k
I (PiP)=, v d'pi'

~r k' pi It if4 ~— —

Xd p i &(pl pl) tt(pl p2) ' ' '

Pi' —0—F4

Xa(p= ' —p)
P k sl4

The matrix element of the eth term in this sequence

"For example, using this operator, the Dirac equation in
momentum space reads (P 414)V = Vy, . —
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corresponds to that member of the right-hand-side
graphs of Fig. 1 containing e electron-Coulomb inter-
actions.

The only infinity occurring in Eq. (2.4) is one
requiring a mass renormalization. This is carried out
in the standard manner by subtracting from Is(p) the
quantity Is(iti), obtained by replacing p by it4 and p'
by —ps in the final expression for Is(P). After mass
renormalization there remain ultraviolet divergences
in Io and I&., but as a consequence of Ward's identity
these must cancel each other. Since we desire to treat
Io and I& separately, we employ the covariant regulator
method by making the substitution

dJ1

k' ~ (k'+I.)'

1 t'h. 'q 5
Io'(P) = 27r'i (P—it4) ——in

(

—
I

——
2 Kti') 4

h(A —2p,s) ( 6 )
in/ —f-

2 (t4' —a)s E ps) 2 (t4' —6)

The methods for evaluating such integrals are well

known, ' and only the results will be stated here. With
Is'(p) =Is(p) —Is(iti), the mass renormalized result is
found to be'4

associated with each separate term of the expansion
of Sp'.

At this stage it is convenient to discuss the general
principles by which an expansion in powers of Zn may
be obtained. These general principles will be stated
first, and then we shall give their justification. Typically
we have to evaluate expressions of the form

d'p d'p p. (p )I"(p,p) p. (p).J
(2.8)

This integral may be assigned a "nominal order" by
using the fact that a typical momentum in a hydrogen-
like atom is of order Zap, and by keeping only the
leading term of Ii in the resulting power series in Zo, .
If the resulting integral over p& and p actually converges
in the nonrelativistic approximation, the result will be
the correct answer, to this nominal order. On the other
hand, if the integral diverges, it is an indication of an
improper expansion of Ii, and the true order is less than
the nominal order. To obtain higher powers of Zn, both
I' and P, must be expanded carefully. To justify these
remarks, we shall use the nonrelativistic approximation
to both the large and small components of p„the effect
of relativistic corrections to the wave functions need
be considered only when one is interested in contri-
butions to the Lamb shift of order 4r(zn)sti, or higher.
If we make the substitution

(2tss —3D) ( 6) 1

2(ps g)2 ( ps) 2(ys g)
(2.5) and write

p=Zo, pt,

p. (p) = (Zuti)
—'*4e.(t),

Where 6=P'+tis and P'= p' —(ti —e.)'.
The contribution of Eq. (2.5) to the level shift has

the form

J
d P (P) (p )f(~)+ (t1) ( ) (2 6)

p2

For more direct comparison with the terms to be
obtained from Ij, this expression may be rearranged by
noting that g, (p) satisfies the Dirac equation in the
momentum representation, and thath= (p it4) (p+it4). —
An alternative expression is therefore

then co, will be a dimensionless spinor whose first two
components are of order unity (that is, independent of
Zn) and decrease as t ' for t))1; the last two components
will be of order Zn and will decrease as t ' for large t.
We may remark that in the relativistic case the expo-
nents for large t will differ from integers by amounts of
order (Zn)s and there will be an additional normalizing
factor which differs from unity by an amount of order
(Zn)', the first two components then also have a
contribution of order (Zir)' decreasing roughly as t '.
Thus in terms of dimensionless variables t and t~,
expressions like Eq. (2.8) will take the form

2zp,
d'Pid'Pv. (pi) f(~i)+ g(~i)

p2

1
+ (p, its)—g(h, )—a(p —p) p, (p), (2.7)

p2

Where Di ——pis+44' and pis=pis —(t4 —e )'. ThiS pOSSi-

bility of rearranging the terms of Eq. (2.6) incidentally
demonstrates the lack of a definite Zn order to be

'4 The right-hand side of Eq. (2.5l is not singular when 6=444;
this may most easily be seen by examining the integral before the
parametric integrations qsed in its evafuation are performed,

(I )= (Znti)'
J

"d'tid't o&.(ti) 1"(Znti t, ,zntit)4e. (t).

We can now proceed to assign orders to the various
terms occurring in Eq. (2.7). In terms of dimensionless
variables, we have

a= —iy4(zatis) '/2m'~ ti —t~s,

6= (Znti)sLts+(26. /Zsasti) —(e '/Z'asti')]

Also, if we refer all contributions to matrix element
between large components, it is clear that (P—ip, ) is of
relative order (Zn)'ti. To obtain a final result correct to
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order n(Zn)4', it is thus permissible to make the 6/i4', q'/p'. One then finds
substitution i' 1 (A' )

aq+a —lni —
I

g i4s)
(p, i'—) +6—i/2iI4 (2.9) lr(pr, p)~2m i

and take the resulting operator only between the large
components of g, . All of the integrals in Eq. (2.7) are
convergent; however, if one tries to expand the inte-
grand in powers of Zn, a point will be reached beyond
which the integrals will no longer converge. For clarity,
consider a specific example. A typical term of Io' yields
a contribution proportional to

1 1 t'qs) (6 +6)
+-+2+—

I
—I+

4 12 k i4') 4p'

(~,+z)-
+a dy 2+4—— in(

—"
I

p,
' 2i4' 4 ps )

«2 ~1 (~„l+—a ~ dygl —2y(1 —y)j 1ni —
I

. (2.11)
p2 (is)(

i
d'prd'p s .(yr)I lire. (y)(pP —6,)

d'pid'p ~.(») I

—i~~.(y)E„s)

The quantity aL-,' ln(A'/i4')+ rs] cancels with the
corresponding term of Io', and the resulting matrix
element is then free of all divergences (none of the
remaining I„aredivergent). As previously mentioned,
the cancellation of such spurious "charge renormaliza-
tion" infinities is required by Ward's identity. In the

+ d P&4f P P~(yi), , sr&~(y)
'

present case, if one writes Ii(pr, p) =a„(pi p)I„(pi,p—),
-i '(~' —~r)- this takes the form of the readily veri6ed expression

The first term on the right-hand side of this equation
gives a result of order (Zn)4p, between the large compo-
nents of P . The second term is of higher order, but it
would become a divergent integral if we expanded the
integrand in powers of Zn (the remark of reference 14
is pertinent here). The second term is actually of order

(Zcr)'i4; this may be understood from the following

considerations. Without the factor (i4' —Di) in the
denominator, the integral would diverge linearly with

the upper limit in y~ space; the eR'ect of the denomi-

nator is to cut off the integral when pi i4. Thus
relative to the situation when the integral converges,
there is a factor of order (i4/Zcri4). In the case of the
small components of p„the left-hand side of the equation
cannot be expanded, but by the same type of consider-
ation, it is seen to be of order (Z4r)'i4. In the future,
when the expression "expanding in powers of 444i/i4"' is

used, it refers to the treatment just discussed.
Carrying out the expansions in this way, one finds

that to the order 4r (Zn)4i4 in the final result the following

substitution may be made

1 t4'A'l 1 tI s'(y) —+2s'ia(y —y) ——lnI —
I
——

I
1——

I

2 (p') 4( i4')

3h q—2I 1+-—
I »I —

I (2.10)
4p') I is)

Using the A' regulator replacement and the definitions

«=yi —y, Il.=y~r+(I —y)~, Ir(Pr, P) may be eva«-
ated and the result "expanded" in powers of d, r/p, ',

8 8
I (p,p) = Io(p) =—— Io'(p)

c)pv 43pv

LIncidentally, this provides a convenient check on the
calculation of Io' and Ii, with Io' in its original form,
Eq. (2.5).j The cancellation of the ln(h. '/p, ') terms
between Io' and Ii must therefore occur.

As is well known, one can derive Ward's identity using a simple
argument concerning invariance with respect to gauge transfor-
mations of the external potential. If the latter is shifted by the
constant amount A.,

V(x) =iy4 V4 (x) 4i y4/ Us (x) +I47,

then the fourth component of P, appearing in the formal relation
for S44', Eq. (2.3), will in turn be displaced by the amount iI4,

iy4E4ip4 (E+I4),
which is just what is required to leave Sz' unchanged. Thus, if
one considers the expansion of Sg' in powers of V before this
gauge transformation is performed, one has

Sr44=S(E)+S(E)VS(E)+S(E)VS(E) VS(E)+ ~ ~,
where we have written S(E)=Sr'(P It)= (P—h —i') '. —This is
to be compared with the identical expression obtained after
making the gauge transformation

Ss4=S(E+I4)+S(E+A)LV+iy&7S(E+it)
+S(E+I4)P V+iy4I47S (E+I4)[V+iy4I47S (E+I4)+

To first order in A., one then 6nds

BS
BE — BE

+iSy4S + —(SVS—) +i (S74SVS+SVSy4S) + ~ ~ ~ =0.

Since each order of V must vanish separately, each square bracket
is identically zero; the vanishing of each such bracket then yields
the Ward conditions relating the matrix elements I +I with no
momentum transfer at any one of its vertices to the derivative
of I„with respect to E. (For example, the vanishing of the first
square bracket is equivalent to the previous demonstration
proving the cancellation of the spurious charge renormalization
terms between Is' and I )4
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Since the entire matrix element is gauge-invariant, we can
expect that all non-gauge-invariant terms, such as the one
proportional to (Pq ip—)a which appears in Eq (2.15), will
exactly cancel. That this is in fact true can easily be shown by the
following argument. Suppose that correct to the order u(Za)pp,
I2 contains the term T2= &aa, where g is some numerical constant.
Then, by the vanishing of the second square bracket, there must
be a term in I1, say Ti, which is related to Tz by

Therefore
BT,/BE+i I[ypa+ay45 =0

T~= —8L(P~ —ip) a+a(P —ip)5+C(p~, p),

a dy ln(h„/Ai),
0

which is of order n(Zn)'ip (note that ln(h„/hi) vanishes
for pi ——p, as required by Ward's identity). This n(Za)sp,
contribution must be canceled by corresponding terms
arising from the remaining I„,since a level shift of the
order u(Zn)'ip permits no terms of order less than
n(Za)'ip for the sum of the I„.Unless this cancellation
can be explicitly demonstrated, the method of expand-
ing 5&' in powers of V is in serious difhculty. For
example, one cannot merely neglect such terms in a
calculation of the difference of two energy-level shifts
since the n(Zn)'ip contributions will in general have
different values for each state; this has been explicitly
verified for the 2S; and 2I'; levels.

This difficulty may be overcome by proper choice of
the gauge of the quantized electromagnetic 6eld.
Feynman' showed, in the free-particle scattering case,

where Q is some spinor function of p1 and p which does not
depend on E (e.g., C~aq'). This can be the only such term of
this form in I1, otherwise, by reversing the argument just pre-
sented, one would have to infer that the value of P is diferent
from that originally assumed. Now using the vanishing of the
first square bracket, and the fact that I1 contains Ti, there must
be a term in Io, say T0, which is related to T& by

BTp/BE QP(P iI—p)y4+y—&(P ip)5+iC—(p, p) =0,
Ol

Tp t(P iu)——(P i—p) iEC—(p, p—)+C'(p)
The non-gauge-invariant a(Zn)pp contributions of Is+I~+Is are
then given by the expectation value of T& and the first terms of
both TI and T0

$(u [ (P —iy) (P —iy) [ u) —5(u [ (P g iu)a+a(—P ip)
~
u)—
+g(u)aa lu) =0,

using the equation satisfied by the atomic state. Thus these
terms exactly cancel, as they must.

The quantities I0' and Il contain terms which yield
contributions of order n(Zn)'ip and n(Zn)'ip ln(Zn). One
might have expected such spurious terms to cancel as
a consequence of Ward's identity, since they do not
appear in the free-particle scattering calculation, but
this is not the case. In fact, by using Ward s identity
it is not difFicult to show that their failure to cancel is
due to the presence of terms proportional to ln(h/ips)
in I0'. Had we used a photon mass and treated the
electron momenta as free, these terms would not have
arisen. In the sum of Ip' and Ii, the n(Zn)'p in(Zcr)
terms cancel, but there is left a peculiar quantity of
the form

that the replacement of any polarization vector e„by
the photon momentum k„yields a zero result upon
adding all the terms from the contributing graphs. For
the bound-state case, a corresponding gauge statement
would be

(a~ (kS~'(P k—)e+eSs'(P+k)k} ~a)=0, (2.12)

which is easy to verify by the use of Eq. (2.3) and the
equation satisfied by the state ~a); essentially, the
effect of kSs'(P —k) acting on (a~ istoproduce (—1)(a~.
This latter property is now utilized as follows:

(aikSpp(p —k)ki a) = —(aik la),
and

t
dpk

F(k')(aiki a) =0,
~g k'

when the integration is performed over a symmetrical
k space.

A gauge transformation is now given by making the
following substitution in Eq. (2.1):

y„—py„+Xk„k/k'.

It might be expected that the proper choice of X would
be (—1) since this leads to gauge-invariant emission
and absorption operators and makes each term of the
expansion gauge invariant by itself, in contrast to the
situation in the original form where various terms must
be combined. However, for reasons which are not
understood physically, this is not the case; there exists
another choice which leads to simpler results. The
eGect of such a substitution is to add to I an operator
J given by

p d4k
J=1' kSs'(p —k)k,

pp
(2.13)

where 1 is a constant to be determined. This operator
has zero expectation value in the given state, and
consequently the infinite set of expansion terms

&(p,p) =&(p p)&.(p)+&.(P,p-)+&.(p,p)+

+~-(Pt P)+.
r d4k

Jp(p) =i k k,
~ p k'k' p —k—

imp

t. d'k 1
~-(pt,p) =1

i
k . d'Pi'

~s k'k' pi —k —
imp ~

+d P —i a(Pi Pi) a(Pi Ps) ' ' '

pi k sip

Xa(p i' —p)
p —k—

imp

~t(pt, p)=t ~, , k . a(p —p)
~ p k'k' pi —k—sip p k siI, ——
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may be added to the expansion of I(Pi,P) without
altering the level shift. Jo and Jj have ultraviolet
divergences of the charge renormalization type only;
these are calculated using the same regulator as used
for Io and I~, and cancel in the same manner. To order
(Za)'p, the results are

Jo~f ~sia —lnl —I+1+-I —
I

& ps) 2 ( ps)

The simple form of Kq. (2.15) in comparison with its separate
components suggests that the gauge used has a special physical
significance. It is related to the fact that in this gauge the "spurious
charge renormalization" has no infrared divergence, while with
the other choice of gauge mentioned earlier it would have had no
ultraviolet divergence. The spurious charge renormalization is
given by the vertex operator evaluated on the energy shell with
zero momentum transfer. For the special gauge used here, this
operator contains the term

1 8(p k)'
k'(k' —2k p)' k'

t' 3 Ai) (hi)
+I 2+- —I»l —I,

2 is) E I')

(A'~ 1 ( q' ~ (A+hi)

EI') 6&I') I'

Bi+A A„- (A„)
+a dy

J 2~s ~s (~s)

q2 1

+—a ~ dy[6y(1 —y) —1]lnl—
(ps)

(2.14)

in addition to other contributions which are not infrared divergent.
Integrating over k0, we find that only the poles in the photon
propagator contribute to the infrared divergence; the erst term
has simple poles and the second double poles. The result is

dk m2—

mrna

—dQ —1 =0.
k (E—P cosg}'

This gives a simple, explicit. proof of the cancellation of the
infrared contribution to the spurious charge renormalization.

Since soft photons are essentially independent of each other" the
result is true for any number of soft photons. As a direct conse-

quence of this proof, we see that terms of the form

Comparing Eq. (2.14) with (2.10) and (2.11), it is

evident that if l = 2 the combination (Io'+Jp)+(Ii+J i)
is free of all (Za)ski dependence; with Mp=Ip'+Jp,
Mi Ii+Ji, on—e—obtains the result

3' g' 1
M,+M,~2rr'i — (Pi i')a+— a ———

2p, p 12

cannot occur in 3f1, and hence there can be no residual contribu-

tions of order a(Za)sp in (Ms+&i).

It is now interesting to determine the amount by
which the energy level of an atomic state is displaced

by the contribution of Eq. (2.15). For simplicity,

consider the 15state of hydrogen and omit the magnetic

moment term; one then wishes to evaluate

t 3A,

+4 dyy(1 —y) lnl —
I +—aiI . (2.15)

wl Ago'= —2a d'pid'p rpo+(pi) —2pr'aol ———
I

EI s) 2I

Note that the magnetic moment portion of Ii j.s

unchanged [the last term of Eq. (2.15) or the first of
(2.11)],and that the term

g2 1—a (~ dy[6y(1 —y) —1] lnl —
I

p2 &I ')

q2- f pl ( Ayl
+———+«yy(1 —y)»l I I po(p)

p,
' 12 (ps) )

where the Dirac wave functions have been replaced by
their nonrelativistic Schrodinger limits (d,Ep' is then

unchanged to the order a(Za)'ii). One finds

arising from Ji is proportional to (Za)'ii rather than to
(Z )'alnii(Za). This then represents an additive constant
to the logarithm due to that portion of Ii,

4 {30 f2
AEp' ———a (Za)'p '—ln

I

—
I

3pr l24 E Ii )
(2.16)

q2 1 (~.&—a i' dy[1 —2y(1 y)]»l —
I

p2 EIis)
'

which is the only term giving a contribution of the form
(Za)'Ii ln(Za). Upon writing down the Za expansion of
the nth term of the combination M=I+J, it is not
difficult to show that the result is free of all (Za)'p and
(Za)'y ln(Za) dependence; this will be demonstrated
in the following section.

where the mean energy e introduced here is defined by

f (Apl )
d'pid'p p o+(pi) I «yy(1 —y)»l —

I I p o(p)
(ps) )

2f p
s /2e)

d'p &po(p) ln
I
—I. (2.17)

3 &

"J. M. Jauch and F. Rohrlich, Helv. Phys. Acta 27, 613
(1954);S.N. Gupta, Phys. Rev. 98, 1507 (1955);99, 1015 (1955);
D. R. Yennie and H. Suura, Phys. Rev. 105, 1378 (1957).
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.Introducing dimensionless variables, Eq. (2.17) becomes

2 (4rl' ( 2e

3 44) & p, (Z&&&)')

dt~dtt~'t'
dy X(1—y)

(i '+I)'(1'+I)'
X1nL1+ytP+ (1—y) &,

's)
=-'(m./4)'{ln16+-', ).

Equation (2.16) is to be compared to the complete
value for this portion of the level shift

4 11 (2k&&q
AEp ———4r(Zn) &t4

—ln~ ~, (2.18)
3~ 24 I p)

where ko is the average excitation energy defined by
Bethe' and calculated by Harriman" to be approxi-
mately 19.7 ry for the 15 state. It is noteworthy that
the approximate expression contains the right coefFicient
for the logarithmic term. This shows, as will be con-
firmed in the next section, that the many-potential
terms do not contribute a shift of order n(Z&r)4&&4 ln(Zn).
Equation (2.16) yields a result about 10% larger than
that of Eq. (2.18); the error is mainly an over-estimate
of the additive constants to the logarithm. If the term
(pr —i&4)a of Eq. (2.15) is neglected in this calculation,
the 30/24 of Eq. (2.16) becomes, instead, 3/24; this
then yields a level shift roughly 10% smaller than that
given by Eq. (2.18).As mentioned previously, any such

(pr i&4)a te—rm is not gauge invariant, and all contri-
butions of this form have been shown to cancel. It is
also worth noting that, while the additive constants are
not obtained correctly, the large value of the excitation
energy is in a sense contained in the present approxi-
mation. The large value can be "explained" by noting
that in the above expression for e the integrand is not
a rapidly decreasing function of i and ir. Thus even
though the integrand begins to drop off when tj and t
exceed 1 (pr and p exceed Z&r&4), a substantial contri-
bution to the integral comes from larger values of t~

and i (tr, i 4 or 5). In summary, the ZOP contributions
yield the major part of the Lamb shift; the Mp terms
contribute only to the additive constants,

3. ''MANY-POTENTIAL" CONTRIBUTIONS

We now calculate all the n(Zn)4&4 dependence of the
orth term of the combination M„=I„+J . The following
de6nitions will prove convenient:

53 =(k' —2k.pr+Ar) '(k' —2k p+b, ) '
X(k' 2k pr'+6&') '— (k' 2k p~ r'—+h~ r') ',

r„=a(pr—yr') (pr' —0+i&4)a(pr' —ys')

X (P r' —@+i')a(p„r'—p) ~

J&(-=v.(Pr Ir+s )I'-(P k+s )»-—
+2k 'k(P, 0+—i&4)r„(—P @+i&4)A-

"J.M. Harriman, Phys. Rev. 101, 594 (1956).

The Nth matrix element (N~& 2) is then given by

~ de
M = ' d'pg'. d'p

where the integrations over the n —1 intermediate
momenta are to be understood whenever, in the
interests of simplicity, they are omitted. The denomi-
nator combinations used here represent an immediate
extension of those appearing in the calculation of I~,
and are presented, together with several necessary
integrals, in the appendix.

The numerator E, of the integrand of M„,may be
rewritten so that the outer y„and A factors stand
directly on either side of F„.From the array of terms
so obtained it is convenient to list the following subset,
each of which (neglecting the A'. dependence of I'„)is
homogeneous in k

4p&, p+—(k pr)(k p) I'„,t

1V„&'&=—2{pal'„+I"&&rpg+2k (pr+p)I'„),
1V„&s&=k»l'„»A.'+2k'I'„,

2
X &4&= —2 (pr —i&&4) p+—(k p)&&r I'„

J

2
+I' p +—,(k p )& (p &4) . —

To the order n(Z&r)4&&4 these are the only terms that
enter; this will become apparent below. Thus X„—+
P;X„&'&;to each X„"&there corresponds an M "&,

and to the order a(Zn)4&4, M —+P; M &".

It is also convenient to separate F„into a part
independent of A, a part containing one A term, etc.
Thus

I' "=a(yr —px')(pr'+i&4)a(pr ps')(ps—'+i&&4)

X&r(ys' —ps')" ~(p--r' —y),

I'-"'= —k.{&(p —y ')»&r(p '—y ') (p '+s) )
&«(ps' —ps') "&r(p-r' —y)+ ")

The terms F„(2)and those with a higher number of k
factors will not actually be needed. One therefore
considers the integrands g (~) depending on that portion
of I'„independent of &&'r, X„&"(I'„&'&);the E &&&depending'
on that portion of I' containing one k, X "&(I' '");
etc. The contributions obtained by performing the
k integral will then be denoted by M„"&(I' &'&),

M„&~'&(I'„&'&),etc.
The calculation of M„&'&(I'„&'&)will be presented in

some detail, to illustrate the method and prove the
cancellation of the spurious u(Zn)'p terms. Using the
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definitions of A 1, P 1 and formulas (1) and (4) of and therefore of Eq. (3.1), is then
the appendix, one obtains

&+
—1(Z&+) [—3+3(n+1)—2(n—1)—n] —a (Z&)2+

M„(1)(F (0)) =
X'Z f

(0) (p 2)—1

1

X dx(A. , xP—

with

T-(x) =gi(pi P)(P--1)'—(Pi 8=1)(p P=i)]
+4*L4(Pi P--1)(P P=i) —(Pi P)P=i'] (3 1)

To determine the Zn order of these terms recall that
every momentum which appears has the same fourth
component, i(]4—0,), and consequently this is also the
fourth component of p l. A lowest Zo. order may be
assigned to the integral

X{(A=—P=') '" "—(A=) '"-"} (3.2)

by recognizing that the first term on the right-hand side
of Eq. (3.2) will yield a result, after all the momentum
integrations are performed, of order higher than
42(Z(2)4]4 factually n(Zn)3&ti for 23=2]. On the other
hand, the second term on the right-hand side of Eq.
(3.2) will yield a convergent matrix element of lowest
nominal order n(Zn)2]4. If we consider only this portion
of Eq. (3.2) when evaluating the integral of Eq. (3.1),
and expand the remaining spatial momentum depend-
ence of the latter only up to the point in which the
resulting integrals are convergent, then the spatial
components of all momenta will have the order Zap.
Each 6', as well as Al, 6, and 6 l, is then of order
(Z(2]4)2, and the second term of Eq. (3.2) has the order
(Z~+)

—2(n—
1&+

—2

For clarity, consider the lowest Zo. order of a term
such as

A result of order (2(Zn)4)4 may be obtained from Eq.
(3.3) by retaining the spatial components of any two
momenta in the numerator, or alternatively by inserting
a factor of x in the integrand.

Returning to Eq. (3.1), it is now evident that only
those terms in the integrand which are not multiplied
by x can yield an n(Zn)2]4 contribution. The statement
that the effect of the J„is to cancel all n(Z(2)2p depend-
ence from M„is then verified by noting that, to lowest
order (replacing all momenta by i]4), the first bracket
of Eq. (3.1) vanishes. From the above remarks it
follows that none of the other M "'(I'„(')or M„(&')(I"('&)

can yield an c((Zn)2]4 result; thus all n(Zn)2]4 dependence
has vanished from the complete matrix element. The
n(Z(&()4)4 contribution of Eq. (3.1) is obtained by re-
taining the lowest order spatial momentum portion of
the first bracket and the lowest order part of the
second; denoting a(p, —pi')a(pi' —p2') a(p 1'—p)
by the symbol [a]n, one then 6nds

82r2i (2i]4)" '
M„(')(I'„('))~ La]" dY„,(A„,)—("—1)

23(23—1) &(4'

12' 2i
X{pi p —p~i (p+pi)+pn-i'} — p'(22]4)" 'La]"

e
I

XJ dYn 1, dx(6„1—xp 12) "x
~0

Using the formulas listed in the appendix, the limits
of the remaining M „'&'terms are similarly found to be

127r2i
(2) (F (0))~ ]42(2j]4)n—1La]n

dY„1 dx(A„1—xp„1) "x,
(

~d'Pid'P~'(pi) "d'Pi' d'P--1'r-'"

pl
X dx(&. 1—xp. 1') "(pi p)02. (p), (3.3)

t'tp' ]

M (3) (F„(0))—+M (') (I" (0))—+62r'i( —)aa,
E] 2)

M (4&(r (0))~0
(ip)

M ('&(F ('&)—+M, ('&(F2(")—+62r i~
—~aa,

& p2)

where all the momentum integrals are explicitly shown;
the wave functions used are the Schrodinger limits of
the Dirac p, . Also to lowest order, F„('&(2i]4)" '—a(pi—p, '). a(p„,' —p), since each P'~i]4 (The D.irac
notation is superfluous, but will be retained. ) Using the
substitution of the previous section (p=Z(2)it), we find

a(q) (Zn]42) ' and then I'„('& ]4 '(Z(2]4) "; further,
pi. p is of order )42. Finally, each momentum integral
yields a factor (Zn&(4)3, and the wave functions a factor
(Zn](4) '. The lowest order contribution of Eq. (3.3),

(ip']
M„('&(r„('))—+M, ('& (r, ('&)—+—6)r2i

~

—
~
aa,

(ip )
M„('&(F„('&) M, (3) (I' ('))—&—32r2i~ —~aa,( ]|42)
M„(4)(r (1))~O

(In the cases indicated, a contribution of order (2(Zn)4)4
occurs only for n = 2.) The contribution of M„('&(I'„(')),
as is easily seen, contains no terms which can yield @p
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Using the identity (valid for b) 0, e&~ 2)

n(Zn)4p result. For the latter reason all the remaining combinations as previously used for the M„,it follows
terms of E„,including those containing F„&'&,I'„~4&,etc. , that
were initially omitted. To obtain an expression for the
entire matrix element, the sum of all the u(Zu)4p II (s) =

J
dF'„ i[x+6„i+v y„i) "+'. (4.3)

contributions from the MP terms must be added to
that of Eq. (2.13). As anticipated, one then sees that
the non-gauge-invariant terms exactly cancel, leaving

(q') 1
+4 dy y(1 y)»l

~=0 4p ) 12 Jo &p2j

Sm'i (2ip)" '
+ 2 [&)" di'=i(~=i) '" "

=2 e(e—1) p'

1 t" sds

e(e—1)b" ' Jo (s+b) "+'
(m+1) I" s'ds

J (s+b) n+2

(e+1)(v+2) (" s'ds

3 I J (s+b) ~+&

X(pi'p+p~ —i p~—i'(p+»)}~ ( .4) and associating the quantity (b) with (6„i), Eq. (4.3)
can be used to obtain the relation

which is the n(Zn)'p portion of the entire matrix
element, excluding the magnetic moment contribution.

It is worthwhile to note that in this procedure the
separation of the matrix element into high- and low-

energy parts has not been required, nor has the dipole
approximation been utilized. In fact, except for the
case e=2, our procedure amounts to using the non-
relativistic approximation to the electron propagator
between potential scatterings (P,' @+ip~2ip—in the
numerator). Retardation effects are, however, properly
taken into account in this nonrelativistic propagator;
i.e., the spatial components of k„arenot neglected. To
the given order in Zn, all the logarithmic terms occur
in the one-potential contribution; this can be seen most
easily by considering the x integration of Eq. (3.1),
which for n) 1 yields Eq. (3.2) and for st= 1 leads to
ln (5/p').

1
t

dI'
{pl'p pn —1 (p+pl)+pn —i }

n(e —1) (6 i)" '

tO S2 t9 S t9

( )+—( +) —+—,-()
I 2 Bv 3! Bv2

The vector v is set equal to zero after the differentiation
is performed; the derivatives are to be taken before
the s integration is carried out. Upon using Eq. (4.2),
Eq. (4.1) can then be written as

47t-2 p" 82 8
p)+ (p +p)

P' "0 2! Bv

S
'(v) )

e-+0

(44)

xd'p. i'~(p, —p, ')D- (p, '). . .

XD-'(p, ')u(y. ,' —p).

4. DEDUCTION OF THE LOWEST ORDER
LAMB SHIFT FORMULA

Equation (3.4) will now be shown to be identical in
content to the familiar n(Zn)'p level shift formula'; the ~„'(v)= [D(pi)D(p)) '(2')" d'pi'.
method used to display this equivalence will permit the
development of an alternative expression for the Bethe
logarithm. The second line of Eq. (3.4) may be written
as P„2"5R„,where

4ir2 (2ip)"
5R = d'Pi' d'P=i'&(pi —yi')

p' e(n —1)~

xa(p„,' —p) dI'„,(Z„,)-&.-»

X{yi y —y. i (y+pi)+p. i'}. (4.1)

The problem here is to find a simplified representation
for Eq. (4.1). To this end, consider the quantity II (z)
defined by

11-(s)= [D(Pi)D(P)D(Pi') D(P=i')), (4 2)

where D(p,') = (s+6,'+ v p, '). The vector v used here
is independent of s and of all the momenta, but is
otherwise arbitrary. By exactly the same denominator

Thus all the parametric integrations J'dl' i have been
replaced by a set of differentiation operations and one
s integration; the latter will play a role analogous to
that of the nonrelativistic photon momentum integral
of previous treatments. »

Now consider the operator

~(yi —y)P, [x+6+v p —2ipV]-'p;
—=b(pi —p)p~[D+& y) 'p, , (4.5)

where V is the formal operator as defined in Sec. 2,
and the sum on the subscript j is to be understood (in
the sense of P; PP=p'). If Eq. (4.5) is expanded in
powers of V and each term of the resulting sequence is
inserted between the wave functions p (pi), P (p), the
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result is equivalent to

~(pi —P)p'D '(p)+28 (Pi P)D '(pi)a(pi —P)D '(p)

+pi pP M„'(v)
n=2

between the same wave functions. The last term of this
expression, which occurs in Kq. (4.4), may therefore
be expressed in terms of the. operator defined by Kq.
(4.5). In similar fashion, analogous replacements can
be made for the remaining integrands of Kq. (4.4).
The result can then be written in the form

while that of group C yields

8m'i I' (2@k
a q' dyy(1 —y) in'

do ( A„)
1 1——(pi+p) ——q '.

18 1

The integration of C over the wave functions p, (pi),
p (p) is to be understood. Combining these expressions,
one obtains

Q 9R„=A+J3+C,
n=2

P aR„=—
n-2

8~' tk y
»I —

1&a,01 p, [H,p,gled, O

3Ii' ( ko)

where, upon performing the necessary v differentiations,
one finds

4z' ~ 00 z'
A= 5(pi —p) ds spD 'p ——(pD 'pD '

p3 4p 2

+D—ip.D—ip.)+ D—ip D-lp.D—1,1
3

4ro
p'h(p —p)

+o J 1 (&+g)3

8m'i t' r
" s(pi p)

C= — a' dy dz
&o "o (s+&,)'

2+2 8x'i
+ &a I

p'~
I a)— pi'a

3p 6@2

8''i p' t'2@k~) 1
+ «'a dy y(1—y)»l I

——,(4 6)
p,
' ~o & A„J 18

where ko(n, l) is the average excitation energy as defined

by Bethe' (1 a,o) is that atomic state a with /=0), and
(pio+p')a has been replaced by the equivalent 2pioa.

Upon using the relation 6= (p+ip)(p —jp), to the
order (Zn)', the second and third terms of Kq. (4.6)
exactly cancel. Further, it is easy to see that
(u,0 1 p, [H,p;] 1

u, o) may be replaced by ,'iq'a —(using

the again superfluous Dirac notation), the latter having
a nonvanishing integral over P,+(pi), P (p) for states
with I,=O only. All the k dependence then vanishes
from Kq. (4.6); combining the latter with the first
line of Kq. (3.4), one finds that the terms involving
ln(h„/p') cancel, and the entire lowest order matrix
element becomes

The sum of these three groups is perfectly finite;
separately, however, each is divergent on performing
the z integration, and accordingly an upper cutofF will
be introduced. The expectation value of group 3 can
be simplified by noting that, to lowest order,

4n-2i y 11
q'a In +-

3p2 2kp 24
(4 7)

Inserting Kq. (4.7) between the S-state wave functions
p, , o+, p, o, one then multiplies by —2n to obtain the
l =0 energy-level shift1

m)(m
1

1 1 ) 1 q 1

D 2P EH E,+ki 2Il ~ E —E,+k— 4 p 11
n(Zn)'p ln +—,

37rs 3 2kp 24where H= Vo+p'/2p, k=s/2p, E,= —o„and
stands for the sum over all Schrodinger states of H.
Forming (a

1
A

1 a), and using orthogonality, one obtains which is the correct lowest order Lamb shift formula,
excluding the magnetic moment and vacuum polar-
ization contributions. As is evident from the definition
of ko and the above reduction, the factor 11/24 is
absent in the corresponding portion of the P-state
level shift.

where the number k is the required cutoR. The
expectation value of group 8 is 5. ALTERNATIVE EXPRESSION FOR THE

BETHE LOGARITHM

8m' t' 1(a 1 p, 1
m)1'

(ul A
I &)=,„kdk2

3p'~o m [E„E,+kj—
Sm r

'" 2+2
dk+ (~ I

P'~
I &),

3/i ~o 3p,

We now return to the original idea underlying this
presentation, that of the analogy between the scattering
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4n'e 11 p' (6
q'a —1+ ~~ dylnl —

I

3p 24 0 (p, )BR„=DR„{pip}+5K {p i (pi+p)}+OR {y P}, (5.1)

ln(X/p) and the bound state 1n(A„/a'). To simplify the matrix element
notation to follow, rewrite the matrix element 5K„as

where each of the terms on the right-hand side of Eq.
(5.1) refers to the corresponding portion of M„in Eqs.
(4.1) and (4.4). If the reduction of the previous section
had been applied only to the sum P„=2"5R„{pip},
the result would have been

Sm'i
pPa 1+ dylnl —

I

3y' & 0 Epi)

+3 2 ~-{ui p}. (5.5)
n=200 I&aI p~Im) I'

gnat'„{pi p}= ~ kdkgp', -
I z —z.+kj Only the last term of Eq. (5.5) presents an obstacle to

the immediate expectation value calculation, by
straightforward integration, of this expression to obtain
this portion of the n(Zn)'p level shift. It is possible to
write Eq. (5.5) so that the entire matrix element is

I
(2ukm't proportional to q', as in the usual Lamb shift formula.

Defining the function

Cd'
p2

p ~p (+~)

, a(p —I i') a(p.-i' —1)
Xd'pn-i'

(+~ ') (+~-- ')

sds
which is easy to verify by merely taking the first terms ~ & —(2&~)~ I Pd,p
of each of the expectation values of A, 8, and C. ~0 (s+A,)(s+6)&
Comparing Eq. (5.2) with the sum of groups A, 8,
and C, one can eliminate the sum-over-states terms
from Eqs. (4.6) and (5.2), and obtain

2w&m

Q DR„=3+5K„{piy}+ p'
~

ds —1
n=2 nM 3p' ~ 0 (6+z)

Sm'i
+ + ' dy Lq'y(1 —y)

(~+&)' u'

(2pk )
+i3(pi 1)~ »I I

—i3(fi 1)
E S„)

Sx'j j 1
a -yP+ —q' . (5.3)

p,
' 6 18

Using the relation q'= pp+ p' —2pi p, and the
previous n(Zn)'p equivalence of (a

I
p'6

I a) with 2i)kappa,

Eq. (5.3) may be rewritten as

8ir'i
Q 9R„~-,' p 9R {pi p}+ p'~ »

I

—
I
— q'a

n=2 n=2 3p' ( p') 18''

(~ )
q2a ' ayy(1 —y) lnl —

I

p2 2)

Sm'i

Sm'i ,
i

(yi p)& 1+
i dylnl —I, (5.4)

3p p (P )
where the ln(k ) terms have cancelled. Adding to Eq.
(5.4) the contribution of the first line of Eq. (3.4), the
term proportional to Jo'dyy(1 —y) in(&„/p') cancels
and is electively replaced by the simpler quantity
proportional to Jo'dy In(A„/p'), yielding for the entire

which differs from the previous M„'(0)of Eq. (4.4) by
the inclusion of the factor Jopsds, one may then
compare Eq. (5.5) with (4.7) and obtain

(kol ' (~el
»I —

I
=1+ dy»l

Pry) &, (a2p2)

(~u)
1+ ' dy»l —

I

q' "o Ea )
pz—2

2 '(pi p)-
+ Q M '. (5.6)

(Zap) n=2

"That these terms are positive may be seen qualitatively by
noting that integrands comprising the positive semide6nite M
have their maximum value when their momenta are parallel;
hence the largest contribution results when p1 p is positive.

The symbol
=' stands for the equality of expectation

values over the Schrodinger wave functions p,+(yi),
p, (p). Note that, due to the definition of ko, the 5-state
g, are always to be used on the left-hand side of Eq.
(5.6), while the right-hand side integrations are to be
performed with the wave functions of that state whose
level shift is desired. Thus Eq. (5.6) represents an

.exact extension of the order of magnitude contributions
given by the ZOP terms of Sec. 2.

With the exception of the last term on the right-hand
side of Eq. (5.6), the latter has been evaluated for the
15, 2$, and 2I' states of hydrogen. It is found that the
neglect of the terms P 2" 3f„'(which, incidentally,
are positive") yields an error of less than 2/o in the
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TABLE I. The results obtained by performing the indicated
integrations of Eq. (5.7), as compared to the complete numerical
values given by Harriman. '

State 1+ dy 1n —" —2—1+ dy 1n —" 1n — 1n—

1S
25
2I'

25-2P

In4+5/2
4—1/12

0
4—1/12

—1.02—1.37—0.38—099

2.87
2.55—0.38
2.93

2.98
2.81—0.03
2.84

a See reference 16.

0. SUMMARY AND ACKNOWLEDGMENTS

The ease with which the lowest-order Lamb shift
formula has been obtained using the above methods,
as well as the similar calculational simplicity involved
in deriving the next higher order a(Zcr) p terms, indi-
cates that the scattering-type expansion of S&' may
prove quite useful in obtaining further higher order
corrections. The method may be applied to similar

1S level shift and 25—2P level-shift splitting. Writing

I' e l t' /~u 'l

»I —
I

=' I+ dy» I

&ry) ~, (rr'p'~

Pr' t' (~w)
t—2 1+ dy ln

(
—~, (5.7)

q' "s (Ar)

one can construct, with the aid of reference 16, the set
of approximate numbers displayed in Table I. Only for
the 2I' state is there a large relative error in the value
of c', since the correct contribution is quite small, this
is not particularly significant. The contribution of the
neglected P„=s"M„' terms then serves to lower the
approximate 1S level shift and 25—2I' level splitting
found here by roughly 140 Mc/sec and 17 Mc/sec,
respectively.

Equation (5.6) may, of course, be derived readily
from Bethe s original definition of ko in terms of a sum
over states. ' The present derivation indicates that the
contribution of order o. (Zrr)4&u in(Zo. ) comes entirely
from the ZOP contributions. The entries in Table I are
additive constants (to be compared with 2 ln(Zo),
which is —9.85 for hydrogen); and by comparison with
the results calculated numerically, we see that the bulk
of their contribution comes also from the ZOP terms.

problems, such as that of radiative corrections to hfs, "
where corresponding calculational simplicity may be
expected.
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several informal discussions with Professor M. Levy;
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dissertation submitted by one of us (HMF) to Stanford
U'niversity; during the period of the writing of this
paper and the calculation of the rr(Zrr)'p terms, this
author had the pleasure of enjoying the warm hospi-
tality of Professor Levy's group at the Universite de
Paris, France, where he was the recipient of a National
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APPENDIX

We require the definitions

p.=ypr+(1 y) p, —

pr=yrps+(I —yr) pr',

pn 1 yn —l—pn —2+ (I yn —1)pn —1 y

R =yr~, +(1 yi)~t', —

+n—1 yn —1+n—2+ (I yn 1)An —1 q—
f P

t'

J
dI —1 &s

J
' ' '

~

dy yrdyrysdy2' ' '(y —1)
o ~o

Then

S„= dF r[k' —2k p„&+A„r]—&n+'&

and with D„(x)= (A &
—xpn r'), one has

~l
(k') '$„=(@+1)

J dF„&JIdx
0

Xx"[(k—xP„)'+xD„(x)]—&"+'&

1

(k')—'n„=(++I)(x+2)
J

dI'„tJ"dx
0

Xx-(1—*)[(k—xp, ) + xD„(x)]-&-+&.

One then obtains the following formulas:

t d4k

ks

(d'k 7rsi ab t
gbn(g k)(b k) = dF'n-, [Dn(1)] 'n "

ks ~(e—1) 4

~'i
p dx[n. (x)]--,

rs "o
t d4k f p1

K)„(gk)= l dF t I xdx[D„(x)]n(a p„r),
~&. k' e~ "s

(A-1)

(A-2)

xi t
r' (+ b)

x'dx[D-(x)] " (& p=r)(b p-- )—P=t'I
I (A-3)

"N. M. Kroll and F. Pollock, Phys. Rev. 86, 8'76 (1952)
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d4k

(a k)(b k)$ =
~ p k'k' 2Pn—l

rrsi t
'

l
(a S=r)(b P=r)

e~
dY„r dx[D„(x))—"-,'(a b) (1—x)—(1—2x) (A-4)

I
d'k

(a k)(b k)(c k)$„=,~ dF~ r dx[D„(x))" -', x(1—x)[(a b)(c p„r)"s k'k'
(a pe r)(b ps r)(c p r)+a„(b.p„r)c„+(a.p„r)(bc))+x(3x—2)

2Pn—l
(A-5)

(a 'k) (b 'k) (c'k) +n, d+fl—1 x dxP4(x)) (a'ps —1) (b 'ps —1) (c 'pn —1)
I. d'k 7rsi

p k2 B 0

7r2i pl

+ ' dI'.-1 +dx[D-(x)) '"-"L(a b) ('P=r)+as(b 2 --r)"+(a P--r) (b'))
2e(rs —1)» o

The term a„(bp r)c„is written in this form, rather than (a.c)(b p r), to insure obtaining the correct expression
when any two or more of the u, b, c are, or contain, p matrices.
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Within the general framework of perturbation theory a method
for calculating modified propagators in terms of proper Feynman
diagrams is derived. This method differs from previous approaches
in that one insists that the propagator have the correct analytical
behavior as a function of p'. As a result one gets an expression for
the propagator which is similar to a conventional term-by-term
perturbation theory expansion except that it is only necessary to
consider proper diagrams and that the iteration of the proper
diagrams is represented by a damping factor. As an example, the
meson propagator for a pseudoscalar meson coupled to nucleons
with a pseudoscalar coupling is approximated by considering
only the lowest order proper diagram, a nucleon-antinucleon
bubble. The resulting expression for the propagator has the

following interesting properties: (l) by construction it has the
proper analytical behavior as a function of P', (2) the result has a
singularity at gs=0 when considered as a function of gs, and (3)
the wave function renormalization is finite. These three properties
are intimately connected and when this connection is realized
it is easy to understand why the usual methods of expressing
propagators in terms of proper Feynman diagrams leads to ghosts.
It is the purpose of this paper to understand this connection and
to indicate how it is possible to take into account consistently the
iteration of proper Feynman diagrams without ever having ghosts
appear. It is also found that an asymptotic expansion valid in the
region g'=0 is possible and that this asymptotic expansion is
identical with the perturbation theory series.

I. INTRODUCTION
' ~OR definiteness in what follows, and for simplicity

in presenting the arguments, we shall consider a
pseudoscalar boson field with mass p represented by
the renormalized Heisenberg operator p(x). The

dependence on isotopic spin will be suppressed in what

follows since for the propagator this dependence is a
trivial 6 p. The extension of the methods developed in

this paper to fields with additional degrees of freedom

such as the electromagnetic field, or to fermions, is

straightforward and will not be discussed.

We wish to find an expression for the modified

propagator hs'(p') which is defined in terms of the

* Supported in part by the Once of Ordnance Research, U. S.
Army.

vacuum expectation value of a time-ordered product;

The lowest order approximation to this function is
given by As (p') where 4&(p ) = (p'+p' —ie) '. Histori-
cally the first attempts to calculate the corrections terms
were based on a term-by-term perturbation expansion
in the coupling constant. In electrodynamics the
corrections thus obtained were found to be small and
reasonable in that, for example, they led to small
terms in the Lamb shift which due to the precision of the
experiments could be seen to be necessary.

For strong-coupling meson theories it is readily
seen that such a simple procedure does not prove to be


