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A plausibility argument is made that the real and imaginary parts of the nucleon-nucleon scattering
amplitude as a function of the cosine of the barycentric system scattering angle, for fixed energy, are analytic
in the complex plane, with singularities confined to the real axis. It is conjectured that in the real part
there are poles at cose=+(1+tss/2ks), where a is the pion rest mass and k the barycentric momentum,
branch points at cos8= & (1+2&'/k'), +(1+9+'/2k'), etc. The residues of the poles are related directly to
g2, the pion nucleon coupling constant, and a procedure is outlined for determining g' by an extrapolation
of experimental data on either backward or forward nucleon-nucleon scattering.

I. INTRODUCTION

B~ISPERSION relations have made feasible a
systematic determination of the pion-nucleon

coupling constant g' from experimental measurements
of the scattering of m mesons by nucleons. ' The method
depends on the fact that g' is the residue of a pole in
the scattering amplitude for Axed momentum transfer
as a function of W', the square of the total energy in
the barycentric system. Except for this residue, all
other quantities occurring in the dispersion relations
for pion-nucleon scattering are physically measurable.
It has been pointed out' that a somewhat similar
situation exists for nucleon-nucleon scattering at
fixed momentum transfer where again g' occurs as the
residue of a pole in the variable 8'. However, in this
case, there are extensive nonphysical contributions to
the dispersion relations which make practical applica-
tions di8Rcult. It is the purpose of this paper to point
out that if one considers instead the real part of the
cV—N scattering amplitude at Axed energy as a function
of lV, the square of the momentum transfer, then
there is probably a pole of residue g' located at 6'= —p',
where p is the pion rest mass. I ehmann has recently
demonstrated that there exists a region of analyticity
in the complex 6' plane which includes the physical
region. ' %e are conjecturing that once the pole in
question has been removed, this region of analyticity
includes the point ZP= —p~, and that an extrapolation
to determine the required residue is possible.

The physical idea underlying the present proposal
is an old one, although it is usually stated in a different

way, namely, that the nucleon-nucleon interaction
at large distances is dominated by single pion exchange,

which in turn is uniquely related to g' and p.4 A rough
correspondence of this statement to the existence of a
pole at 6'= —p' may be seen if one believes that at
high energies the outer fringe of the interaction deter-
mines the real part of the forward scattering amplitude.
Remembering the relation between momentum transfer
and the angle of scattering in the barycentric system,

or
ts'/M T&&2,

Tt»tt'/2M = 10 Mev. P2)

cos8 = 1—L9/2k',

where k is the magnitude of the momentum of either
particle in this system, one sees that although the
point lV= —p' always is unphysical, corresponding to
cos8=1+ts'/2k') 1, this point comes nearer and nearer
to physical forward scattering as k' increases. If,
therefore, there is a pole at this point as a function of
coso and no other singularities in the immediate
neighborhood, then the residue of this pole determines
the asymptotic behavior of the real part of the forward
scattering amplitude.

For practical reasons, some of which are discussed
below in Sec. IV, the region of very high energy may not
be most suitable for the determination of g', so we are
basing our hopes on the possibility of bridging by
analytic continuation an appreciable gap between the
physical region and the position of the pole. The
practical accuracy of such a continuation presumably
requires that the gap in cos8, which is tt'/2k', be small
compared with the interval in cos8 where the amplitude
is experimentally known. Since we have 2k'=MT&, if M
is the nucleon mass and T& the laboratory kinetic
energy, we have the requirement

This means the energy must be high enough so that
*This work was Performed unde~ the ausP'ces of the U. S' nonzero orbital an ular momenta are im ortant InAtomic Energy Commission. nonzero or ita angu ar momenta are important. n
' U. Haber-schaim, Phys. Rev. 104, 1113 (1956); W. D. the old way of describing the principle exploited here

Davidon and M. L. Goldberger, Phys. Rev. 104, 1119 (1956); such a circumstance would be obvious. The "tail" ofW. Gilbert, Phys. Rev. 108, 1078 (1957).
and Oehme Ann phys (N p ) 2 226 the interaction can be isolated only in states that are

(1957).
~ H. I ehmann, Institute for Advanced Study, Princeton, 4 See, for example, the Supplement to Progr. Theoret. Phys.

New Jersey (to be published). Japan 3, (1956).
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Fxo. 1. The single-pion
exchange diagram for
nucleon-nucleon scattering.

FIG. 2. Diagrams
showing the relation
between (a) nucleon-
nucleon and (b)
nucleon-antinucleon
scattering.
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prevented by an angular momentum barrier from
penetrating to short distances. III. THE LOCATION OF SINGULARITIES

IN THE 4' PLANE

II. THE SINGLE PION EXCHANGE TERN

A motivation for our conjecture concerning the pole
at b'= —p' can be given in terms of Feynman diagrams.
The diagram shown in Fig. 1, when renormalized,
yields a term

(ttio 1&aV5NP1) (I'o 2&aV5N'os)
g2

+2+tt2

where ~'= (Pi—Pi')'= (P2—P2')'

A little thought about other diagrams shows that none
of them becomes-infinite for 6'~—p,",also the modifica-
tion of the pion propagator and of the vertex functions
in this limit are entirely absorbed by the renormalization
of g' and p. Thus, in perturbation theory, the scattering
amplitude when evaluated in the neighborhood of
6'= —p' is exactly represented by the renormalized
Born approximation.

Confirmation is given by the circumstance that the
term obtained from Eq. (II.1) by exchanging pi' and
P2' has been singled out for a special role in the disper-
sion-relation discussion of the scattering amplitude as a
function of

W'= —(pi+ p2)'= —(pi'+ p2')',

for 6xed momentum transfer. 2 Here the denominator is

(Pi—P2')'+ass= W' —4M2 —62+tss (II.2)

SO that there iS a pOle at W2=4M2 —tss+52, and in the
neighborhood of this pole the renormalized Born
approximation is exact. In the present discussion,
where 8" is fixed, we regard this exchange term as
giving rise to a second pole in 6'. In terms of cos8,
the location of this pole is very natural: whereas the
denominator in Eq. (II.1) vanishes at cos8= 1+tts/2ks,
(II.2) vanishes at cos8= —1—tss/202. With identical
particles one of course expects symmetry (or anti-
symmetry) with respect to cos8.

It seems very plausible, therefore, that a determina-
tion of the scattering amplitude near either of these
two poles corresponds to a measurement of the value
of g'. We need information, however, about the location
of other singularities in the 6' complex plane before we

can formulate an appropriate procedure for continuation
from the physical region.

To make a guess about the singularities of the
scattering amplitude as a function of A2, let us consider,
instead of nucleon-nucleon scattering as indicated in
Fig. 2(a), the process of nucleon-antinucleon scattering,
as indicated in Fig. 2(b). In perturbation theory we
could obtain the SXamplitude from the le by making
the substitutions'

qi=pi qs= pi qi—=ps qs = p2. (II—I 1)

Notice that the variable,

(III.2)

becomes the negative energy squared in the EX case,
while

W'= —(pi+ p2)'= —(qi —qs')' (III.3)

(qi+qs)'+rt22= 62+tits

(q q I)2+2222 W2 4~2 +2+2222
(III.4)

where m ranges over the mass values of states that can
be reached from the SE system. The lowest-mass state
of this kind is the single m meson, and it gives rise
precisely to the two poles discussed above. The next
lowest masses belong to the two-pion state. We
expect then two branch points corresponding to m'= 4p, ',
with cuts to W ~. More complicated states give rise to
further pairs of branch points on the real axis. Changing

~ See, for example, J. M. Jauch and F. Rohrlich, The Theory of
Photons old Eteotrorts (Addison-Wesley Press, Cambridge, 1955),
p. j.61.

6Lehmann, Zimmermann, and Symanzik, Nuovo cimento 1,
217 (1955).

becomes a negative (exchange) momentum transfer
squared. In the TX case d' and TV' are both positive,
whereas they become both negative in the EX case.
Nevertheless, we shall optimistically assume that the
location of singularities of the scattering amplitude
considered as a function of LV for fixed W' in the NN
case can be carried over to the SÃ case.

Following the by now familiar approach of contrac-
tion of the S-matrix element, ' applied here to NN
scattering, one sees that if a "normal" dispersion
relation exists for fixed W'= —(qi —q2')', then the
singularities in d' are associated with the possible
vanishing of the two expressions



1382 GEOFF REY F. CHEW

variables from 6' and 8" to cos0 and k' according to fixed TV2 in the physical region,

k'= —'8"—3P

cos8= 1—6'/2k'

(III.S)

(III.6)
where

G(W', ass)
T(W' 6s) =

) dm '
ttsss+6'

(III.11)

we find the corresponding singularities in cos8 for
6xed k':

poles at cos8= &(1+p'/2k'),
branch points at cos8= & (1+2@'/ks),

& (1+9ps/2k'), etc.
(III.7)

This whole procedure of course amounts to nothing
more than an optimistic conjecture. Our guess (III.7)
may be partially checked, however, against recent
rigorous results obtained by Lehmann. ' I ehmann proves
that the EÃ scattering amplitude as a function of coso for
6xed 8" is free from singularity, at least within an
ellipse whose foci are at &1 and whose semimajor axis
is of length

(2Mp+p')' &

Xp(ks)= 1+
4k'(k'+M')

(III.8)

One may confirm that this region never includes the
singularities whose existence we have conjectured,
although at k'= —,'Mp our poles lie exactly on the
boundary. At all other energies they are outside
Lehmann's ellipse.

Lehmann proves further that the imaginary part of
the scattering amplitude as a function of cos0 is analytic
within a larger ellipse, whose semimajor axis is 2XO' —1
or

1+(2Mp+p')'/t 2k'(k'+3P) j (III.9.)

For small k' this ellipse includes not only our poles
but also our first conjectured branch points, which at
first sight is somewhat surprising. (Our poles have real
residues and therefore are singularities only in the real
part of the amplitude. ) If one, however, believes that
a two-dimensional spectral representation exists, which
exhibits simultaneously the behavior of 8" and 6' in
the complex plane, then it becomes plausible that the
imaginary part of the amplitude has a wider domain
of analyticity than does the real part.

For example, suppose the scattering amplitude
(excluding the poles) could be expressed by representa-
tions of the form

T(W' 6') = I ~dm 'dm '
J , (III.10)

(mrs —W') (mes+ 8 ')

S. Mandelstam, Phys. Rev. 1I2, 1344 (1958). Mandelstam's
representation is a sum of three terms of the type (III.10). We
are indebted to Dr. Mandelstam for the argument following
(III.10).

where p(mt', mes) is real, as suggested by Mandelstamr
in connection with pion-nucleon scattering. Then, for

p(mrs, mrs)
ReG(W', m ') =P t dm', (III.12)

~ (2~) 2 mg' —I/t/"

ImG(Ws ftss') =mp(Ws mrs) (III.13)

It follows from (III.12) and (III.13) that ReG(W'&mss)
is in general nonzero for a wider range of m2' than is
ImG(W', riess'). Correspondingly, from (III.11), the
branch points of ReT(W', 6') extend over a wider
range of the LV real axis then they do for ImT(W', LP).

Mandelstam7 has shown that representations of the
type (III.10) are compatible with fourth-order perturba-
tion theory. We do not here rest our case on the validity
of Mandelstam's particular conjecture, but believe
that the general feature described is likely to be present
in a correct two-dimensional representation.

Lcos8—(1+p'/2ks) ]', (IV.1)

plot against cos0, and hope that the resulting function
is smooth enough to be extrapolated to the required
point. The procedure for backward scattering would be

IV. POSSIBLE CONTINUATION PROCEDURES

One can think of many possible procedures for
performing the required continuation from the physical
region, —1(cos8(1, to the poles at cos8=&(1+p'/
2k'). A detailed investigation of the kind of information
available from experiment, as well as of the theoretical
complications due to spin and isotopic spin, must be
made before one can say which procedures are practical.
Such an investigation is under way and the results will

be reported at a later time. Here we merely mention a
few general considerations.

In principle it is possible to work directly with
measured differential elastic-scattering cross sections.
That is to say, the location of singularities of the
absolute square of the scattering amplitude is the
same as for the amplitude itself. The poles are of second
order but their strength is still simply related to g'.
One might think that this method of approach allows
the use of experiments at very high energy where the
poles come close to the physical region. However,
when inelastic processes are frequent the imaginary
part of the elastic-scattering amplitude has a strong
maximum at small angles (the familiar diffraction
peak), which tends to obscure the behavior of the
real part. At backward angles for e —p scattering the
maximum in the imaginary part should be less
pronounced.

Roughly speaking, in order to find g' directly from a
forward angular distribution, one could multiply the
experimental distribution by
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analogous. The difficulty with this approach is that the
complete ES amplitude, because of spin and isotopic
spin, is made up of ten scalar amplitudes which may
interfere with one another so as to obscure the behavior
of the individual functions. For example, p—p scattering
in the region of a few hundred Mev is roughly isotropic—showing little of the forward and backward peaking
which is expected from the inhuence of our poles and
which is present in m pangu—lar distributions. Evidently
cancellations are at work in the p —p amplitude.

Should the pole in the backward ts psca—ttering be of
sufFicient prominence to warrant detailed analysis, a
possible specific procedure is the following: Defining

x=
i 1+ i+cose,

2k')
(IV.2)

s The precise relation for backward n —P scattering is A =f,4314/
Lk4(M'+k')g, where fP = ('pg, /2M)'=0. 08 is the charged pion
coupling constant. The two neutral pion coupling constants
occur in forward n —p and in p —p scattering; therefore in
principle these three constants can be independently measured.
Because of electromagnetic effects that violate charge independ-
ence, differences of a few percent between the three are to be
expected.

one may, after multiplying the experimental points for
do/dQ by x', attempt a least squares fit with a form

A+»+Cx'+ (IV.3)

The coefficient A is the desired quantity, being propor-
tional to g'. ' A minimum range of experimental points
which may be used is determined by the distance from
the pole to the nearest branch point as given by
(III.7). Since a power series converges within a circle

whose boundary contains the nearest singularity,
experimental points in the range

—1& cose& —1+p'/k' (IV.4)

are certainly suitable. In other words, the physical
range available is at least twice the distance of extra-
polation. No doubt more sophisticated extrapolation
procedures are possible, which further extend the useful

physical range.
If at some energy a complete set of phase shifts and

mixing parameters were available, one could construct
the ten separate scalar amplitudes for each of which

the residue of the poles is related to g'. Multiplying any
one by

cos0% (1+p'/2k')

one would hope to find a smooth function in the
small-angle (or large-angle) region that could be
extrapolated.

Evidently the program outlined here may be regarded
as a check on local field theory as applied to strong-
coupling phenomena. We are predicting that the
constant g', determined by the proposed extrapolation
procedure, will not only be the same for all ten scalar
amplitudes but will also be independent of energy and
have the same value as that determined by pion-nucleon
and photopion dispersion relations.
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