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Mev. The quantity b& has been unobserved in lower
energy m experiments partly because the data were
analyzed under the assumption that it is zero. On the
other hand, (3.7) predicts, even with an f'as low as 0.08,
a value of —0.166&0.014 for br+2ats+arr. This would
seem to imply, if the dispersion relations are correct, that
one or two of the quantities b1, u13, and a11, are much
larger than has so far been observed. To estimate what
values b1, a13, and a11 should have to be consistent with
the dispersion relations, let us take f'=0.10. Then

bt+2ars+ atr = —0.254,

f'=0.10.
(3.9)

While present estimates of a13 are that it is almost zero,
let us follow the suggestion of the Chew-Low theory"
and take ars ——asr ———0.041. Then (3.9) becomes

br+art =—0.172) ats ———0.041. (3.10)

It is interesting that the prediction of the Chew-Low
theory that art ——4a»=4ast is compatible with (3.9) and
(3.10). Reasonable choices for br and art would be
bi= —0.04 or —0.05 and a11=—0.13 or —0.12. This
choice has two very nice features: First, the relatively
large value of u11 would lead us to expect a T=-,'cross

» G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).

section of the order of 7 or 8 mb at energies near 150
Mev. Since present measurements in this region" 6nd
0',—0, this means a substantial increase in 0:, at these
energies, of about ten percent. A correction to 0: of
this order of magnitude would lower the experimental
values of D, in this energy region, by a significant
amount. Secondly, a large, negative eftective range for
o.1 will keep o:small, or even decrease it, at low energies,
before the I' waves become important. We see, then,
that this choice for br, ars, ar& to satisfy (3.9) would
predict an energy dependence for 0- which is quali-
tatively similar to that assumed by Zaidi and Lomon, '
and which, in effect, raises the theoretical values for D '
while lowering the experimental values at the 150-Mev
region. It seems to this author, therefore, that the key
to the present difFiculties with the m

—dispersion relation
lies in the large discrepancy that exists between the
value of b&+2a»+a» predicted by the dispersion rela-
tions and the value obtained from experiment.
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The invariance of strong interactions under 6, the product of charge symmetry and charge conjugation,
has important consequences for strangeness-conserving lepton interactions. According to the G-transforma-

tion properties of the strongly interacting "currents, "we may divide the primary weak interactions into two

classes. The first class includes the conventional nucleon-lepton Fermi interaction, and is the only class that
contributes to the P-decay coupling constants. Unambiguous tests for the existence of second-class inter-
actions include: (a) induced scalar term in y absorption, (b) inequality of certain small correction terms in
B' and N's or in Li and B p decay, (c) inequality in rates of Z+ —+Ao+e++v. Absence of second-class

interactions would indicate a deep relation between isotopic spin and weak interactions; for example, the
recent Feynman-Gell-Mann theory predicts that all vector weak interactions are first class. The presence
of second-class interactions would mean that the usual Fermi interaction is insufhcient, and must be supple-
mented by terms involving strange particles. Some general remarks are also made about the relations between

(l P ) and (1+,v) processes, and we prove the following useful theorem: no interference between V and A may
occur in any experiment which treats both leptons identically and in which no parity nonconservation eHects

are measured, providing that we may neglect the mass and charge of the leptons.

I. INTRODUCTION

TRONG interactions are charge symmetric and

~ ~

~

~ ~

~

~ ~

charge conjugation invariant, and therefore also
invariant under the product' G,

*This research was supported by the U. S. Atomic Energy
Commission.

r T. D. Lee and C. N. Yang, Nuovo cimento 3, 749 (1956).
See also A. Pais and R. Jost, Phys. Rev. 87, 871 (1952);L. Michel,
Nuovo cimento 10, 319 (1953), etc.
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~KG '=sr'~, ~ G '= —@,etc.

This G invariance plays a fundamental part in con-
sidering the effects of strong interactions on weak

processes, and the role of isotopic spin in the primary
weak interactions. We will show that all strangeness-

conserving lepton interactions may be split into two
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classes, with different G-transformation properties.
These two classes give rise to diferent eGects in decay
processes, and experiments may be devised to separate
the eKects. In our present state of knowledge there is
no evidence for or against the existence of the second
class.

One may hope to go further, and state as an "in-
variance" principle, to be tested experimentally, that
only erst-class interactions exist in nature. This would

imply a deep relation between the weak interactions
and isotopic spin, as suggested by the recent Feynman-
Gell-Mann theory. ' Their theory does in fact predict
that only first-class vector interactions exist, and may
therefore be tested by some of the experiments sug-
gested below.

On the other hand, if there are second-class inter-
actions in nature, we may use the class distinction as a
tool in understanding the eGects of virtual strange
particles in decay processes.

J.(+)—J,t(k)+J,.s(+)

J. (+)=J.(+) PGJ, (+)G—i

J. (+)=J,(k)+PGJ,.(+)G-t

p;=—+1 for 5, A, P, and —1 for V, T.

(3)

The sign factor $; is inserted purely for convenience.
Since G'= (—)~+s and X and 5 commute with J +),
we have

GI .i (+)G—i— t .J .i (6)

GJ.s(+)G—i —+P.J.s(+)
(4)

Equation (4), together with the G invariance of strong
interactions, places a powerful restriction on the parts

R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958).See also S. S. Gerstein and J.B.Zeldovich, Zhur. Eirsptl. i.
Teoret. Fiz. 29, 698 (1955).

II. GENERAL THEORY

We shall assume from the beginning that lepton pairs
in strangeness-conserving interactions are emitted at a
single vertex. The most general Hamiltonian for such
interactions may then be written

H~„t,=g; J (+)iP(0(P.+J;( )iP(0'ys)f „+Hc.
2

0,=—1, y), (1/&2)o.)„, ipse)„ys, i=—e or p .

The J;&+~ are 10 functions of the strongly interacting
fields, with I-orentz transformation properties of a
scalar, vector, etc. We use II;„t as a primary, not
eGective, Hamiltonian so that the same 10 J,~+)

generate all strangeness-conserving lepton interactions.
Almost all successful predictions for P decay and related
processes are actually independent of the detailed form
of the J;&+', resting only upon Lorentz invariance and,
for P decay, on the smallness of the momentum transfer.

We may split each of the J +& into first- and second-
class terms, defined by

of the matrix element generated by 6rst- and second-
class interactions, respectively.

Now what sort of term enters in J~ and J2& We note
that the conventional currents,

J.(+)NN Cy—0 g J,(—)NN C,~P gg
are of the 6rst class. For this reason one often encounters
the implicit assumption that second-class interactions
are automatically excluded. ' We believe this point of
view to be fallacious. There is no evidence that (5)
is more fundamental in decay processes (even in
nucleon P decay) than a term like

I,(+)&&=(r,(k)ipz+g. ltzo+b, (+)(pzgg@z- (6)

This is of the first class if a= —b, and of the second if
a=+b. There is certainly no a priori reason to choose
the erst rather than the second possibility, or rather
than a mixture (~u~ W ~b() of the two. In fact, setting
a= —b is equivalent to the assumption that J,~~ gives
vector isospin selection rules, with no AI=2. LThe
principle that 6rst-order eGects of the weak interactions
be renormalizable leads to the requirement that terms
like (6) must exist, since they are needed as counter-
terms. ']

Many other examples may be given. The only simple
(i.e., renormalizable) V, T, A, or P second-class
currents involve strange particles in the bilinear
combinations (ZZ), (Zh.), and (EIC). Thus, if second-
class eBects are observed in a process like p-meson
absorption, they might give information about virtual
strange-particle pairs in the physical nucleon.

Finally, we may note that the Feynman-Gell-Mann
current is given by'

J."'=C~V.~A-+~~Le-&8- 0- &,e.]-
+&~L4'zwAz 4"-sAx']+4- —=o 4=

+4)r '&,4 r(* Pr(*(),err o) —(7).
All these terms are of the first class. This is just a
consequence of the fact that this current is generated
by an infinitesimal isospin rotation, bc@ L(o, Ii+iIs].

We will not make any assumptions about the form
of the J (+), but will use (4) directly. This gives us two
different sorts of information. Let us consider a process
n —+P where n and P are states (of equal strangeness)
of the strongly interacting particles, and a lepton and
neutrino are emitted and/or absorbed. Because strong
interactions conserve 6, we may split the matrix
element M for this process into parts M~, M2 generated
by first- and second-class interactions, respectively.
Equation (4), together with the TCP theorem, tells
how to relate Mr and 3Is for n-+ P to the corresponding
Mt andj)rfs for n ~P, P ~n, n —+P, P —+n, where
n denotes the charge mirror n —=e' I'o. of n. Furthermore,
there are special cases where n—=no, P=—Po, or n=—P,
P= n In th—ese .cases (4) relates n —+P to itself, i.e.,

3 See, for example, references 4, 8, and 11.
4 S. Weinberg, Phys. Rev. 106, 1301 (1957).
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gives a restriction on the forms of 3f~ and of M2. Thus,
second-class interactions may be detected either by
searching for certain terms in the matrix element in
these special cases, or in general by comparing a process
u —& p with uo —+ po, p —&u, u —& p, or po —+uo. We
discuss the former in Sec. III and the latter in Sec. IV.

III. RESTRICTIONS ON MATRIX ELEMENTS

Let us first consider the nucleon process ss ~ p. This
is a special case since 8=p and P= n. The—matrix
element may be written in terms of 10-vertex functions

F;&"&(k„k ),

that both 6rst- and second-class interactions may
contribute to C;, C . Therefore the absence of Fierz
interference in CP', ' S", and Cu" decays is evidence
that no S, T couplings of either class exist. However,
the evidence is weaker for the second class, and very
weak for second-class S coupling. )

It is clear that in order to detect the second-class
weak interactions, we must turn to a case like p,

absorption in which (15) is not a good approximation,
i.e., in which induced nonlocalities in I';&+' appear
because of a large momentum transfer. For any —,

' —+ ~

process we may use relativistic covariance to define
12 form factors,

as

M=+,[u„F;&+&(k„,k„)u 2'

where 2'=u~Ou„o, 2'=ui07suo for u~ p+l+ p, etc.
These vertex functions are usually drawn as a black box.
We can relate them to the "currents" J +& by the
exact equation~

F (6) (P k) fs—(k)1

Fit+'(k', k) = fv'+'v~, +gv'+'~x, q"+skv'+'q)„

F „&+&(k', k) =fs &+' (1/V2) ),„+gr'+'[qyy„—q„yx]

+&kr '+'$vxq"vwv„vgq"vi vi]—
+ijs &~& [k&k„'—k„k),'7,

Fsx (k &k) sf' 'ys|x+gA qx'ys+zkA ok''sq%

Fs&+'(k', k) =fp'+&ys, (q—=k —k').

(16)

Sp'(k„i P) F, &+&( kp, k„) Sp'( k„~n)= —4 d'xd4y

&«"""' 'e '""'" '(Tfs. (~),ll-(y) ~*"'(s)))o (9)

Applying the G invariance of strong interactions, we
6nd

Sp'(k~ p or I) =B 'Sp'r( k~e or p—)B,
and

where
B '0;~B=$,0,, Br= B. —(12)

' See, for examPle, F. E. Low, Phys. Rev. 97, 1392 (1955).

Thus, if we split I', &+& into terms 1';~'+& and I';~&+)

generated by J;&~+' and J,2~+~, respectively, and insert
(10) and (11) back into (9), we obtain

F;&&+l(k„,k„)=+&;B 'F,i'"lr( —k„, k„)B, (13)—
F,,&"l(k„,k„)= —$,B-'F,s&+'r( —k., k„)B. (14)—

The same relations also hold for p —+ u processes, and
hold on or off the mass shell.

To see how this rule works, let us consider P decay
where we may generally use

F;&+&(k',k) C,O;, F;& &(k', k) C 0;. (15)

Using (12) we find that (15) satisfies Eq. (13) auto-
matically, so no second-class interaction makes any contri-
butsois to the effective isucleon P decay couPli, ng car&st-arits

If we neglect the possibility of important "exchange"
or cooperative eQ'ects, we may extend this statement to
hold also for P decay in light complex nuclei. (However,
for high Z, Coulomb eGects destroy t invariance, so

The form factors fe'+', fvl+l, etc. , are functions of q',
and are real if T invariance holds. Equation (15)
follows for q 0 if we set C,=f +'(0), C =f '{0).

Now applying (13) and (14) we see that for nucleon
processes h&, h&, and hz can arise only from second-class
interactions while all other form factors fa, fp, gv, etc. ,
can arise only from first class interactions. Using
the lepton Dirac equations and conservation of mo-
mentum, we see that the hy term contributes to p
absorption an induced scalar coupling —m„hy &+&,

while the h~ contributes an induced Konopinski-
Uhlenbeck tensor coupling t'ox„(P„+I',)"ys4 '+'. Experi-
ments to distinguish the former would be particularly
interesting, since the Feynman —Gell-Mann theory
excludes second-class V interactions. [Goldberger and
Treiman' have calculated the other functions fv, gv,
fz, gz but since they use (5) as the total current they
naturally obtain h&=h& ——0. A rough guess would be
kv, g~fp, g/M so that the induced scalar would have
magnitude (m„/M)fv ]Since them. omentum transfer
in p, absorption is large, it seems reasonable to assume
that the same form factors are measured in p absorption
in complex nuclei and in hydrogen. (It may also be
possible to observe the nucleon form factors in very
energetic P decay. This will be discussed in more detail
in Sec. IV.)

For completeness, we may note that the pion decay is
another "special case". Since x ~ —m under 6, we have
only 6rst-class 5, A, I', and second-class V, T coupling

J. B. Gerhart and R. Sherr, Bull. Am. Phys. Soc. Ser. II, 1,
195 (1956).

7 H. M. Mahmoud and E. J. Konopinski, Phys. Rev. 88, 1266
{1952);J. P. Davidson and D. C. Peaslee, Phys. Rev. 91, 1232
(1953).

M. L. Goldberger and S. B. -freiman, Phys. Rev. 111, 354
(1958).
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contributing to vr —+ t+v, while only first-class V, T
and second-class S, A, P contribute to m —+m'+e+v.
However, Lorentz invariance implies that only A, I'
coupling contributes to the former and S, V, T to the
latter. Furthermore S, T coupling is probably absent.
Thus, probably only 6rst-class interactions may
contribute to either pion-decay mode.

IV. COMPARISON BETWEEN MIRROR PROCESSES

We shall prove two theorems that are useful in
comparing a process n —+ p (e.g. , n ~p+e +v,

e++n ~p+ v, etc.) with its mirror process 6.~ p (e.g. ,
n —+ p+e++v, e—+cr —+ p+ v, etc.).

Theorem 1

The diGerential transition probabilities for strange-
ness-conserving lepton processes (r ~ p and n~ p are
identical, except for a difference in sign in those terms
which arise from the following:

(A) interference between j(+) and j( ), i.e., an
observed parity nonconservation effect like a (r K
correlation;

(B) interference between time-reversal conserving
and nonconserving parts of the currents, i.e., an
observed time reversaI noninvariance effect like a
J (o&(K) correlation;

(C) interference between S, A, P, and V, T coupling
(defined by the leptorl, fields); and

(D) interference between first- and second-class
interactions.

Proof. The TCP theo—rem tells us that a —+P and
no —+Po are identical except for a sign change in

interference terms of type (A) or (B). If T invariance
is violated we should add the restriction that the states
n, P are eigenstates of the strong S matrix. ' The
G invariance of strong interactions tells us that (ro —& Po
and u~ p are identical except for a sign change in

interference between currents which transform under 6
with different sign, i.e., in interference terms of type
(C) and (D). Thus the theorem holds, if we may
neglect electromagnetic effects which violate G
invariance.

This theorem is well known" in the special case of
low-energy P decay where, as we have seen in Sec. III,
second-class interactions do not enter. In order to
apply the theorem in cases where second-class inter-
actions may be important, we must face the difhculty
of deciding when an experiment involves a type (C)
interference. This is not easy when the momentum
transfer is so large that multipole expansions are
useless; in these cases we may use the following
theorem.

s Lee, Oehine, and Yang, Phys. Rev. 106, 340 (1957).
"H. A. To)hock and S. R. de Grant, Physica 17, 81 (1951).

1b„~bio j,.(+) ~ g.j,(+)

j,(—) ~ Po),j,(—)
(17)

where O~s=r)psO; The pr.oduct r),P; is +1 for S, V, P,
and —1 for A, T. Thus if we assume only V, A coupling,
and if we perform a "parity-conserving" experiment
symmetric between e and v, we can get no interference
of type (C).

An immediate application of these two theorems
would be to the decay modes Z+ —+ As+e++ v, expected
to occur with branching ratio 10 '~(Z ~A+e+v)/
(Z —+1V+m). The momentum transfer is sufficiently
large for induced nonlocal effects to be important.
Measurement of the total decay rate does not involve
interference of type (A), (B), or (by Theorem 2) (C),
so any inequality in the rates for the Z+ and Z modes
would be evidence for the existence of second-class
interactions. The subsequent A. decay should make
these modes easily recognizable, and may also serve
as an analyzer of the A.' polarization.

It may also be possible to observe second-class
effects in very energetic P decays, like B' Li' B" N"
(Es 15 Mev). Let n and P be initial and final nuclei,
with momenta zero and —

q = —(P,+P„), respectively.
We may expand the matrix elements of the currents in
(2) up to first order in q/M and obtain (omitting the
"&")for allowed transitions

(P l
J

l
~)= qXA'v'+ qS'v"'+

Uc 2M 235

pl j,l~)=s

(pl Jsln)=A("')+

Here the S and A are matrix elements of various three-
dimensional scalars and axial vectors. The S&~ ~ and
A(~') are just the usual tC)rf 1 and Cqf e, while the
terms proportional to q produce small distortions of the

Theorem 2

If we perform any experiment with arbitrarily large
momentum transfer, which does not distinguish
between the lepton and neutrino (e.g., a measurement
of total decay rate or average l—v angular correlation,
but not measurement of electron energy spectrum),
anf if we may neglect the mass and charge of the
lepton, then there can be no interference between
coupling types S, A, I', S', V', I" and U, T, T', A'.
(Here a prime means parity-nonconserving coupling. )
This theorem holds for strangeness-violating decays
(like E.s, A —+cV+e+v, etc.) well as for strangeness-
conserving decays.

Proof. The in—teraction Hamiltonian (2) is in-
variant under the following formal transformation:
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spectrum shape and e—v correlation" and may also be
observed in P—cr correlations. " One would except all

the S and A to be of roughly the same order of magni-
tude, but of course the expansion parameter tl/M is

quite small.
Now, how are we to assign a "class" to these matrix

elements? In general, each of the S and A may be split
into first- and second-class contributions Si, Ss, A, , As.

However, we suspect that some of these matrix elements

get their main contribution from one ot the other of the
two classes. Suppose we write the vertex function for
nonrelativistic nucleons in the form (18). Then,
referring back to (16), we find for the nucleon,

S&vi& =ifv(1), A(AI& f (~)

S & vii& i(fv+ 2Mhv)(1) A &~I I& (f~ 2Mb

A'v&= (fv+2Mgv)(zr). (19)

Thus, to the extent that the main contribution to the
S and A comes from the structure of the nucleon, rather
than the nucleus, we may expect that A& &, S& '& A&"'&

are mainly first-class matrix elements, while Stv "& and
A&~"& have large contributions from second-class
interactions (hv, h~). (This assumption is analogous to
ignoring all orbital or exchange currents in p decay;
Gell-Mann" shows that this works well in the AI=1
C"decay. )

Since none of the matrix elements in (18) can be

positively identified as a pure second-class term, the
only unambiguous test for the existence of second-class
interactions here would be the comparison of mirror
transitions, like B" N" ~ C" (3J=1, no) or B',
Li' —& Be' (AJ=O, no). Using Theorem 1, if there are
no second-class interactions we should have a sign

change, in going from cr —+P to n~P, in the inter-
ference between A&"I& and A&v& (Gell-Mann's "it"),
but not for the interference between At~i& and A&"ii&

(Gell-Mann's "f&"), or between S&vi& and S'vi'&

("c").According to our previous analysis, if there are
second-class interactions they are most likely to show

up strongly in St & or At" &, so that if f& is found not
equal for BI2 and N" or if b and c are found not equal
for 8' and Li', we may certainly conclude that second-
class interactions exist. The inequality in b or c would

produce inequalities of a few percent in the ft values
for these mirror transitions. Unfortunately, experi-
ments are not yet accurate enough to check this
prediction, "and in any case Coulomb eGects may also

"M. Gell-Mann, Phys. Rev. 111,362 (1958).Also J. Bernstein
and R. Lewis (to be published).

"M. Morita and M. Yamada, Progr. Theoret. Phys. (Japan)
13, 114 (1955)."Experiments quoted by Cook, Fowler, Lauritsen, and
Lauritsen, Phys. Rev. 107, 508 (1957), and by T. Ajzenberg and
T. Lauritsen, Revs. Modern Phys. 27, 77 (1955).

give a 1% inequality in ft values. ' The inequality of
b(B") and b(N") would also interfere with Gell-Mann's
proposed experiment, "which was to measure a.

There is one point about the measurement of these
small corrections that deserves mention. As shown in
Theorem 2, there can be no V/A interference in a
(P,T)-conserving experiment which does not distinguish
between e and v. This means that the A&v& term in (18)
Lwhich must occur in interference with A'""7 can have
no eGect on the decay rate or average e—v angular
correlation, though it may appear in the spectrum
shape. This may be verified directly by integrating over
electron energy in Gell-Mann's formulas, and letting
nt, —+0; the "zt" term then drops out. (Also, inter-
ference between an A and an S can only occur in
AJ=O transitions with oriented nuclei. )

Our discussion has been restricted to the G defined
in (1). However, the CTP theorem tells us how the
J,'+' transform under CT, so that (3) might
equivalently be written in terms of an operator
O'=—Te' I2. If T invariance holds, we then have

sixieJ . (k&e ixIz — $,—CO J i+&t

ef~wIz J. ik&e—imiz +$ ze J (+&1

zo;=+1 for S, V, A and —1 for P, T, (20)

so that the distinction between first and second class
could then be derived from charge symmetry alone.
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J;s zjrr, +0;pa' zest 'O,zp~— (21)

It is also possible to have second-class currents using

only nucleon fields, if we introduce direct derivative
terms corresponding to hv, III, h~ in (16).

"This estimate is based on the values of isotopic spin inpurities
in light nuclei, as known from the rates of BI=0 Ei y transitions
in self-conjugate nuclei. See D. H. Wilkinson, Proceedings of the
Rehovoth Conference on nuclear Strzccture (North-Holland Publish-
ing Company, Amsterdam, 1958), p, 175.
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)Vote added in proof The example.—presented in (6)
of a possible second-class current is badly chosen; since
J;2~~ has AI=2 isospin transformation properties, it
cannot contribute to an I= 1 —+ I=0 transition, such
as B"—+ C" or Z —+ A. (I wish to thank Professor G.
Feldman for pointing this out. ) However, we can find
examples of second-class currents with pure BI=1 be-
havior, such as


