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F16. 5. Proposed Al?® decay scheme.

For the most part, the parities and angular momenta
of the levels involved in the Al% decay are not uniquely
determined. We may, of course, assume the ground
level of Mg? is O+. The angular distribution work on
the Mg?(d,p)Mg?® reaction by Holt and Marsham’
indicates that the first and second excited levels of

7J. R. Holt and T. N. Marsham, Proc. Phys. Soc. (London)
A66, 249 (1953).
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Mg? each have even parity and angular momenta of
2 or 3. Two is more likely for the first excited level,
since Mg?® is even-even. Assuming the first excited
level is 2% and the second excited level is 2+ or 3%, the
gamma transition from the second to the first excited
level is magnetic dipole. The transition from the second
excited level to the ground level is electric quadrupole
if 7= 2+ for the second level, magnetic octopole if 7= 3",
Using Weisskopf’s formula® for gamma-ray transition
probabilities, the ratio of 1.1-Mev gamma rays to
2.97-Mev gamma rays would be 107 for an 7=3 level,
25 for an I=2 level. The latter is in much better
agreement with the observed ratio, so we assign 7=2
to the second excited level.

The Al*¢ ground level has been predicted to be 5t
by King and Peaslee,® on the basis of the systematics
of odd-odd nuclei. This is in agreement with the
observed forbidden positron decay to the first excited
level, and the lack of any observable positron decay to
the Mg?» ground level. The angular momentum and
parity assignments are summarized in Fig. 5.
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The distribution function for the first-forbidden beta-gamma
correlation for randomly oriented nuclei, including beta trans-
verse polarization terms, is presented and discussed in connection
with the question of timereversal invariance. Coulomb field
effects are included and it is found that even for relatively small Z
the time-reversal testing asymmetry is reduced appreciably com-
pared to that calculated for Z=0 by Curtis and Lewis. In the
limit of high (aZ/2R), that is, for most first-forbidden decays,
a definite relation exists between the ordinary directional correla-
tion asymmetry and the beta polarization-dependent asym-
metries. In this approximation it is found that terms which test

INTRODUCTION

URTIS and Lewis' have suggested the possibility
of testing the time-reversal invariance of the beta
interaction-Hamiltonian by an examination of the cor-
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1R, B. Curtis and R. R. Lewis, Phys. Rev. 107, 543 (1957).

time-reversal invariance appear in the same manner in all asym-
metries but are dominated in general by contributions which do
not test time-reversal invariance. For the particular case of Aul%
it is shown that the experimental results are consistent with
time-reversal invariance but are also consistent with an appreci-
able violation of time-reversal invariance. It is concluded that
under favorable conditions it is barely possible that an investiga-
tion of the asymmetries for some other beta-gamma cascade could
provide a test for time-reversal invariance. However, the extent
to which this invariance is or is not violated could not be deter-
mined by such an investigation.

relation between decay products in a beta-gamma
cascade. The proposed test demands a measurement of
the correlation between the transverse polarization of
the beta particle and the momenta of the electron and
the photon.

When the beta transition is allowed, the asym-
metries which test time-reversal invariance in the
theoretical distribution for the cascade process are
negligible relative to the isotropic terms unless the
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decaying nucleus is oriented® or unless the gamma
circular polarization is observed.® To the extent that
one may draw conclusions on the basis of the Z=0
approximation (the example of Curtis and Lewis is
given in this approximation), the asymmetry which
tests time-reversal invariance and which depends on
the beta polarization would be expected to be appreci-
able relative to the isotropic terms when the beta
transition is first forbidden—if the violation of time-
reversal invariance is considerable.

Preliminary experimental results on the 2=— 2+ — 0+
decay of Au'® have been reported by Steffen? and a
small effect depending on the electron transverse polar-
ization has been found. Steffen quotes an upper bound
of about 79, for the transverse polarization of the Au'®®
electrons in a direction perpendicular to both the elec-
tron and the photon momentum. Interpreted in accord-
ance with the Z=0 calculation, the measured effect
indicates a possible violation of time-reversal invariance.

Because of the high-Z value of Au'®® one might wonder
whether it is legitimate to interpret the experiment in
terms of the Z=0 approximation. It is well known from
the study of ordinary beta-decay processes that the
approximation which neglects the effect of the nuclear
charge on the electron final-state wave function is
adequate only when the first-forbidden transition is
unique, ie., AJ=2 (yes).® For example, except in a
very few instances of low-Z decays, the energy spectrum
associated with an ordinary first-forbidden transition
has the allowed shape due to the dominance of energy-
independent terms containing the nuclear charge. Even
for small Z, these charge-dependent terms are at least
comparable to the strongly energy-dependent terms
which do not vanish with Z. Similarly the Z=0 approxi-
mation for the ordinary beta-gamma directional corre-
lation anisotropy is inadequate even at relatively
small Z.8

On the basis of these previous experiences it might
be supposed that the nuclear charge radically alters the
entire distribution function from its Z=0 form and thus
completely modifies the interpretation of the experi-
mental results on time-reversal invariance. Steffen
points out that the Aul®® case may be the only one with
a sufficiently simple decay scheme to allow unambiguous
interpretation. It is therefore of great interest to deter-
mine the effect of the Coulomb field on the complete
beta-gamma distribution function for first-forbidden
transitions, and in particular to discover to what extent

2 Jackson, Treiman, and Wyld, Nuclear Phys. 4, 206 (1957).

3 M. Morita and R. S. Morita, Phys. Rev. 107, 139, 1316 (1957).

4 R. M. Steffen, in the Proceedings of the International Conference
on  Nuclear Structure [North-Holland Publishing Company,
Amsterdam (to be published)].

5E. J. Konopinski and L. M. Langer, in Annual Review of
Nuclear Science (Annual Reviews, Inc., Stanford, 1953), Vol. 2;
E. J. Konopinski, in Beta- and Gamma-Speciroscopy, edited by
K. Siegbahn (North-Holland Publishing Company, Amsterdam,
1955), Chap. X.

6 Alder, Stech, and Winther, Phys. Rev. 107, 728 (1957).
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the asymmetry which tests time-reversal invariance is
altered from its Z=0 form. :

It will be made evident in the following that, even
for low Z, the modifications from the Z=0 limit are
extensive and that the time-reversal testing asymmetry
is reduced appreciably compared to that calculated for
Z=0. It will be shown that in the limit of high (aZ/2R)
~(Z/3), that is, for most first-forbidden transitions, a
very definite relation exists between the ordinary
directional correlation anisotropy and the beta polariza-
tion-dependent asymmetries so that an observation of
one asymmetry implies the values of the others. In this
approximation, terms which test time-reversal invari-
ance appear in the same manner in all the asymmetries
but are dominated in general by contributions which do
not test time-reversal invariance and which can be
separated from those which do only by their energy
dependence.”

THE CASE CONSIDERED BY CURTIS AND LEWIS

The procedure followed in obtaining an angular
correlation distribution function is well known and
need not be elaborated.® The beta interaction Hamil-
tonian is taken to be?

H= Zingi"*"gi’Hi/,

where the g; are the “old” beta-interaction coupling
constants, the g/ are the corresponding “parity-
conservation testing” coupling constants, and ¢ ranges
over the five interaction types. The partial Hamil-
tonians, H; and H;, have opposite behavior under the
parity operation.

Curtis and Lewis! have given, in the Z=0 limit, the
general form for the distribution function associated
with a beta-gamma cascade from unoriented nuclei
when the beta particle is transversely polarized and
the gamma radiation is of pure multipole character
and unpolarized. The inclusion of the final-state inter-
action between emitted beta particle and the nuclear
Coulomb field introduces no zew scalar or pseudoscalar
products of observed vectors, but of course alters the
coefficient of each such product from its Z=0 form.

After all common factors have been extracted, the
distribution function associated with a beta transition
to a final nucleus of atomic number Z followed by a
pure 2Z-multipole gamma transition may be written as

W=S(Zpge)+K (j1j2jsL)LA (Zpge) (o pX k) (- k)
+B(Zpge) Po(cosfpr)+C(Zpge) (o-k) (b-k)]. (1)

Longitudinal beta polarization terms have been omitted.
Here o is a unit vector along the direction of the beta
polarization and $ and % are unit vectors along the

7 The presence of such “empty’’ Coulomb corrections is familiar
in allowed beta decay. See Jackson, Treiman, and Wyld, refer-
ence 2.

8 L. C. Biedenharn and M. E. Rose, Revs. Modern Phys. 25,
759 (1953).

9 T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).
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direction of the electron and photon momenta, re-
spectively. Also p and g are the electron and neutrino
momenta in units of m. and e is the total electron
energy in units of m.? The Legendre polynomial
Py(cosbyr) is a function of the angle 6, between the
electron and photon. Further,

K(]1]2]3L) =—6(2L+1) (2j2+ 1) (= 1)
XC(LL2; 1, —=1)W (jajaLL; 255)W (§27211; 241),

where 71, 72, and 73, are the angular momenta of the
initial, intermediate, and final nuclear states. The W’s
are Racah coefficients and C(LL2;1, —1) is a vector
addition coefficient.

The term in (1) proportional to Ps(cosf,x) represents
the anisotropy in the ordinary beta-gamma directional
correlation and is present whether or not the beta inter-
action Hamiltonian is invariant under any of the opera-
tions of space inversion, time reversal, or charge con-
jugation. The coefficient B has been calculated by
Alder, Stech, and Winther® for first-forbidden transi-
tions with the STP interactions and by Morita and
Morital® with the combination STP as well as the com-
bination A V.

Since the last term in (1) involves a pseudoscalar
product, (¢-%)(p-k), of observed vectors, its presence
in an experimental distribution corroborates the known
fact that the beta interaction does not conserve parity.

In the Z=0 limit, the coefficient of (¢-pXE)(p-k)
vanishes unless the beta transition is a mixed Fermi-
Gamow-Teller first-forbidden transition and unless the
beta interaction Hamiltonian is not time-reversal in-
variant. That this last is necessary may be seen by
recalling the ordinary behavior of linear and angular
momentum vectors under the Wigner time-reversal
transformation. If there are no final-state interactions
(in our case, if Z=0), o, p, and k all go into minus
themselves under the time-reversal operation, so that
(o-pXE)(p-F) is a pseudoscalar and can therefore only
be present if the beta interaction is not time-reversal
invariant. The presence of the nuclear Coulomb field
alters the beta-particle final-state wave function in
such a way that the simple argument based on the
transformation properties of vectors is no longer valid.?
The effect of the Coulomb interaction is to introduce to
the asymmetry corrections which do not test time-
reversal invariance and which have the (o-pX k) (p-k)
dependence, and to introduce to the asymmetries cor-
rections which do test time-reversal invariance and
which have the (o-k)(p-k) and the Ps(cosfyr) de-
pendences. For orientation purposes the effects of the
Coulomb field will be illustrated by an approximate
treatment of the example calculated by Curtis and
Lewis.

Consider those terms in .S, 4, B, and C, that involve
the first-forbidden vector and axial vector matrix ele-
ments characterized, respectively, by the irreducible

10 M. Morita and R. S. Morita, Phys. Rev. 109, 2048 (1958).
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tensors Y1 and o- T11”.8 The function V¥ is a first-
order spherical harmonic, T;¥ is a vector spherical
harmonic,* and ¢ is the spin operator in the Dirac
spinor space. In order to obtain simple expressions that
are useful for qualitative estimates, the correct nuclear
charge distribution will be approximated by a point
charge and the replacements

(@Z/2) (Gall Vil 71) = (aZ/2R) (jall7¥ | 71),

and
(@Z/2) (jalle- Tullj1) = (@Z/2R) (jo||re- Tul j1)

will be made. The double bars denote reduced matrix
elements, « is the fine-structure constant, and R is a
nuclear radius in units of the electron Compton wave-
length (R~107?). Note that the nuclear radius is
assumed to be the same in both replacements. Finally,
it shall be assumed that (aZ/p)*<1 and (eZ/2R)>1.

With these approximations and restrictions, the iso-
tropic term in (1) is—disregarding all but the two matrix
elements under consideration—

S=ary| My [ T8+ 30+ +1 P+ ¢+ igpe)]
e MA | TEH P+ (P ¢~ tgpre )]
+CRC¥VAMV*MA[£2+%SP%_1], (2)

For negatron decay, the coefficients of the asymmetric
terms in (1) are proportional to

A=}(pe N[ 2aZ (E+39)avv | My|?
—aZ(E—3Q)aas| M4 |*+aZ(E—q) RavaMyv*M 4
+aZBaZe/p)[E+3e— (1/9)q19ay s Myv*M 4
+ipdavaM v M4l (3)
B=3(p*e M[2(¢+5et5Qavy | My |?
— (ttie—5Qaaa| Ma|*+ (§—q) RayaM v*M 4
+ (9aZe/4p)[ 43— (1/9)q dava Mv*M 4], (4)

and
C=3(pe [ —2(¢+39)Bvv| My |2
+ (= 59)Bas| M4 |*— (§— @) RByaM v*M 4
— BaZe/p)LE— (1/9)q19BvaMv*M 4], (5)

where
ain=gigr g/ 8'* = Rau+19air,
Bir=gige'*+ g/ g1* = RBur+19Bu,

My=(jillrVillj1), Ma=V2(jo|lra-Tul ),
t=aZ/2R,
and it has been assumed that the interaction between
nuclear particles is time-reversal invariant.
By setting Z=0, one obtains the vector-axial vector

analog of the distribution function considered by Curtis
and Lewis.! The correspondence with Curtis and Lewis’

1 M. E. Rose, Multipole Fields (John Wiley and Sons, Inc.,
New York, 1955), Chap. II.
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results is accomplished by the replacements
My — Ms— +(3/4m)}(fl|Brl|9),
M4— Mr— —i(3/4m)}(fl|Bo X 1l)1),
gv.4a—8s, 1) 9= =9

and by the identification K (ji7273L) = —35f(j1je7sL).

Since, in the Z=0 limit, only the imaginary part of
a product, a;z, of coupling constants appears in the
asymmetry proportional to (o-pXE) (p k), Curtis and
Lewis- suggested that time-reversal invariance could
possibly be tested by determining the presence or ab-
sence of this asymmetry in an experimental distribution
function.

By examining the corresponding term in the Z=0
theoretical distribution function, one detects an im-
mediate objection to the proposed test. For most con-
ceivable cascades involving a first-forbidden transition,
the coefficient A multiplying (e-pX k) (p k) contains
terms which do not test time-reversal invariance and
which are at least comparable to the terms which do test
time-reversal invariance. Hence, merely the presence,
even significant presence, of the asymmetry having the
(0-pXE)(p-B) dependence is not necessanly an indica-
tion of a violation of time-reversal invariance.

A more adverse consequence of the interaction be-
tween the emitted beta particle and the nuclear charge
is that, due to the dominance of the quantity (aZ/2R)?
in that part of the distribution function which deter-
mines the total probability of the beta-gamma coinci-
dence, the importance of the asymmetric terms relative
to the isotropic terms is greatly reduced from its im-
portance in the Z=0 distribution function. Even if the
terms which vanish with Z in the expressions multlply—
ing (¢-pXE)(p-E) cancel with one another in some
fortuitous fashion for some particular values of Z and
¢, the maximum relative magnitude of the term which
tests time-reversal invariance is considerably reduced.
The prime reason for considering first-forbidden transi-
tions as opposed to allowed transitions, where the
anisotropic terms are always reduced from the isotropic
terms by a factor on the order of R, is thus weakened.

To the extent that the first-forbidden spectrum ex-
hibits the allowed shape, all but terms of highest order
in (@Z/2R) may be discarded in S and in 4, B, and C.
In this limit, it is apparent from (3), (4), and (5) that
almost precisely the same information about the nature
of the coupling can be derived from an experimental
investigation of the energy dependence of any one of
the three asymmetries. For instance, the detection of a
relatively large energy-independent component in the
coefficient of (o-pXE)(-E) and/or in the coefficient
of (e-k)(p-%) would be an indication of the failure of
time-reversal invariance. The same conclusion could be
drawn from the detection of a component linear in p in
the coefficient of Ps(cosfpr).

It may be observed further that, if one makes the
reasonable assumption that Bi=Zai, then the co-

! !
gv,a —> —§s, T,
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efficients 4, B, and C in the experimental distribution
function should satisfy approximately the ratio

|4]:|B|:|C|=3aZ: (4/9)p:3 ()

These conclusions reached on the basis of the large
(eZ/2R) approximation are not at all affected by the
inclusion of all other first-forbidden matrix elements
and are not affected appreciably when the finite size
of the nuclear charge distribution and the terms in
(aZ/p)?, which were neglected in (3), (4), and (5),

are taken into account.

GENERAL RESULT IN THE HIGH-Z LIMIT

Let a nuclear matrix element which depends on light-
particle radial functions only through

wi(r)= (aZr/2R)[1—%(r/R)*], r<R,

be called large and let it be denoted by M (z), where 7
specifies the particular irreducible tensor characterizing
the matrix element as well as the interaction type to
which it belongs. For example,

M(V,Y1)= (faller(n) V|l 71),

M (T o-To)= (jol|wi(#)Bo- Tosl| 7).

Let the corresponding matrix element with 7 replacing
w1(7) be called small and let it be denoted by m () ; e.g.,

m(V’ Yl) = (jzl]’YIHjl),

and

and
m(T 8o To1) = (jal|rBe Toil| j1).

Both wi(r) and r arise from the angular momentum
eigenfunctions of an electron in the potential corre-
sponding to the nuclear charge distributed uniformly
over a spherical volume of radius R. If the radial func-
tions are evaluated at the nuclear radius and then ex-
tracted from the nuclear matrix elements, it is clear
that, in order of magnitude, corresponding large and
small matrix elements are in the ratio

M () /m(i)~ (4/5)(aZ/2R).

In the limit of large Z, such that (2aZ/5R) >>1, the
coefficients of the isotropic and the anisotropic terms in
the distribution function associated with a nonunique
first-forbidden beta transition followed by a pure-
multipole gamma ray are proportional to

S= %c: S *(5) M (k) Reiz,

A= % gaM*(@)ym (k) (190 am+c.c)F,
B=-% % g * ()m (k) (FFam+c.c)F, "
C= :tsz: gaM*(@)m (k) (M Bu+c.c.)F,

where the sign before the summand in C is + when
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Fic. 1. Coefficient of P2(cosf,x) relative to the isotropic terms in
the distribution function for the Au'*® decay.

i, k are V and/or 4 and — when ¢, % are S and/or T.
Longitudinal polarization terms have been omitted
and it has again been assumed that nucleon-nucleon
interactions are time-reversal invariant. The symbols
fix and g are numerical factors on the order of unity
such that fuM*@)M (k) and gaM*(i)m(k) are real
quantities. The function F(Z,e) is the standard Fermi
correction factor.”? Exact expressions for 9-, 9t*, and
91— are given in the Appendix. By neglecting (aZ)?/4
in comparison with one, one finds that

(’I:fﬂ,_a,‘k'*— C.C.) = 2F12€_1 %aZ((Raik— )\gaik) ’
(9tam—+c.c)=— 2F19pe (1+haZep™) »
X (Rarsr— Ndaiz),
(m_ﬂa,k-}— C.C.) =— 2F12€_1(G{ﬁik— )\gﬁik),

where Fis, \, and A are given in the appendix.
To the extent that one may neglect («Z/$)?* in com-
parison with unity, one has

Fiy— 3pF (Z,e),
A—aZe/p,

@)

©)

and
N — 3aZe/4p.

Recent investigations on the Bt decay of A% on
the 8~ decay of He% and on the orbital electron cap-
ture in Eu'®m 18 indicate that the dominant interactions
in beta decay are vector and axial vector. In deference
to this evidence, the general expressions (7) shall be
written explicitly only in terms of the six major vector
and axial vector first-forbidden matrix elements. With

12 See, for example, J. M. Blatt and V. F. Weisskopf, Theoretical
Nuclear Physics (John Wiley and Sons, Inc., New York, 1952),
. 682.
P Herrmansfeldt, Maxson, Stihelin, and Allen, Phys. Rev. 107,
641 (1957).
14 Herrmannsfeldt, Burman, Stihelin, Allen, and Braid, Phys.
Rev. Letters 1, 61 (1958).
( 15 Goldhaber, Grodzins, and Sunyar, Phys. Rev. 109, 1015
1958). :

ICKO IBEN,

JR.

the approximations (8) one has, for negatron decay,

S=ayy|x|*4asa(2]|y]*+3]2]|%)+2VZRayax™y, (10)
A= (F12/eF)3aZN (14+2\T), (11)
B=(F1o/eF)3p(1+aZe/p)N(1+N'T), (12)
C=— (F1s/eF)N'(14+\T"), (13)
where
N=3lavvt*a—aaay* 0+ W) +asaWos*c
— ®(ava/V2){a*(b+Wic)—2y*a}], (14)
T=3N"9(aya/VZ)[x*(d+Wi)+2y%a], (15)

and N’ and 77 may be obtained from N and T by re-
placing all a;, with B4. Further,
o= (fall01¥1[71)+V3 (fello- Tuol 72),
y=(fellwio-Tul j),
2= (follwio Tosll j1) =3 (fallvs Yol 51),
a= (fallr¥ 4|7,
b= (jallro- Tull 1),
c=V3(jallre- Tail| 1),
Wa=W (jajeik; 2j1) /W (j2f211; 252).
For positron emission, make the replacement gy —

+gv*, g’ — —gv’™, ga— —ga*, g/ — +ga¥ and
Z — —Z in all preceding formulas.

(16)

APPLICATION TO AU

A comparison of Steffen’s measurements of the Au'®®
beta-gamma directional anisotropy with the calculated
anisotropy coefficient B, expression (12), gives no in-
formation concerning time-reversal invariance.

In Fig. 1, (KB/S) is plotted as a function of electron
kinetic energy, Eg, for four values of 7. In each case
(N/S) is chosen to give the best fit with Steffen’s
experimental points. The exact form for 9Tt is used in
the calculations.

In view of the abundance of matrix elements in NV
as compared to those in N7, values of T greater than
one are not to be expected in the general case. Since
the corresponding curves cannot be fitted to Steffen’s
points, values of T less than —% are excluded for the
case of Au®, Further, the values of (NV/S) necessary
to secure even an approximation to Steffen’s points for
T < —3% are unreasonably large.

It is evident from Fig. 1 that Steffen’s points do
not distinguish between curves with 7' in the range
—%<T<1. Since nothing can be said theoretically
gbout the matrix elements in 7', no limits can be set on
aay 4, and hence nothing concerning time-reversal in-
variance can be concluded.

Measurements of the beta polarization-dependent
anisotropies for Au'*® are under way.'® By using the

16 P, C. Simms (private communication).
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values of (IV/S) necessary to fit Steffen’s directional
correlation measurements, it is possible to predict the
expected behavior of the time-reversal asymmetry
having the (o pxk) (p-E) dependence. The coefficient
(KA4/S) is plotted in Fig. 2 for the same values of T
and (V/S)r for which the directional anisotropy co-
efficient, (KB/S), is drawn in Fig. 1. Again there is
very little distinction either in order of magnitude (of
order $9,) or in energy dependence between the co-
efficients predicted with different values of 7" in the
range —3 <T'<1. The curve for T'=—1 shows a rather
different energy behavior, but may be excluded on the
basis of the directional correlation shown in Fig. 1.

The coefficient, (KC/S), of the parity asymmetry
having the (o-£)(p-£) dependence can be gotten from
(KA/S) if one assumes that B;=a;; when ¢ and & are
A and/or V. This assumption is supported by experi-
ments on the angular distribution of electrons from
polarized Co® by Wu et al.,)” and on the longitudinal
polarization of electrons from Co® and P% by Frauen-
felder et al® and of positrons from Na* by Page and
Heinberg.® In the case of Au8, the choice of Bir=air
leads to the relation C=—2.024. At Eg~500 kev the
curves of Fig. 2 for —1<T<1 indicate that (KC/S)
~ —0.01. This value is consistent with the <29, effect
reported by Steffen as a result of preliminary measure-
ments? and with the 19,2419, effect reported most re-
cently by Steffen and Simms.®

CONCLUSION

In summary it may be stated that, in conjunction
with reasonable order-of-magnitude estimates, the ex-
perimental determination of the coefficient of Ps(cosf,x)
in the Au'® beta-gamma distribution function restricts
T [Eq. (15)] to values in the range —3 <7 <1. How-

010
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F16. 2. Coefficient of (o- ﬁ)(l%) ¢ -£) relative to the isotropic terms
in the distribution function for the Au!®® decay.

17 Wu, Ambler, Hayward, Hoppes, and Hudson, Phys. Rev.
105, 1413 (1957); Ambler, Hayward, Hoppes, Hudson, and Wu,
Phys Rev. 106, 1361 (1957)

18 Frauenfelder Bobone, von Goeler, Levine, Lewis, Peacock,
Rossi, and DePasquah Phys. Rev. 106, 386 (1957) Frauenfelder,
?Ianson Levine, Rossi, and DePasquah Phys. Rev. 107, 643
1957)

191, A. Page and M. Heinberg, Phys. Rev. 106, 1220 (1957).
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ever, since the coefficients of (o- P)XE)(H-k and
(0-k)(p-k) as well as the coefficient of Psy(cosf,i) are
essentially insensitive to variations in 7" within this
range, it must be concluded that, within the framework
of present beta-decay theory, no information concerning
time-reversal invariance can be drawn from a deter-
mination of either the magnitude or the energy depend-
ence of these coefficients in the Au' distribution
function.

This does not imply that time-reversal invariance
cannot be tested by examining the distribution function
for other beta-gamma cascades. Although the T'=—1
coefficients plotted in Figs. 1 and 2 are excluded for
Au'®8, they correspond to a situation that might prevail
for some other case if time-reversal invariance were
violated in the extreme. For Au'® the functions
(KA/S)r—1 and (KC/S)r—_: exhibit relatively sharp
extrema at low energies and are of opposite sign to the
corresponding 7'=0 functions.

If time-reversal invariance were violated to a con-
siderable extent, it is quite probable that, for at least
one first-forbidden beta-gamma cascade, the coefficients
of both the parity asymmetry having the (o- E)(p-B)
dependence and of the time-reversal asymmetry having
the (o-pX k) (H-F) dependence might exhibit detectable
extrema at low energies. If, further, the coefficient of
the parity asymmetry and that of the directional corre-
lation asymmetry for this hypothetical case were of
the same sign or if, equivalently, the coefficient of the
time-reversal asymmetry and the coefficient of Pa(cosf,r)
were of opposite sign, it could be concluded that time-
reversal invariance is violated. Even then, however, the
improbability of obtaining a direct experimental or a
reliable theoretical determination of the matrix ele-
ments in the terms in the asymmetry coefficients which
do and those which do not test time reversal invariance,
prevents any statement as to the exfent to which time-
reversal invariance is violated. On the other hand, as
the experience with Au'®® points out, even if the ob-
served asymmetries may be all accounted for by assum-
ing that the beta interaction is time-reversal invariant,
one may not in general conclude that time-reversal
invariance holds, but only that the experimental data
are consistent with time-reversal invariance.

APPENDIX

When the condition (aZ/2Rep) >>1 holds, it is neces-
sary to use accurate expressions for the dominant Z-
dependent terms in the asymmetry coefficients.

The functions 9T, 9T+, and N~ appearing in the
high-Z approximation to the asymmetry coefficients,
expressions (11), (12), and (13), may be given ex-
plicitly in terms of known functions. With the definitions

eﬂ'ﬂflrlrzl 6(1+ )P(ZPR) Gets )"Y OS%
—_—— 'Y 1 2
(271) 1(272)! ' (167

= (w/2) (61— 89) —arg(I"y/T's) — tan(Be/v1),
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Y1=v1—Pe tanu, A= (Bet+v: tanw)/71,
N=[A{1+3(0:—02)} — Be(81—52) /02 ]
+[1+41 (61— 82)+1Be (51— 82) /02,
B=aZ/p, ve=[K—(aZ)"], de=k—vy
T'v=(v«—141Be)!,
one has
N =—+Free! 2aZ[ (81462)/82](N—1),
It = — F1ope [ 1+1 (51— 082)+ 31BN (81— 82) /821 (1414N"),
M= —Fr2e [1—3(61F62) J(140N).
For rapid computation, one may use the approxi-

mation
u= (81—82)[ j7+tan™" (3B¢) J,

which is correct to the extent that (eZ)?/24 <1.

When the condition «Z/2Re>>1 does not hold,
additional terms must be included in the first-forbidden
beta-gamma distribution function. The complete ex-
pressions for the isotropic terms in the (aZ/p)?<1
approximation may be obtained from the literature.
Conformity to the normalization used in the text is
achieved by matching leading (2¢Z/5R)? terms in the
text with the leading (aZ/2R)* terms found in the
references, and by everywhere replacing («Z/2R) by
(20¢Z/5R).

To obtain complete expressions for the asymmetry
coefficients in the small-(aZ/p)? approximation, add

AI = ,—}C(quewll:avv l a l 2+aAA{ I b I 2— d*CW02+ b*CWm}
—®R (aVA/Vf)a* (3b+CW12)]
+1pe 9 (aya/V2)a* (3b+cW o)
to A, expression (11); add
B =3pc avy|o|*Gethg) —ana 8] Ge—13g)
—aAAd*cWog (%é‘i"%q) —aAAb*ch(%e* %q)
—® (OLVA/\/Z) a* (3b+CW12)%q]
+3aZpd(ava/V2)a [ 3b(pe—3q)
+Wa(pre+9) 145 (7/3) aaa| | W aap?

2 L. C. Biedenharn and M. E. Rose, reference 8; M. Morita
and R. S. Morita, reference 10.
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to B, expression (12); and add

C'=—%qpe [Bvv|al*+Baal[b]*—a*cW ot b W 1o}
— Q(Bva/V2)a* (3b+cW1z) ]—3aZ8 By a/V2)a*
X[3b(p2et—39)+cW i (tpe+9)]

to C, expression (13). Here d= (43|70 Toil j1).
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Note added in proof—The most recent experimental
results on the Au'®® B-y correlation® are consistent with
the analysis presented in this paper. It is suggested®
that the observed sign of the coefficient C relative to
that of B gives evidence for the V-4 coupling in prefer-
ence to the S-T" coupling. This is true only in conjunc-
tion with the results of the Goldhaber, Grodzins, and
Sunyar'® experiment on the helicity of neutrinos.

If one assumes [see Eq. (7) ef seg. in the body of
this paper] that

Bvv/avv=Bisa/0s4=Bva/ava,

or that

Bss/ass=Brr/arr=Bsr/asT,
then

A:B:C=23aZ:%p: (— 1) Bin/ctir,

where =1 when ¢ and % are V and/or 4 and =0 when
7 and k are S and/or T. The Goldhaber et al.'® experi-
ment then says that Bu/aa=21.

It is apparent that one may obtain the same informa-
tion from an observation of the relative sign of B and C
as one obtains from the Wu et al.'” experiment and from
the many longitudinal polarization experiments.18:1

2P, C. Simms and R. M. Steffen, Phys. Rev. Letters 1, 289
(1958).



