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A semiclassical method is employed to discuss the angular distributions of direct nuclear reactions. The
method considers the incident and outgoing particles to be described by rays which follow classical paths;
these rays can be refracted, reflected, and absorbed by a “clouded-crystal-ball” nucleus. Any given incident
ray is considered to have a certain probability of suffering a major “scattering” at each point within a
nucleus, this “scattering” not only changing the direction of the ray but also its wavelength. A condition of
angular momentum conservation is imposed on this direct-scattering event, such that the angular momentum
change in this process is equal to that required by the direct reaction under consideration.

On this picture it is seen that the oscillations in the angular distributions which often occur with direct
reactions arise as a result of interference between direct scatterings in different regions of the nucleus. Thus
these oscillations are to be likened to the interference maxima and minima which arise when light is scattered,
for example from a soap film. Effects due to compound nucleus absorption and of refraction and reflection of
the incident and outgoing rays can be discussed fairly simply on this model.

An investigation of the basis of the semiclassical method indicates that it should be reliable over a wide
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range of interesting conditions.

I. INTRODUCTION

XPERIMENTAL evidence is accumulating to the
effect that a very large number of nuclear reactions
which proceed at least to low-lying sharp energy levels
of the final nucleus receive predominant contributions
from a direct process.! The theoretical interpretation
of the experimental differential cross sections for such
reactions is dependent on the spins and parities of the
nuclear energy levels involved, and also on the optical-
model properties of the initial and final nuclei as seen by
the incident and outgoing particles, respectively.??
Thus a complete analysis of a given direct reaction
differential cross section is capable of yielding a con-
siderable amount of information not only in the realm
of nuclear spectroscopy, but also as regards nuclear
matter itself.

Unfortunately the theoretical evaluation of a direct-
reaction cross section can be simply performed only
under fairly extreme approximations.>® A general
evaluation for any one particular reaction involves a
major computational program in which agreement with
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the experimental differential cross section may finally
be achieved by appropriate choice of optical-model, and
other, parameters.* In such a calculation, one tends
often to achieve little real insight as to why the par-
ticular values of the parameters actually chosen should
lead to the angular distributions finally obtained.
Of course accurate calculations must be performed, but
it is undoubtedly preferable to obtain a good qualitative
and even semiquantitative understanding of any given
angular distribution from simple physical considera-
tions, leaving to a full-scale computational program
only questions of detailed accuracy.

In this paper we discuss a simple semiclassical treat-
ment of direct reactions, yielding a qualitative and in
many cases quantitative understanding of the cross
sections of these reactions. The method considers the
incident and outgoing particles to be described by rays
which follow classical paths (i.e., it may be thought of as
employing WKB wave functions). A given incident ray
is considered to be refracted and absorbed by the
“clouded-crystal-ball” nucleus, and then at some well-
defined point in the nucleus to undergo a major “scatter-
ing” event. This “scattering,” which gives the direct
reaction, may change the direction, wavelength, and
particle type of the ray. The outgoing ray subsequent to
such a scattering may then see the nucleus as a medium
with different refraction and absorption properties from
those seen by the ingoing ray.

Angular momentum conservation is imposed on the
direct scattering event, the special assumption of the
semiclassical method being that this selection rule
applies locally, to each possible reaction point within
the nucleus. As is well known for direct reactions the
conservation laws of angular momentum and of parity,
involving the spins and parities of the initial and final

4C. A. Levinson and M. K. Banerjee, Ann. Phys. 3, 67 (1958).
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nuclei, place severe limitations on the orbital angular
momentum change which can occur as a result of the
reaction. If the angular momentum change be denoted
by I#, the usual circumstance is that only one specific
integral value of / is allowed. Hence in the semiclassical
treatment the condition is imposed that when any given
incident ray ‘scatters” at a certain point into an
outgoing ray, it must do so in such a way that the orbital
angular momentum change be equal in magnitude to
Ih. For a given angle of scattering this condition
imposes restrictions on the region of the nucleus which
can contribute to the direct reaction.

In Sec. IT this semiclassical method will be defined
in more detail, and its consequences evaluated under the
same approximations as have previously been employed
in obtaining closed-form results from a quantum-
mechanical calculation.?? It is found that the results of
the semiclassical method closely resemble those of the
corresponding wave-mechanical calculation for all
values of the parameters involved. Moreover one gains
an insight into the factors contributing to the well-
known oscillatory nature of the angular distributions
which are obtained. Thus the oscillations in the angular
distributions are seen to arise from interference between
rays which suffer their direct scattering in different
regions of the nucleus, in close analogy to the inter-
ference maxima of intensity which occur when light is
reflected from a soap film. Also, for those reactions in
which the angular momentum transfer / in nonzero, it is
readily to be understood why the differential cross
sections are often small at small angles of scattering,
with a first maximum displaced from the forward
direction. This appears as a direct consequence of the
angular momentum selection rule, when for small
angles of scattering there is no point within the nucleus
at which an ingoing ray can be ‘“scattered” into an
outgoing ray such as to yield the required orbital
angular momentum change (see Appendix of first paper
of reference 3).

As well as providing considerable insight into the
factors contributing to the usual simplified closed-form
formulas for direct reaction angular distributions, the
semiclassical method also serves to show the short-
comings of some of the approximations employed in
the derivation of these formulas. The present method
does not depend for its simplicity on these approxima-
tions, and results by this method can be evaluated
with absorption and refraction of the incident and
outgoing rays considered in a general manner. In Sec.
IIT we present preliminary results of such an investiga-
tion, in which compound-nucleus absorption is con-
sidered more realistically, and some effects of refraction
are discussed qualitatively. The results of this section
will show, for example, that absorption of the incident
and outgoing rays tends to fill in the valleys between
oscillations in the angular distributions without affect-
ing the positions of the maxima to any great extent. In
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some cases when absorption is very strong, maxima
subsequent to the first peak can be washed out almost
entirely so that the whole direct-reaction angular dis-
tribution at large angles becomes slowly varying.

It is also seen that a significant effect of refraction
is the possibility of an angular distribution being
peaked forward, even if on the simple theory there is a
“forbidden region’ in the forward direction. Such a
peak can arise, however, only if the compound-nucleus
absorption of either the incident or outgoing particles
is quite weak. Under these conditions we also see in
Sec. IIT that it is possible for a forward peak to be
accompanied by a backward peaking, reflection of the
rays producing an ‘“‘image’’ of the main forward peak in
the backward direction.

A more detailed study of refraction as well as absorp-
tion effects, together with detailed comparisons with
experiment, is deferred for a later publication.

In Sec. IV of the present paper an investigation of
the reliability of the semiclassical method is carried out.
It is derived from the full quantum-mechanical cal-
culation, the accuracy of the required approximation
then representing the accuracy of the semiclassical
method. The derivation is actually carried through for
a somewhat restricted case, viz., under the simplifying
assumptions regarding direct reactions discussed in
Sec. II. Under these restrictions, however, it can be
seen that the semiclassical results should be reliable
over a wide range of interesting experimental conditions,
and are at least qualitatively reliable in most cases.

The derivation of the semiclassical method has not as
yet been carried out with absorption and refraction
effects fully included. Nevertheless the results of Sec. IV
give us confidence that it can be useful for more general
calculations.

II. SEMICLASSICAL METHOD

In a given direct reaction, let the wave vectors for the
incident and outgoing particles be k; and ky, respec-

Fic. 1. Path traveled
by a typical ray in the
semiclassical picture of
a direct reaction.




TREATMENT OF DIRECT NUCLEAR REACTIONS

tively, the angle between these vectors being the angle
of scattering, and let the angular momentum transfer
be %. The semiclassical picture of such a reaction is
depicted in Fig. 1. A particular incident ray enters the
nucleus at 4, where it is subjected to refraction, and
thereafter its amplitude will suffer damping due to
absorption. At some point S a direct scattering occurs
in which the wavelength of the ray is changed. The
outgoing ray penetrates to the nuclear surface at B, is
refracted, and emerges with wave vector k;.

Let the wave vectors of the incident and outgoing
rays within the nucleus be K; and Ky, respectively, and
let the position vector of the point .S be r. Then the
orbital angular momentum of the incident ray may be
written #K;Xr (since refraction at the nuclear surface
cannot change the angular momentum), and of the
outgoing ray #K;Xr. Thus the orbital angular momen-
tum change AL as a result of the direct scattering is
given in magnitude by

AL=#|Q*Xr]|, (1)
where

Q*=K:—K,.

By the condition therefore that the orbital angular
momentum change be /% with ! a particular integral
value, we have from (1) that

[Q*Xr|=1. 2

It is the condition (2) which is to be imposed on each
direct scattering event, and which for a given angle of
scattering severely limits the regions of the nucleus
which can contribute to the reaction.

Illustration in Simple Case

In order to obtain simplified closed-form expressions
from a quantum-mechanical calculation of direct
reaction cross sections, the following two approxima-
tions have previously been made (see, e.g., references
2, 3): (a) compound-nucleus absorption of the incident
and outgoing particles is assumed to be very strong
in the interior of the nucleus, thereby limiting the
reaction to the surface; (b) the wave functions for the
incident and outgoing particles are taken simply to be
undistorted plane waves, and all parts of the nuclear
surface are considered to be able to contribute with
equal probabilities to the reaction. If the same assump-
tions are made here for comparison, our picture of the
reaction simplifies to that of Fig. 2, and the results of
the semiclassical method may be written down almost
at once.

To start with, since refraction at the surface is being
ignored, the wave vectors k; and K; are identical, as
also are the vectors k; and K;. Thus condition (2)
becomes simply

[QXr|=1, ©)
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F1c. 2. Semiclassical picture of a direct surface reaction under
the simplifying approximations of Sec. II. The two scattering
events depicted occur at opposite ends of the active cylinder; it is
the interference between the outgoing rays from such scatterings
that gives rise to the “interference maxima and minima” of the
angular distribution.

where Q is the recoil momentum of the target,
Q=k;,—k,.

For a given angle of scattering, the condition (3)
restricts the possible points of scatter S to the surface
of a cylinder of radius //Q whose axis passes through
the center of the nucleus in the direction of the vector
Q. We shall for conveniencec all this the “active
surface.”

We wish to add coherently all the outgoing rays, and
to do this we must take into account the fact that the
total path length differs for rays scattered at different
points on the active surface. It may readily be ascer-
tained that this leads to a phase-factor ¢¢@Q'? to be
associated with a given outgoing ray, where r is the
position vector of the point .S. Thus we must form the
sum of all factors ¢*Q0) over the active cylinder,
weighting each point .S by a probability amplitude
p(r) that a direct scatter could have occurred at that
point. The total amplitude T for the direct reaction
therefore becomes

T= dr p(r)eiQ ), 4)

‘Lctive cylinder #*<R)

the nuclear radius being denoted by R.

Clearly the most convenient method for evaluating
this integral is to employ cylindrical coordinates, say
(p,a,2) with the z axis chosen as the axis of the active
cylinder. The phase factor takes the simple form ez,
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where Q is the magnitude of Q; the contributions from
-+2z and —z combine, giving the interesting oscillatory
factor

€i9%-¢71%7 — cosQz.

The p and « integrations are entirely trivial; in par-
ticular p is the radius of the active cylinder, p=17/Q. The
resulting one-dimensional integral on z is then con-
veniently transformed back in terms of the polar
coordinate radius 7, where #?= 22+ (//(Q)2. This yields

cos(Q¥2—1)}
(@r—pi

The factor p(r) of the integrand of (5) we have
defined to be the probability amplitude for a direct
scatter to have occurred at the point .S, whose distance
from the center of the nucleus is 7. It clearly should be
proportional to the availability at that point of a
nucleon (or nucleon group) in an appropriate state to
produce the scattering; it equally clearly should be
proportional to the amplitude at that point for the
nucleon (or nucleon group) which remains captured in
the final nuclear state.

We shall obtain more insight into this factor p(7)
shortly, but for the moment it will suffice us to know
that it must fall off with increasing (> R) as does the
nucleon distribution in the initial and final nuclei. We
therefore expect the main contributions to the integral
of (5) to come from values of 7 close to the lower limit
of the integral.

As long as I/Q is less than R, so that the active
cylinder does in fact intersect the main core of the nu-
cleus, the amplitude would therefore be expected to be
represented accurately by the following approximation:

Tz%lp[——————»——cos@mhm J
(@R~}

T=4xl rdr p(r) (5)

r<max(R,}/Q)

(6)

where

pP= f i rdrp (7).
R

In the event that QR <!, the active cylinder misses the

nuclear core altogether, and merely passes through the

fringes of the decreasing nuclear density distribution.

Combining these results, the angular distribution is seen
to be of the form?®

cos?(Q?R2— %)}

() €« ————

Q2R2_lZ
s(6) >0, for QR<L

QOR>1; (7a)

(7b)

8 Strictly we also should allow the function p(r) to depend on
Q, since the probability amplitude for a direct scatter can well
depend on the magnitude of the momentum transfer. Thus the
quantity P= fz"rdr p(r) can be Q dependent, and provide an
angle-dependent form factor to multiply (7). Such a function will
always be smoothly varying with angle, and cannot affect signifi-
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The behavior of the differential cross section pre-
dicted by (7a) and (7b) is determined by the fact that
Q increases monotonically with scattering angle, and
also by the fact that Q frequently is quite small for
forward angles of scattering. For a reaction with
!>0, then, it can well happen for small angles of
scattering that QR</, and that the differential cross
section will be very small, according to (7b). This is
then a “forbidden region” in the angular distribution
due to the fact that the “active cylinder” does not cut
the nucleus—or in other words to the fact that there is
no point within the nucleus at which a direct reaction
can produce the required orbital angular momentum
change.

As the angle of scattering increases, the cross section
will rise as QR approaches /, and will reach a maximum
at the point QR=1. Just at this point Eq. (6) is a poor
approximation to Eq. (5), so Eq. (7a) is not accurate.
Towards somewhat larger angles the accuracy becomes
adequate, however, and it is seen that the angular
distribution will describe oscillations according to the
factor cos?(Q?R?—1[?)% the amplitude of which will
decrease as (Q?R?— )7, These oscillations stem solely
from the factor cos(Q?R?2—1?)* in the integrand of Eq.
(5), which arises as a result of the coherent addition
of the amplitudes from two circles around the opposite
ends of the active cylinder.

The behavior of the direct-reaction angular distribu-
tion given by (7a) and (7b) is very similar to that
obtained from quantum-mechanical calculations. The
similarity may be brought out even more closely.
Under the approximations mentioned at the beginning
of this discussion, the quantum-mechanical result for
the amplitude for a surface direct reaction takes the
standard form?3

Tem.=K f Pdr y(1) j1(0r). ®)

Here K is a constant (we are not at present concerned
with absolute magnitudes), y(7) is a function dependent
on the bound-state wave functions, and j;(Qr) is the
usual spherical Bessel function.®

For a (d,p) reaction, for example, y(r) is the radial
wave function of the captured neutron in its final
nuclear state; i.e., for 7> R one has for a (d,p) reaction

y(r) & Iu(ixr),

where 7%?/2m is the neutron binding energy (m being
the nucleon mass) and #%; is the spherical Hankel
function. Alternatively, for a reaction of the form
(p,p") or (a,¢/) in which the incident particle is con-
sidered to be scattered by a nucleon in a given state,

cantly the positions of the maxima and minima of the angular
distribution. It can, however, influence the relative heights of
different peaks in the distribution.

6 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1955), Chap. IV, p. 77.
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thereby changing the state of this nucleon, the function
y(r) is a product of the initial and final radial wave
functions of the nucleon. If the initial state of this
nucleon has orbital angular momentum /;, and the final
state has orbital angular momentum /,, and if the radial
wave functions for these states be uy(r) and ui(r),
respectively, we have in this case

y(r) &, (r)u, (r)

o« Joy (ikar) y, (ker), for r2>R.

Here %#%:2/2m and #%.?/2m are the binding energies of
the nucleon before and after the collision.

Because of the fact that the above function y(r)
decreases fairly rapidly as 7 increases above R, the
factor 7:(Qr) can as a first approximation be replaced
by 7:(QR) in the integral of (8). Thus the angular
distribution for a direct surface reaction, derived in the
usual manner, is determined essentially by the factor
{7:(OR)}?. Indeed, on comparing Egs. (5) and (8) we
see that the function p(7) of the semiclassical method
is to be identified with the wave function 7y(r) of the
wave-mechanical matrix element, and that in addi-
tion the semiclassical method makes the following
replacement :

0, if Qr<i
semiclassical
71(Qr) ——————— 3 cos(Q¥2— 1)}

(@r—p)t

It may readily be verified that the right-hand side
of (9) provides a quite good approximation to the
spherical Bessel function, starting beyond the first
maximum and going out through several oscillations.

Apart from the fact that it yields angular distribu-
tions very like those of quantum-mechanical calcula-
tions, the semiclassical method is of interest in showing
how the familiar oscillations of these angular distribu-
tions arise. They arise as a result of interference between
outgoing rays which have been produced in a direct
scatter at different points of the nucleus, the same sort
of effect as produces the well-known interference fringes
of physical optics.

Of course the simple approximations employed in
this section are not essential for application of the
semiclassical method. They were employed solely to
facilitate a comparison between the semiclassical and
quantum-mechanical results in one particular case.
Actually these simple approximations are liable to be
quite inaccurate in certain cases. For example, if
compound-nucleus absorption of the incident and
outgoing rays be taken into account realistically, and
if the mean free path for such absorption be quite short
for at least one of these rays, then not all points in any
shell of radius 7 within the nucleus will be equally acces-
sible for a direct reaction. In particular the two circles
around the active cylinder corresponding to a certain

i Or2l (9)
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radial distance 7 may really contribute with quite
different magnitudes. Thus it may be very much less
likely for an incident ray to penetrate to a circle which
is largely towards the rear “shaded” side of the nucleus
than to the corresponding one on the near “light”
side. In this case the interference between the outgoing
rays emanating from these circles can never be com-
plete. One would now expect different weights for the
respective phase factors, so that in adding the contribu-
tions of these two circles one has a sum

eiQ1) | geti@n)
=(1—a)e* Q424 cos(Q-1)
= (1—a)e*9°42a cosQz, a<1 (10)

to replace what was a pure cosQz term in the previous
treatment.

Hence we would expect a more realistic account of
compound nucleus absorption to fill in the wvalleys
between the peaks in the angular distribution. However
the peaks will still occur at the same places.

In the next section the semiclassical method is
employed to explore this question in more detail, and it
will be seen that the above qualitative expectations are
borne out.

III. ABSORPTION AND REFRACTION EFFECTS

The semiclassical model can be applied very easily,
in the examination of any particular experiment, by
sketching the active cylinders for a variety of scattering
angles. Then the paths which the incident and emerging
rays must take to reach these cylinders may suggest the
effects which are influencing the angular distribution.

A few typical effects will now be discussed.

(a) Absorption

We shall simplify this discussion of absorption by
taking the function p(r) of Eq. (4)—i.e., the probability
amplitude that a direct scatter can occur at a point
distant 7 from the center of the nucleus—to be a step
function, i.e.,

p(r)=po, <R
p(r)=0, r=R.

Thus we are ignoring the decreasing density distribution
outside the surface.

We make allowance for compound-nucleus absorption
by saying that the probability that the incident ray
can reach a given point S (see Fig. 3) without being
absorbed is given by a factor exp(—TI';R;), where R; is
the distance the ray has had to penetrate through the
nucleus in order to reach S. In other words we assume
the ray has been attenuated by the amount exp (—I':R;).
Similarly the probability of the outgoing ray actually
emerging is taken to be a factor exp(—TI'yR;) where R;
is the distance this ray must traverse before escaping
from the nucleus.

(11)
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Fi1c. 3. A direct scattering event occurring on the surface of the
active cylinder and within the nucleus. The distances over which
absorption can occur for the incident and outgoing rays are the
distances R; and Ry, respectively.

If we neglect refraction effects and the corresponding
change in wavelength of a ray as it penetrates into the
nuclear matter, the following expression for the ampli-
tude T for the direct reaction replaces Eq. (4):

T= f dr p(r)e @ DgTikigTsRs, (12)
active cylinder

In the event that I';=T'y,=0, no absorption, this
amplitude may be evaluated, and is simply

T=4nlpQ?sin(Q?R*—12)%, if QR>I.
In this case the angular distribution is
o< Q4sin?(Q2R2— %)%, QR>1
=0, QR<L

(13a)
(13b)

Thus once again the angular distribution exhibits the
familiar oscillations, although they now are damped
towards large Q by the factor Q.

To evaluate the integral of (12) for specific nonzero
values of I'; and I it is once more convenient to employ
cylindrical coordinates, in which the point of direct
scatter is specified by its distance z along the cylinder,
and by a polar angle « as indicated in Fig. 3. The angle
a is taken to be the azimuthal angle of the radius
vector r with respect to the plane of k; and k;. If we let
6: be the angle between the vectors k; and Q, and 6 be
the angle of scattering, the distances R; and R; are
expressed in terms of our integration variables as
follows:

R;=2z cosb;+ (I/Q) sinb; cosa
~+[{z cosbi+ (I/Q) sinb; cosa}?

+R-2—B/QT, (14
R;= —3z cos(0+461)— (I/Q) sin(6+61) cosa
+[{z cos(6+61)+ (2/Q) sin (0461 cosa}?
+R—g— /07, (15)
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The amplitude (12) becomes

(Re—12/Q0)} 2
T=1>0f ds eiQ’f da
—(R2—12/Q2)} 0

xeXp{_I‘iRi(zya)—I‘fRf(zra)}y (16)

in which R;(z,a) and R, (z,a) are given by Egs. (14) and
(15), respectively. Of course for QR <! (the “forbidden
region” of the angular distribution) the active cylinder
does not intersect the nucleus and the amplitude T
is zero.

We have evaluated (16) numerically for a number of
cases using the University of Sydney electronic com-
puter (SILLIAC), some typical results being shown in
Figs. 4, 5, and 6. These figures pertain to reactions of
the type (p,9"), (d,p) or (d,n), and (a,p), respectively.
In each case a variety of different values of the absorp-
tion is used, but always with the fixed ratios,

Flg 4; (P:Pl) : I‘Z/rlf= 1;
Flg 6, (O[,p) : I"i/I‘f=4.

An approximate evaluation of the double integral of
Eq. (16) also can be made quite readily, particularly
for cases of strong absorption (large I'; and T'y).

The expectations of the previous section are seen to
be realized. As the absorption is increased the valleys
between oscillations are more and more filled in. The
positions of the peaks and valleys remain essentially
the same irrespective of absorption, and the first
maximum corresponding to QR=~1is always in evidence.

>
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F16 4. Angular distributions for a (p,p’) reaction as computed
with the semiclassical model, for a variety of absorptivities, and
using the step function form of the nuclear density p (7). For these
curves /=2, R=5.0X10" cm, and the incident and outgoing
energies (c.m.) are 14 Mev and 11.7 Mev, respectively. Also
I';=Ty is assumed, with I'=A"), the reciprocal of the mean free
path. The values of A, in units 10722 c¢m, are indicated on each
curve.
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Subsequent peaks can however be smoothed out
entirely in cases of very strong absorption.

The shortcomings of the simple plane-wave approxi-
mations are now evident. These approximations start
from the assumption of strong compound-nucleus
absorption (large values of T'), but on the other hand
allow equal contributions to the direct reaction from
the entire outer shell of the nucleus; it is this latter
assumption which then gives rise to the pronounced
subsidiary oscillations subsequent to the first maximum.
We now see that it is just in the case of strong absorp-
tion that these subsidiary maxima and minima tend to
be smoothed out.

Such effects have certainly been observed experi-
mentally. We will, however, not attempt detailed
comparisons with experiment here, as we view the
present investigation as preliminary only. In the first
instance the form of (11) for the function p(7) is clearly
an idealization, and more general shapes should be
allowed.

A second important factor is that as soon as any
degree of penetration into the nucleus is permitted,
refraction (and reflection) effects will certainly be of
importance. Although we have as yet made no detailed
calculations of these effects, some very interesting
consequences of them can be discussed qualitatively on
the semiclassical picture.

() Refraction

One of the most significant effects of refraction is
that it is capable of producing a violation of a rule that
often is considered quite basic for direct reactions, that
the differential cross section is small at forward angles
of scattering for which QR </ (the “forbidden region”).

All that need happen to violate this rule is that
Q*R [see Eq. (2)] be greater than [ for scattering, even

o
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F16. 5. Angular distributions for a (d,#) reaction, computed
as described in the caption of Fig. 3. Parameters are /=1,
R=5.5X10"1% cm, 8 Mev incident, 11 Mev outgoing, I';/T'y=2.
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Fi16. 6. (a) Angular distributions for an («,p) reaction, computed
as described in the caption of Fig. 3. Parameters are [=1,
R=4.0X10"18 cm, 20.8 Mev incident, 16.8 Mev outgoing,
T;/Ty=4. (b) Same reaction as in Fig. 6(a), except with a diffuse-
surface model for p(7), and with the absorption concentrated near
the surface. This p(r) has Saxon form, a half-height radius
R=3.5X10"1 cm, and a surface thickness parameter a=0.65
X 1071 cm. The absorption has Gaussian form about the radius
R, and with a half-breadth 0.98X 107 cm. Minimum values of
the nucleon mean free path are marked on the curves.
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through QR is less than /. This is illustrated in Fig. 7,
in which we see how refraction at the nuclear surface
can produce an outgoing ray parallel to the incoming
ray, but with a guite different impact parameter. Thus
an appreciable angular momentum transfer can be
achieved, even for zero angle of scattering. In such cases
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F1c. 7. Refraction can be
responsible for forward emer-
gent rays with nonzero angular
momentum transfers.

the angular distributions may well peak in the forward
direction even if a certain region of small angles of
scatter is ‘“forbidden” when refraction is ignored.

The above effect almost certainly occurs in the case of
the reaction C*%(p,p")C??*(Q= —4.4 Mev) which peaks
in the forward direction for all bombarding energies in
the range 11.8-96 Mev. This reaction has /=2, and it is
known from angular correlation measurements’ that
it proceeds as a direct reaction. We therefore expect that
for an appreciable portion of the energy range studied
the angular distribution should have a ‘“forbidden
region” at small angles of scattering. The results of this
particular reaction have been fitted by the detailed
distorted waves calculations of Levinson and Banerjee.?*
They obtained the forward peaking.

In general one would expect that it is near the forward
direction that refraction effects will be most important,
since it is here that the greatest differences in the
vectors Q and Q* will arise. For angles of scattering
much greater than §=0° the vectors Q and Q* are more
nearly the same, so that refraction should not produce
important changes. The shape and strength of a re-
fracted forward peak are of course influenced by the
range and depth of the optical potential. It is also of
interest that many of the rays which enter into pro-
ducing the refracted peak must pass through the deep
interior of the target nucleus. Thus refracted forward
peaks are to be expected only if the nucleus is fairly
transparent to either the incident or outgoing particles.

(c) Reflection

Another interesting effect can occur when either the
incident or outgoing particles see the nucleus as being
sufficiently transparent. The possibility exists that a

7R. Sherr and W. F. Hornyak, Bull. Am. Phys. Soc. Ser. IT, 1,

197 (1956); R. Sherr, Conference on Nuclear Structure, University
of Pittsburgh, 1957 (unpublished).
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large peak in the angular distribution at or near the
forward direction may be ‘‘imaged” in the backward
direction.® To illustrate this point, suppose that it is the
outgoing ray which suffers little absorption, and that the
direct reaction is one which leads to a strong forward
peaking. As each outgoing ray which can contribute to
this forward peak strikes the nuclear surface, it splits
into two rays. One is the transmitted ray which does con-
tribute to the forward peak; the other is a reflected ray
which then proceeds backwards and can penetrate
through the back surface of the nucleus and contribute
towards a backward peak.

This is depicted in Fig. 8, in which refraction and
reflection at the nuclear surface is illustrated for a
number of rays which would contribute to a forward
peak. Twice-reflected rays are ignored. If the nuclear
surface be assumed sharp, and if the ratio of the wave
number of the outgoing owuiside the nucleus to that
inside the nucleus be %, then the reflection coefficient
R(7) for the ray striking the surface at point 4 with
angle of incidence 7 is given by

[COS{_ e T‘ (17)

R(G)=|—————
cosi—+ (n2—sin%)?
Thus the ray reflected at 4 has its intensity reduced by
the factor R(¢). The probability P(7) that the initial
ray incident on the surface at 4 produces an outgoing
backward ray at 4’ is equal to

P())=RE[1—R()]. (18)

It may readily be ascertained that the angle between
the two rays—the one emerging at 4 and the other at
A'—is (w—24). If the first ray proceeds exactly for-
ward, for example, the second ray emerges in the
backward hemisphere and proceeds in a direction
making an angle of 2¢ with the true backward direction.

The probability P(7) is a fairly flat function of the

F1c. 8. Reflection
tends to image for-
ward peaks in the
backward direction.

80ne of us (N.A.) wishes to acknowledge useful discussions
with Professor K. J. Le Couteur and Professor D. C. Peaslee.
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angle 4, increasing slightly as ¢ increases from zero,
until finally it abruptly drops to zero at the critical
angle of incidence 7, for which sini,=#=. All rays with
angles of incidence greater than this will be totally
reflected, and ultimately completely absorbed.

We thus see that those internal rays which contribute
to exactly forward emergent rays will also produce
outgoing rays proceeding within a backward cone mak-
ing an angle of at most 27, with the backward direction.’
Of course the same is also true of any outgoing direction;;
all those internal rays which produce rays emerging at
an angle 8 to the incident direction also produce rays
emerging in a cone around the direction =#— 6, within at
most an angle 27, from this direction.

As one example, if # be taken as 3 (which is roughly
the appropriate value if the outgoing particles be say
10-Mev protons or neutrons), then the angle 7. is 30°.
The average value of the probability P(z) in the range
of 0° to 30° is about 0.13. Thus emerging forward rays
are accompanied by less intense backward rays spread
out in a cone making an angle of <60° with the back-
ward direction.

It is seen that this backward imaging effect is
probably incapable of reproducing any detailed for-
ward oscillations. On the other hand if an angular
distribution has a very strong forward peak, followed by
subsidiary oscillations of smaller magnitude, the
tendency of the reflection effect is to produce a smeared
out backward peak which resembles the main forward
peak.

Such an effect could perhaps be the cause of the
backward peaking observed by Rickey and Sherr® for
the reaction C2(a,p)N', similarly for several (He?p)
reactions," and also observed for some low-energy
(d,p) reactions.? When the outgoing proton energy is
low, the protons have long mean free paths in nuclear
matter and the parameter # of the above discussion can
be sufficiently small that the backward imaging be-
comes particularly precise.

“Heavy-particle stripping””® competes with the
reflection effect in producing backwards peaks, although
it cannot produce any sharp peaks.

9 The spread may actually be less than this, since the above
discussion ignores the limitations imposed on the angles of
incidence Z by the fact that the rays must have originated at the
active surface. If the permitted angles of incidence 7 are all less
than 7., the spread in the backward direction will be correspond-
ingly smaller.

10 M. Rickey and R. Sherr (to be published).

11 E, H. Geer et al., Bull. Am. Phys. Soc. Ser. II, 1, 211 (1956);
R. L. Johnston ef al., Bull. Am. Phys. Soc. Ser. II, 1, 197 (1956).

12T, W. Bonner ef al., Phys. Rev. 101, 209 (1956); J. B. Marion
and G. Weber, Phys. Rev. 103, 167 (1956); E. G. Illsley et al.,
Phys. Rev. 107, 538 (1957); C. E. Dickerman, Phys. Rev. 109,
443 (1958).

13 G, E. Owen and L. Madansky, Phys. Rev. 99, 1608 (1957);
%05, 71)766 (1957). T. Fulton and G. E. Owen, Phys. Rev. 108, 789

1957).
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IV. DISCUSSION OF RELIABILITY OF
SEMICLASSICAL APPROXIMATION

In this section we wish to inquire as to how the semi-
classical method may be derived from a quantum-
mechanical calculation. As yet we have been able to
carry out such a derivation only for the case that the
amplitude for the direct reaction is given by a quantum-
mechanical matrix element of the form

Tom.=C f dr F(Ne-ePy(cosy),  (19)

in which x is the angle between the vectors r and Q, and
Cis an angle-independent constant. This is, for example,
the general form for a direct surface reaction amplitude
derived under the approximations of Sec. II, in which
case the function F(r) would be zero for <R and
otherwise to be identified with the function y(r) of
Eq. (8). Alternatively the form (19) could be the
quantum-mechanical amplitude for a direct reaction
in which little compound-nucleus absorption occurs and
in which refraction of the incident and outgoing
particles is ignored. In further discussion of this section
we shall however specifically bear in mind the surface
reaction.

Quite apart from the reasonableness of the approxi-
mations which lead to the form (19) in a quantum-
mechanical calculation, we know that under the same
approximations the semiclassical method leads to an
amplitude of the following form:

T=C’j dr F(r)e Q-0 (20)
active cylinder

Here C’ is again an angle-independent constant. The
question thus arises as to the nature of the approxima-
tion by which we can derive (20) from (19).

We note that the integral of (20) is a two-dimensional
one because of the restriction of the region of integration
to the surface of the active cylinder. The integral of (19)
is on the other hand a three-dimensional one, and to
transform it into the form (20) we should perform one
of the integrals. We will therefore perform the integral
over the angle x of the radius vector r of (19). Of course
this can be done exactly, but would lead immediately
to the form given in Eq. (8) ; we are interested rather in
approximately evaluating this integral in such a way as
to obtain the form (20).

We thus consider the integral

0,(0n) = f sinxdx €97 «sx Py(cosy). (21)
0

We note that if this were to receive most of its contribu-

tion from the vicinity of some angle x;, determined by
QOr sinx;=1, (22)

we would have achieved the semiclassical result (20).
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To investigate this point it is convenient to employ
the following sum for the Legendre polynomial P;(cosx) :

l

Py(cosx)= >

n(odd or even)

A, cosny

!
=3 2 Aneinx,
n#(odd or even) = —1

(23)

The ratios of the coefficients 4,
relationship

[l(l+ 1)— (n+1) (n+2)]
A n=— A nt .
1(41)—n(n+1)
In particular, for example,
Aro=A,(1/21—1). (24)

If we substitute (23) into (21) and change the variable
of integration by letting {= cosx we obtain

obey the recursion

1 1
0=} ¥ A f &
n=—I(o 1

dd or even)
Xexp{#(Qri+n cos™¢)}.

We note also that in direct reactions one in general has
1<4 so that at most two groups of terms in (25) are
required, viz, n==1 and n= 4 (I—2).

We now evaluate each term of (25) by the method of
stationary phase." The point of stationary phase in the
integral of (25), call it {={,, Is given as the solution of

the equation
Qr(1=¢a?)t=|n. (26)

The equivalent condition in terms of the corresponding
angle x,=cos™{, is
Qr sinx,=mn.

(25)

27

For n positive, x» lies between 0 and 7/2, and for »
negative, between 0 and —x/2; thus {,=cosx, is
always positive. It is to be noted that for the terms
n=1, the condition (26) or (27) corresponds pre-
cisely to the condition (22) for the active cylinder.

If we expand the exponent in the integral of (25) to
second order in the vicinity of the point of stationary
phase, we obtain

0.,(0r)= Zl A, exp{i(Qr+n cos™¢n)}

7=(0,1)

% f dt cos{ant(t—in)?,  (28)

where
azt=ngn(1—¢.2)
=3(Qr/n)*(QPr’—n?).
14 This method was used by R. Huby for a related calculation—

see Appendix of paper by H. C. Newns, Proc. Phys. Soc. (London)
A66, 477 (1953).

(29)
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We now assume—and will investigate this later—
that a@,? is appreciably greater than unity, so that
contributions to the integral over ¢ will come from the
vicinity of {=¢,. We therefore extend the limits of
integration from — o to 4+ and write

f 0t cos{a? (=) = (m/2a,)1.

Thus, if we write out explicitly the terms of (28)
corresponding to =1 and n=1[—2, the result is

-2 dz

0.,(0r)= () [exp{z(lx;—}—Qrcosxl)}—{—

1 Q-2
sexpli( (= 2)xo ++-0r cosge )+ ] (30)

On substitution of (30) into (19), we obtain the
following form for the amplitude Tq.m.:

Tom.= C( ) ( )e”"l[ dr
active cylinder (x =x1)

) Are a; .
X F(r)ei Q04 —— ——exp{i(l— 2)x1_2—Ix1}
1 A2

X dr F(r)ei@n4-.. ] (31)

active cylinder (x =xi-2)

The first term of (31) is precisely of the form of the
semiclassical result (20), in which the integral is taken
over the surface of the active cylinder defined by
[QXr|=1I. The second term however is a surface
integral over the surface of the cylinder defined by
|QXr|=1—2, and does not arise in the semiclassical
treatment. Remembering that the magnitudes of the
integrals involved are proportional to the circum-
ferences of the appropriate cylinders of integration, we
find that the actual ratio (say ®) of the magnitudes of
the second and first terms of (31) is given by the
quantity

-2 Az_z a;

R=—
l Al ar—2

-2 o
ol
- @r-r
-1l - 2)2] '

(32)

Now once we are beyond the main first maximum in the
angular distribution, i.e., QR>!, the fourth root factor
of (32) becomes essentially unity; the ratio ® then
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reduces to
(—2)

R=——. 33
1(21-1) (33)

For 1< 2, of course, the second term of (31) does not
arise; for /=2 the ratio as given by (33) is zero (in-
dicating that in reality the second term of (31) is very
small compared with the first), and for /=3 the ratio is
still only 1/15. Thus for the I values of importance in
direct reactions the second term of (31) is small com-
pared with the first, and its neglect is quite reasonable.!
In effect, therefore, the result (31) is precisely that of
the semiclassical method. The second term (if it exists)
can at most affect somewhat the rise of the angular
distribution (for QR<!) towards the first maximum.

Having “derived” the semiclassical result it remains
to investigate the accuracy of the approximation used,
and this simply amounts to a discussion of the accuracy
of the method of stationary phase which was used to
evaluate the integral of (25). This will be a good
approximation so long as the values of {=cosy which
contribute in the integral of (28) are indeed well
localized around the point {, of stationary phase. The
quantity which determined this spread is the quantity
a,? of Eq. (29) which is thus required to be substantially
greater than unity. For the all-important term n=1 of
(28), which leads to the semiclassical result, we thus
have the requirement

al2>>1 .

For surface reactions, in which the contributions come
from =~ R, this condition is simply
3(QR/D¥(Q*R*—1H)>1. (34)
We see that right at the position of the first maximum,
when QR=/, this condition is not fulfilled. Thus the
semiclassical method is most inaccurate at and before
the first maximum in the angular distribution. This is
to be expected from the results of Sec. II, since the
“forbidden” region in the angular distribution, pre-
dicted by the semiclassical method, differs radically
from the gradual rise of the spherical Bessel function

15 For high [ values one can employ the asymptotic (WKB) form
for Pi(cosx), i.e., Pi(cosx) « (sinx)~* cos{ ({+3)x—=/4}. As long
as x is not very close to zero, the same treatment as above leads to
the semiclassical result but with the active cylinder defined by
|QXr|=143%. The “sharpness” of the active cylinder is now
determined by the quantity {ai3}?>—Eq. (33)—given as

{aua)2=3{0r/ (+H (@~ (+3)7)4
If we write this in terms of the classical quantities momentum
and angular momentum, say Ap=*#, and £=7I, it becomes

(=5 rars) (apr—(e+h/2p,

and in the classical limit %#—0, keeping £ and Ap constant, we see
that the quantity {ai.3}? goes to infinity as 1/%4. Thus, in this
classical limit, contributions to the direct reaction arise identically
from the surface of the active cylinder.
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71(QR). At the same time it is gratifying to recall that
even when condition (34) is not fulfilled and quantita-
tive accuracy not to be expected, the semiclassical
result still reproduces the qualitative features of the
angular distributions as discussed in Sec. II.

It is clear from (34) that, ideally, we require QR>!
in order that the spread in contributions around the
active cylinder be really sharp; for a reasonable degree
of sharpness (spread around the active cylinder small
compared with the nuclear radius), we only require
that QR be at least several times greater than /.

The results of this section thus lead to the conclusion
that the semiclassical method can be quantitatively
accurate for those parts of a differential cross section
for which QR is at least several times greater than /.
In addition, the comparisons made in Sec. II indicate
that the semiclassical results are qualitatively reliable
even when the above condition is not fulfilled.
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APPENDIX

An alternative procedure for justifying the model
makes use of wave-packet ideas.

Let it be assumed that the region of direct reaction is
localized near the active cylinder, as the model requires.
Then it is possible to ask what sort of wave function
this assumption implies for the internal motion of the
product nucleus: to what extent the final state really
can have a well-defined angular momentum.

Evidently the final state which the model implies
is a wave packet, having the dimensions of the localized
region of interaction. Let us describe this wave packet in
the cylindrical coordinates (p,a,z), and suppose it to be
localized in Gaussian fashion about the active cylinder.
Then if nuclear refraction and opacity effects are
ignored, as in Sec. IV, the form of the wave packet is

¥=exp{iQz—F"—v*(o—p0)’}, (A1)

where v is a parameter to be determined, and po=1/Q.
The parameter 8 is

B=Q%/2(Q°R*— 1),

giving ¢ a z dimension which equals the length of the
active cylinder.

Straightforward calculation of the expectation value
of the quantum-mechanical operator / gives

)= Qi+ (A7)
= Qlor o/ 4+ B/ 4+ Bpit+ 0 A~ &,

Then the radial breadth of the packet may be adjusted,
by choice of v, so as to minimize the departure of

(A2)

(A3)
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(*) from the semiclassical value:
(V) min=[8(+0Q%) T, (A4)
(AP)min=3[140%/B* I+ B%0*— 5. (AS)
It is found from these expressions that the wave
packets are so large as to invalidate the model only if
OR is very close to the classical cutoff, QR=1/. The
packets sharpen up very rapidly as (Q2R%/I*) becomes

very slightly greater than unity, reach their best
breadths for (Q2R?/1?*)=~2, then slowly deteriorate as
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this parameter goes to much larger values. A typical
value for (Al?),i, is that for the sharpest packet,

(AR)in~ 3 (14-202)%, (A6)

In the same circumstance the radial thickness of the
packet is found to be

(1/V2)= (R/VZ) (142151 (AT)

Evidently the model becomes better for the larger
values of /. It already seems reasonable if /=2.
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The energies and intensities of the beta and gamma radiations from the long-lived ground level of Al28
were studied with scintillation spectrometers. The positron spectrum was obtained using a plastic scintil-
lator with 47 geometry and was found to have a forbidden shape and an endpoint of 1.1604-0.008 Mev. The
positrons are in coincidence with a gamma ray with an energy of 1.844-0.01 Mev, which is presumably from
the first excited level of Mg?%. There is also a weak gamma ray with an energy of 1.104=0.05 Meyv, in co-
incidence with the 184-Mev gamma ray, and with an intensity of 0.03 relative to the 1.84-Mev gamma ray.
This would be from the second excited level of Mg?$, to which the Al?*® decays weakly by electron capture.
No other gamma rays are observed. It appears that a peak in the pulse-height spectrum at 700 kev is due
to scattering effects rather than a gamma-ray photopeak.

HE beta and gamma radiations from the long-

lived ground level of Al*® were studied using
scintillation spectrometers. The measurements were
made on a 0.01-microcurie source of Al% recovered from
several old magnesium cyclotron targets which had
undergone a few thousand microampere hours of 15-
Mev deuteron bombardment. A Kurie plot of the beta
spectrum was obtained and two gamma rays were
detected.

The beta spectrum was measured using a plastic
scintillator designed to give 4w geometry. The scintil-
lator is a rectangular block of plastic with a 2/100-in.
slot cut in it. The source to be counted was deposited
on a 0.25-mg/cm? sheet of rubber hydrochloride. The
resolution (full width at half-height, divided by peak
pulse height) of the Ba® conversion electron peak (640
kev) was 139,. To check the linearity of the instrument
the spectra of several known beta emitters (Na%, P%,
Ca®) were obtained and, after applying a resolution
correction using the method of Owen and Primakoff,!
Kurie plots were made. All were found to be linear down
to about 150 kev.

* Supported in part by the joint program of the Office of Naval
Research and the U. S. Atomic Energy Commission. X

t Now at the U. S. Naval Radiological Defense Laboratory,
San Francisco, California.

1 G. E. Owen and H. Primakoff, Phys. Rev. 74, 1406 (1948).

Figure 1 shows a Kurie plot of the Al?*® positron
spectrum obtained with this instrument. The plot is
linear when either the unique first forbidden or second
forbidden correction factors? are added (Figs. 2 and 3).
The endpoint is 1.1604-0.008 Mev. Coincidence ex-
periments show that this spectrum is in coincidence
with the annihilation radiation and the 1.84-Mev
gamma ray.
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F16. 1. Kurie plot of the AI?6 positron spectrum,
not corrected for forbiddenness.

2 E. J. Konopinski and L. M. Langer, Annual Review of Nuclear
Science (Annual Reviews, Inc., Stanford, 1953), Vol. 2, p. 261.



