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Effect on the Energy of Increased Flexibility in the Separable Factor of
Hylleraas-Type Atomic Wave Functions from H- to OVII*f
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A number of wave functions of the form f(rl)f(r2)g(r&, rs, r») are applied to the two-electron systems
from H to Ovll. Various analytic expressions forf and g are employed. The values of the various parameters
in f and g are chosen to yield the minimum energy. The wave functions, the values of the parameters, and
the minimum energies are tabulated. Twenty of the twenty-six functions tabulated are presented here for
the first time. For five of the remaining six functions the values of the parameters and the energies have
been recomputed. The energies obtained with these wave functions as well as with functions investigated
by others are examined to ascertain what improvement in the energy results from considering other func-
tional forms for f(r) than the customary negative exponential. In the case of H, it is clear that certain
types of flexibility in f(r) can substantially improve the energies obtained with the simpler functions.
For larger nuclear charge the improvement is definite but smaller.

The functions obtained are of interest in themselves. Several of them give the lowest energies for H so
far found for various specific numbers of parameters. Beyond Liii, no simple wave functions involving the
interelectron distance were previously available.

INTRODUCTION

''N recent years it has become apparent that if the
~ ~ accuracy of atomic wave functions is to be increased
beyond the level represented by the self-consistent field
with exchange and the superposition of a modest num-
ber of configurations, it will be necessary to examine
the possibilities overed by generalizing the concept of
superposition of configurations and by including the
interelectron distances explicitly in the wave function. '
In connection with the second of these two lines, it is
desirable to examine the advantages o6ered by various
forms for the trial wave functions in the case of two-

electron systems. It seems best to undertake this
examination before attempting to include the inter-
electron distances in the treatment of more complex
systems.

The purpose of the present investigation is to ascer-
tain what improvement can be obtained in the energies,
and therefore by implication in the wave functions, of
the ground states of the two-electron systems by the
use of increased flexibility in the separable factor of
Hylleraas-type wave functions, that is, in f(r) in func-
tions of the type

lb= f(rl) f(r2) g(rl, rs r12) (1)
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A by-product of this work has been a number of ground-
state wave functions of various forms and for various
atoms. Twenty new wave functions together with
several which have been investigated by other workers,
but are recomputed here, are presented in Table I.

TRIAL WAVE FUNCTIONS

Four forms have been employed for the f functions
in Eq. (1) and two for the g function,
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Hereinafter a particular trial wave function of the form
given in Eq. (1) will be said, for example, to be of
type aB if P has the form,

f= e "~e "2{1+nr»+P(ri r—s)'}

Trial wave functions of the types aA and aB were
employed quite early in the history of quantum me-
chanics for H, Her, and Li+.'' In the case of Hel,
a polynomial with six terms was also employed by
Hylleraas for g.' Later more complicated functions,
including a g of ten terms, were used for H .' '

More recently ground-state wave functions of very
high accuracy have been obtained for a number of
two-electron systems. ~ "These functions have been of
the type given in Eq. (1) where f is defined by Eq. (2a)
and g contains from 9 to 39 terms. The particular
interest of this last group of functions arises from the
possibility which a comparison of the resulting energies
with experimental values offers for testing the form
assigned to the quantum electrodynamic correction
terms.

In the present work, the objective is different. The
purpose is rather to And out how much the energy is
improved by using for f(r) functions of greater flexi-
bility than the simple exponential. To be able to
measure the improvement, a number of functions of
type aA and aB were computed.

The next problem is to decide what analytic forms,
other than the single exponential, to try for f(r). The
forms given by Eqs. (2b) and (2c) were included
because, when they have been employed in simple
separable product-type wave functions, they have
yielded functions and energies which are very similar
to those obtained by the Hartree-Fock procedure. "
For example, one may compute the integral of the
square of the diAerence between the normalized
Hartree-Fock numerical is functions and the functions
given by Eqs. (2b) and (2c) where the parameters in
these expressions have been chosen to yield the mini-
mum energy when the wave function is of the simple
product type. When the function defined by Eq. (2b)
is employed, one finds for this integral 4&(10 ' as the
average value for four atoms. If Eq. (2c) is used, one
obtains 3X10 ' as the average for the same four atoms.
It therefore appears that f(r) as defined by either Eq.
(2b) or Eq. (2c), and particularly the latter, has the
fiexibility to represent 1s wave functions effectively.

r E. A. Hylleraas, Z. Physik 54, 347 (1929).
~ H. Bethe, Z. Physik 57, 815 (1929).
4 R. E. Williamson, Astrophys. J. 96, 438 (1942).
s L. R. Henrich, Astrophys. J. 99, 59 (1943).' S. Chandrasekhar, Revs. Modern Phys. 16, 301 (1944).
'Chandrasekhar, Elbert, and Herzberg, Phys. Rev. 91, 1172

(1953).
S. Chandrasekhar and G. Herzberg, Phys. Rev. 98, 1050

(1955).' H. M. Schwartz, Phys. Rev. 103, 110 (1956).
ro E. A. Hylleraas and J. Midtdal, Phys. Rev. 103, 829 (1956)."T.Kinoshita, Phys. Rev. 105, 1490 (1957)."J.F. Hart and G. Herzberg, Phys. Rev. 106, 79 (1957).
"Green, Mulder, Lewis, and Woll, Phys. Rev. 93, 757 (1954).

It is interesting to note that work, which has been
pursued concurrently with the present undertaking,
has shown that for the case of Her, the f(r) of Eqs.
(2b) and (2c) can be even closer in form to the arbitrary
numerical functions, f(r), which minimize the energy
when the wave function is written in the form given
by Eq. (1) with g(ri, r&,r») set equal to 1+err». '4 The
function defined by Eq. (2c) has been employed by
Lowdin. "

The form given by Eq (2.d) for the function, f(r), is
the solution of the radial part of the Schrodinger
equation for a single particle moving in the short-range
force field which yields the potential energy term,
2Zhe ""/(1—e "")."The Schrodinger equation with this
potential energy term can be solved in closed form.
This expression for the potential energy has the physi-
cally correct behavior as a function of t for both large
and small ~. Furthermore the potential energy of an
electron at a distance r from a neutral and unperturbed
hydrogen atom in its ground state is 2e "(r+1)/r
Since the expression first given and this latter expression
are very similar in behavior, it appears that wave
functions derived from the Schrodinger equation con-
taining the first expression for the potential energy
should be particularly suitable for the discussion of H .
This expression approaches zero as 2Z/r, and since for
H the approach should be as 2/r, it is reasonable to
try the eGectiveness of f(r) defined by Eq. (2d) with
Z set equal to one. This simpler one parameter form of
f(r) is listed separately in Eqs. (2) as Eq. (2d').

RESULTS

Table I gives the values found for the energy when
the various parameters in the trial wave functions are
chosen by the minimum principle. Twenty of the
twenty-six functions are presented here for the erst
time. For five of the remaining six functions the values
of the parameters and energies have been recomputed.
The first column of Table I gives a reference number
for the particular atom and wave function. The second
column contains the atom or ion to which the wave
function is applied. The third and fourth columns give
the functional forms for f and g, respectively. The next
seven columns contain the values for the various
parameters which give the lowest energy which was
obtained. Some of these parameters may be given to
more 6gures than are significant in view of the number
of figures given in the energy. Since the value of the
energy is at or near, the minimum, it is relatively
insensitive to the precise values of the parameters. It
seemed wiser to give the parameters to a number of
figures which was clearly adequate than to spend the
time necessary to establish in every case a range of
variation in the energy for a range of variation in each

'4 To be published.
's P. O. Lowdin, Phys. Rev. 90, 120 (1953).
'~ L. Rosenfeld, NNcleur Forces (North-Holland Publishing

Company, Amsterdam, 1948), Chap. 5.
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TABLE I. Values of the minimum energy and of the parameters yielding that energy for wave functions of the form

g =f(r&)f(rs)g (rqrur&s) for the two electron systems from H to Ovrr. Energies are given in units of Rhc where R is the Rydberg constant
for the atom or ion concerned.

No.

1 H

2 H

3 H

4 H

1
fg-(1-h/2) r g-(1+h/2) r

I
r
1

fg-Z(1-h/2Z)r g-Z(1+h/2Z)r
J

r
g Zr

1
f g-(1-h/2)r g-(1+h/2)r I

1+ar12

1 +nr12

0.9781

0.8257

Parameters in f
b c A'

1.425

1.3693

1.083

Parameters in g

a p

0.4933

0.4926

-0.97570

—0.97577

—1 01756'

-1.03924

5 H
1

fg-Z(1-h/2Z)r g-S(1+h/2Z)r
J

r
1 +ar12 1.0713 1.2642 0.5401 —1.04051

6 H

7 H

e Zr+Ce kZr

Zr

1
fg-(1-h'/2)r g-(1+h/2)r J

r

2 +ar12 1.1295

1+mr»+P(rl —r2)2 0.768

1 +Olr12+p(rl —r2)2

0,2309 0.4444

0.54

0.5526

0.31 0.12

0.40 0.075

—1.04097
—1.OSO6b

—1.0526

9 H

10 H Zl +gg kZt 1 +nrl2+p(r 1 —r2) 0.8660

1
f g-z(1-h/2S)r g-z(1+h/2z)r J 1 +arl2+P(rl —r2) 2 0.8696

0,0775 0.5000

0.7183 0.3569 0.0968

0.3746 0.1043

—1.05376

-1.05464

Lowest computed value —1.055450

11 HeI

12 Her

13 HeI

14 Her

15 Her

Zt

e s"(1+br2)
g-Zr +gg-kZr

Zt

g-Zr +gg-kZr

2 +ar12
1 +ar12

1 +ar12

1+er12+p(rl —r2) 2

1+Dr»+p(rl —r2) 2

1.8497

2.0302 0.12

1.571

1.816
1.720

0,91 1.60

0.37 1.30

0.3658

0.3477

0.3507

0.3287 0.1368

0.2971 0.1222

-5.78224d

—5.7959S
—5.79613
—5.80486d
—5.80523

Experimental value —5.80756+

16 Lirr

17 LiII

18 LiII

19 Lirr

g-Zr

g-Zt+gg kZr

Sl
g-Zt +gg—kSr

2 +ar12

1 +cvr12

1+ar»+P(rl —r2) 2

1+ar»+P(rl —r2) 2

2.857

2.605

2.827

2.796

0.44 1.52

0,046 1.55

0.3359

0.3135

0.3379 0.2084

0.2784 0.1456

-14.53632~
—14.54769
—14.55606»
—14.55626

Experimental value -14.5608 +0.0002s

20 Berrr

21 Berrr

g Zt

g-Zr +gg-kZr

1+ar12+p(rl -r2)2 3.832

2+~»+p(rl —r2)2 3.747 0.043 1.45

0.3209 0.2449

0.3121 0.1932

—27.30652
—27.30666

Experimental value —27.3144~0.0009e

22 Brv

23 Brv

g Zl

g-Zr +gg-kZt
2+Ofr12+p(rl —r2) 2 4.834

1+ar»+p(rl —r2)2 4.727 0.032 1.45

0.3114 0.2845

0.3216 0.2904

-44.05669
—44.05682

Experimental value —44.071 &0.002e

24 Cv Sr 2+ar»+P(rl —r2)2 5.835 0.3052 0.3273 —64.80687

Experimental value -64.834 &0.0036

25 Nvr g Zt 1+~»+p(rl —r2)2 6.836 0.3009 0.3693 -89.55691

Experimental value —89.605 &0.005&

26 Ovrr C Sr 2+arl2+p(r 1 —r2) 2 7.837 0.2977 0.4133 —118.3070

Experimental value —118.387&0.005&

& A function of this type was first computed by H. Bethe, Z. Physik 57, 815 (1929).
The quantities in this line have been computed from those given by H. Bethe, Z. Physik 57, 81S (1929).

e E. A. Hylleraas and J. Midtdal, Phys. Rev. 103, 829 (1956).
& A function of this type was first computed by E. A. Hylieraas, Z. Physik 54, 347 (1929).

Except for Her, the experimental values of the ionization potentials are all taken from C. E. Moore, reference 17. The values of the various Rydberg
constants are taken from the same source. The ionization potential for Her was taken to be the unpublished value of Herzberg and Zbinden (quoted in
reference 18).

parameter. The last column of Table I contains the
value of the energy expressed in units of Rhc, where E.
is the Rydberg constant for the particular atom.
Experimental values of the energies have been included
in this column for comparison. In the case of H, it
seemed wise to give the lowest calculated value of the
energy rather than the experimental value since no
experimental value of high accuracy is available. The

lowest calculated value is that due to Hylleraas and
Midtdal. ' Except for Her, the experimental values of
the ionization potentials as well as their uncertainties
are all taken from Moore. ' The values of the various
Rydberg constants are taken from the same source.

"C. E. Moore, Atomic Energy Levels, National Bureau of
Standards Circular No. 467 (U. S. Government Printing Office,
washington, D. C., 1949}.
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The ionization potential for Her was taken as the
unpublished va1ue of Herzberg and Zbinden. '

Most of the calculations on which Table I is based
were carried out on the IBM-650 Magnetic Drum
Calculator of the Watson Scientific Computing Labo-
ratory of the International Business Machines Corpo-
ration, Columbia University, New York, New York.

DISCUSSION

The first two wave functions in Table I have g set
equal to one, that is, they are simple product type
functions and do not contain any expression involving
r». They are included here to show how electively the
calculated energies for H are lowered when f(r) is
defined by Eqs. (2d) or (2d'). The energies obtained
with these one and two parameter functions are the
lowest which have been found for H with any simple
product of radial functions, so far as the present au-
thors are aware. These energies may be compared
with the values —0.94531RHhc, —0.96534RHhc, and
—G.97565EHhc obtained when the f(r) in the simple
product type wave function is defined by Eqs. (2a),
(2b), and (2c), respectively. "

If one adds the three wave functions mentioned at
the end of the preceding paragraph to the ten functions
for H listed in Table I, and considers simultaneously
Williamson's function, Henrich's function, Chandra-
sekhar's two functions, the function of Hart and
Herzberg, and the function of Hylleraas and Midtdal,
one has in all nineteen functions for H with which to
deal. One may divide these functions into four groups
depending on whether g has zero, one, two, or more
parameters. If attention is directed to the first three
groups, it is found that f(r) defined by Eq. (2d') is
always more effective in lowering the energy than f(r)
de6ned by Eq. (2a). Thus, as mentioned above,
function 1 gives a lower energy than f(r) defined by
Eq. (2a) when these expressions are used in a simple
product-type wave function. Functions 3 and 4 both
contain two parameters, one in f and one in g, but
function 4, with f(r) defined by Eq. (2d') picks up
57% of the difference in energy between function 3 and
the lowest calculated energy, the value of Hylleraas
and Midtdal. Similarly functions 7 and 8 both are
three-parameter functions, with two of these parameters
in g, but function 8 accounts for 41% of the difference
in energy between function 7 and the lowest calculated
value.

As long as g has a fixed number of parameters, f(r)
defined by Eq. (2d) must yield energies which are lower
than, or equal to, the energies obtained from f(r)
defined by Eq. (2d') since the former function contains
the latter as a special case.

Turning to f(r) defined by Eq. (2c), one finds that
as the number of parameters in g is zero, one, or two,

'8 This value is quoted by S. Chandrasekhar and G. Herzberg,
Phys. Rev. 98, 1050 (1955).

the energies obtained lie, respectively, 0.00012RHhc
above, 0.00046E.Hhc below, 'and 0.000888.Hhc below
the energies yielded by f(r) defined by Eq. (2d).

Next one may consider the H wave functions
according to the total number of parameters which they
contain. As mentioned above, function 1 is the best one
parameter function known for H . Function 4 is the
best two-parameter function. Function 8 is the best
three-parameter function. It gives an energy lower by
0.0006RHhc than Chandrasekhar's three-parameter
function which consists of a symmetrized exponential
and a linear factor in ~»,"and Chandrasekhar's function
in turn gives an energy lower by 0.0012RHhc than
Bethe's function, function 7 in Table I. Function 9, a
four parameter form with f(r) defined by Eq. (2d),
picks up 88% of the difference between the lowest
calculated value of the energy and the value obtained
from function 6, which is the only other four-parameter
function in the group of nineteen considered. Indeed
function 9 gives an energy 0.00084RHhc below William-
son's six-parameter function' and only 0.00005RHhc
above Chandrasekhar's seven-parameter one. ' Function
10 with five parameters gives a lower value of the
energy than Chandrasekhar's seven-parameter func-
tion' and picks up 63% of the difference between this
function and Henrich's eleven-parameter function. ~

The latter function yields —1.05512RHhc. Hart and
Herzberg with twenty parameters have obtained an
energy lower than Henrich's by 0.00017EHhc."Finally,
lowest of all, is the value of Hylleraas and Midtda)
obtained with twenty-four parameters.

If attention is now turned to H, Her, and Lixed, it
appears that with only two exceptions among the
functions which are considered here, the energy is
lowered more by the addition to g of o.r» and then
P(ri —rs)s than by increasing the number of different
parameters in the purely radial factor which multiplies
g. The two exceptions to this rule occur in the case
of H for Chandrasekhar's symmetrized exponential,
which lies somewhat outside the domain of the other
radial factors considered here since it cannot be written
in the form f(r,)f(rs). Even for the symmetrized
exponential, the rule breaks down only when this
function is compared with the radial factor in which

f(r) is defined by Eq. (2a) and even then only for
H and not for Her or LiII.'

In the case of H, once g contains the two parameters
mentioned above, further improvement in the energy
is obtained most rapidly by adding to f(r) first a second
and then a third parameter such as to give it suitable

flexibility. For the other atoms in Table I, Qexibility in

f is less important. As would be expected, with in-
creasing dominance of the nuclear charge, the wave
functions become more hydrogenic, and Qexibility in

f(r) becomes increasingly less important as the nuclear

"S.Chandrasekhar, Astrophys. J. 100, 1/6 (1944).
~ Green, Lewis, Mulder, Wyeth, and Woll, Phys. Rev. 93, 273

(&954).
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charge increases. Indeed the improvement in the energy
for Berrr and Brv is roughly only 0.0001Rhc when f(r)
is defined by Eq. (2c) instead of Eq. (2a). The compu-
tations with the more complicated function have there-
fore been omitted for the last three elements in Table I.
The diGerence in response of H and the heavier
elements to increased flexibility in f(r) is illustrated in

the case of H and Her by the comparison of functions
10 and 15 with the corresponding six-parameter func-
tions in which f(r) is defined by Eq, (2a). For H,
function 10 gives an energy 0.00172RHhc lower than
the six-parameter function; but for HeI, function 15
yields an energy 0.00125RH,hc above the value obtained
with six parameters.

The more general case than that discussed in the
present paper in which f(r) is taken to be the arbitrary
function giving the lowest energy has been investigated
in the case of H by Conwelp' and in the case of HeI by
Baber and Hasse. "The energy obtained by Conwell is
not as low as that given by function 4 in Table I. The
reason for this high result would appear to be that only
one iteration was performed. The case of HeI has been
recomputed by several of the present authors for f(r)
arbitrary and for g(ri2) arbitrary. '4 The accuracy of the
early calculations of Baber and Hasse would appear
to be somewhat less than they supposed.

Finally it is interesting to note also that in the case of
function 13, f(r) defined by Eq. (2c) is known to have
the flexibility to represent the best arbitrary function
with a root-mean-square difference of only 4 parts in
105 14

2' E Conwell, .Phys. Rev. 74, 277 (1948}.
~~ T. D. H. Saber and H. R. Hasse, Proc. Cambridge Phil. Soc.

33, 2.53 (1937}.

SUMMARY

Table I contains a number of wave functions of the
form given by Eqs. ('1), (2), and (3) which have been
applied to the two-electron systems from H to Ovn.
Included in the table are the values of the parameters
which minimize the energy obtained from these func-
tions. The minimum energy itself is also given. Twenty
of the functions in Table I are new, and for five others
the values of the parameters and energies have been
recomputed. Functions 1, 4, 8, 9, and 10 for H, all of
which are presented here for the erst time, are of
special interest since they yield the lowest energies so
far obtained for one-, two-, three-, four-, and five-
parameter wave functions, respectively.

In the case of H, it is clear that the type of Qexibility
represented by Eqs. (2d'), (2d) and (2c) can sub-
stantially improve the energies obtained with the
simpler functions. For larger nuclear charge, increases
in the flexibility of f(r) beyond the simple exponential,
which has been customarily employed, yields definite
improvements in the energy but smaller than for H .

In the case of H, Her, and Lira, it appears that,
with the partial exception of Chandrasekhar's sym-
metrized exponential in the case of H, the energy is
lowered more by the addition to g of the terms nr»
and P (r&—r2)' than by increasing the number of
different parameters in f(r).

For the ions from Bem to Ovlr, where until now no
simple wave functions involving the interelectron
distance were available, Table I gives the values of the
parameters for seven functions.
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