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In the Born-Oppenheimer approximation atomic force constants determine the elastic and vibrational
behavior of crystals for small nuclear displacements. In this paper the first- through third-neighbor force
constants in the copper crystal are found as the components of the change in force produced on the nuclei
when in equilibrium positions by the infinitesimal unit displacements of one nucleus. By Feynman's theorem
quantum-mechanical forces can be calculated directly from the electronic and nuclear charge distribution

by Coulomb s law. The Slater-Koster formalism developed for localized perturbations in crystals is used to
find the change in conduction electron charge density resulting from the infinitesimal unit displacement of
a nucleus. Free-electron wave functions are used, and most of the perturbation energy matrix elements are
neglected. Calculations are made for small crystals with up to 2048 atoms and two different shapes (Born-
von Kirmin boundary conditions): First-order perturbation theory gives exact results for atomic force
constants. An approximate Thomas-Fermi calculation is also carried out for the perturbation in conduction
electron density and simple approximations of this perturbation are discussed. The ion cores are assumed
to move nearly rigidly, and their closed-shell repulsion is chosen so that the calculated atomic force constants
lead to the values of the elastic constants found experimentally. The nine calculated atomic force constants
are quite different from the values Jacobsen inferred from thermal diffuse x-ray scattering from a copper
crystal.

1. INTRODUCTION directly4 have evaluated them as second derivatives of
the cohesive energy rather than as the ratio of the
change in forces between nuclei to an inhnitesimal
nuclear displacement.

Post-war theoretical and experimental developments
have made it possible both to measure the diBuse
x-ray scattering from thermal motion in a crystal and
to infer from the measurements the values of atomic
force constants. ' An x-ray investigation of copper by
Jacohsens was an important stimulus in undertaking
the present calculation.

K wish to investigate the dynamical properties of~

~

~

metal crystals at the atomic level. From these
microscopic properties we can not only predict macro-
scopic elastic and thermal vibration behavior and the
interaction of the crystal with electromagnetic radia-
tion but also obtain insight into various types of dis-

tortion of the perfect lattice.
In this paper, we develop a method of calculating the

atomic force constants' of a simple metal independently

of the elastic constants from the basic properties of the

crystal. In most of the theoretical literature on thermal

vibration spectra and specific heats of metals the
atomic force constants (afc)' are chosen in a semi-

empirical manner, usually to match the elastic con-

stants. ' Often somewhat arbitrary assumptions are

made: e.g. , central forces between atoms, or various

limitations on the type and amount of electronic con-

tribution to the afc. Since there are but a few elastic

constants, in this approach the afc between higher order

neighbors are assumed to be zero.
The core of our approach is to calculate forces be-

tween nuclei directly using Feynman's theorem. ' Other

papers in which afc in metals have been calculated

2. ADIABATIC APPROXIMATION AND
FEYNMAN'8 THEOREM

We assume the validity for copper of the Born-
Oppenheimer approximation, according to which nu-
clear and electronic motions are separable for small
deviations of the nuclei from an equilibrium con-
figuration. Specifically, we consider the nuclei to be
subject to an effective potential energy function which
is the eigenvalue of the electrons for the nuclei fixed
in each instantaneous configuration. The electrons are
taken to remain during nuclear motion in the same
quantum state, the characteristics of which adapt
continuously to the shifting of the nuclei. Let us call
this effective potential U(XI, ,XsN) for the X nuclei
at coordinates X;.If we expand U about the equilibrium
position, the first-order terms must vanish and we have'*Based in part upon a thesis submitted to the Massachusetts

Institute of Technology Physics Department in j.955 in parti
fulhllment of the requirements for the Ph.D. degree; supporte
in part by the Office of Naval Research.

$ Present address: Graduate School of Industrial Administr
tion, Carnegie Institute of Technology, Pittsburgh, Pennsylvani

~ Hereafter, "atomic force constants" will often be abbreviate
as afc.

s E.g., J. de Launay, J. Chem. Phys. 21, 1975 (1953);R. Leig
ton, Revs. Modern Phys. 20, 166 (1948); H. B. Rosenstoc
Phys Rev. .97, 290 (1955); G. K. Horton and H. Schiff, Phy
Rev. 104, 32 (1956).

'R. P. Feynman, Phys. Rev. 56, 340 (1939).

al
'E.g. , A. B. Bhatia, Phys. Rev. 97, 363 (1955); W. Brenig,

Z. Naturforsch. 9A, 560 (1954).
'H. Cole and B. E. Warren, J. Appl. Phys 23, 33.5 (1952);

R. E. Joynson, Phys. Rev. 94, 851 (1954); H. Curien, Acta Cryst.
d 5, 392 (1952).' E. H. Jacobsen, Jr. , Phys. Rev. 97, 654 (1955).

M. Born and K. Huang fDyuamicat Theory of Crystal Lattices
(Oxford University Press, Oxford, 1954), p. 172j show that fifth

s. and higher order terms in this expansion are inconsistent with the
assumption of separability of nuclear and electronic motion, as
Justified by a quantum mechanical perturbation theory expansion.
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cl'U(Xr, .,Xsrr)
U(Xr, ,Xsrr) = Up++

7 X7 =X7o, for k =1 to 3N
(X;—X;s) (X,—Xro),

+third- and fourth-order terms in nuclear displacements.

The coeS.cients of the second-order terms we define as
our interatomic force constants; they are seen to have
the appropriate general characteristics.

We follow the usual treatment of thermal vibrations
in crystals in which the higher order terms in the above
expansion are neglected. Then the lattice of atoms
resembles a large collection of simple harmonic oscilla-
tors. Its motion can be analyzed in terms of normal
coordinates, leading to a representation of the vibration
as a superposition of normal modes of oscillation whose
frequencies depend on the values of the atomic force
constants. By a standard thermodynamical derivation
the specific heat of the metal as a function of tempera-
ture can then be found. Such properties as thermal
expansion cannot, however, be explained by this "har-
monic" approximation. '

Born and Huang, and Peierls" in recent books have
denied the legitimacy of the Born-Oppenheimer
approximation for metals. In the usual derivation by
perturbation theory the ratio of electronic to nuclear
mass is used as the expansion parameter, and the
approximation appears as valid for metals as for other
solids. Born and Huang, however, have recast the
derivation in such a way that the coupling terms be-
tween nuclear and electronic motion depend on the
reciprocal of differences between ground- and excited-
state energies of the electrons. "According to Born and
Huang, the quasi-continuous nature of the energies of
conduction electrons in a metal implies that this coup-
ling is large; i.e., the electrons change states in adjusting
to nuclear motion and hence one cannot clearly define
an effective potential energy function. for nuclear mo-
tion. Born and Huang have not actually evaluated for
a metal their coupling terms, which contain critical
factors other than the energy ones on which they base
their conclusion. The theory of conductivity treats a
somewhat similar problem in the exchange of energy
between electrons and lattice vibrations. There it is
found that little change in the energy of the nuclear
vibrations results from the exchange. ' "Another way
to express the Born and Huang objection partially is
to say that the interaction of nuclear vibrations with
the long-range collective oscillations of the plasma of
electrons in a metal is neglected in the adiabatic
approximation. The effect of such collective oscjllations

' E. W. Montroll, Technical Report No. 6, Institute for Fluid
Dynamics and Applied Mathematics, University of Maryland,
April, 1954 (unpublished).

'F. Seitz, Modern Theory of Solids (McGraw-Hill Book Com-
pany, Inc. , New York, 1940).

' R. E. Peierls, Orsontum Theory of SoMs (Clarendon Press,
Oxford, 1953), p. 6."Reference 7, Appendix VIII.

's J. Bardeen, Revs. Modern Phys. 23, 261 (1951).

on vibrational behavior has not been found to be large
away from absolute zero."For example, there is not a
large difterence between static and ultrasonic values of
the elastic constants. "Both in the theory of conduc-
tivity and the papers on thermal behavior of metals,
the Born-Oppenheimer approximation has been used
almost universally. The recent papers5' obtaining afc
from thermal di6use x-ray scattering from Fe, Al, Zn,
and Cu are the experimental sources with which we wish
to compare our theoretical results: the dynamical
theory on which they are based also uses. the adiabatic
approximatioo. The errors in using the adiabatic
approximation are probably no worse than in making
the further assumption of a quadratic form for the
potential energy.

The first derivative of U with respect to a nuclear
coordinate evaluated with all the nuclear coordinates
held constant is a force of the type Feynman has
considered. ' Feynman shows that for any system of
electrons and fixed nuclei, the derivative with respect
to a nuclear coordinate of the expected value of the
energy operator over the wave function of the electrons
is identical with the expected value over the wave
function of the derivative of the energy operator. The
latter is shown to be simply the classical Coulomb force
exerted by the nuclear charges and the sum of the one-
electron charge densities given by integrating the many-
electron probability density over the coordinates of all
electrons but one.

An atomic force constant by definition is the limit of
the ratio, to the displacement, of the difference between
the force component exerted on another nucleus by a
nucleus when displaced from equilibrium along a crystal
axis and when at the equilibrium position. Hence by
Feynman's theorem the afc are the force components
on one nucleus exerted by the change in electron and
nuclear charge distributions resulting from a small unit
displacement of the other nucleus along an axis in a
crystal in equilibrium.

Feynman's theorem is only applicable to systems for
which the adiabatic approximation holds. The quad-
ratic terms in the nuclear potential energy which we
calculate by the use of it are not to be equated, however,
with the quadratic terms in the usual perturbation
theory expansion of the energy. The latter terms re-
Qect only the zero-order electronic wave function,
which represents the electronic state for the nuclei in

rs D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952); D. Bohm,
Phys. Rev. 84, 836 (1951).

&4 E. Goess and J. Weerts, Physik. Z. 37, 321 (1936); R. F. S.
Hearmon, Revs. Modern Phys. 28, 409 (1946); H. Jones, Physica
15, 17 (1949);J. GaRney and W. C. Overton, Phys. Rev. 95, 602
(1954); D. Lazarus, Phys. Rev. 76, 545 (1949).
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TABLE I. Dynamical matrices' between origin nucleus and nuclei of &st three neighbor rings in fcc monatomic lattice.

= —m ' Al 0 0
Pl Pl
71 Pl

= —m ' Al 0 0
Pl Pl

0 —yl p

Pl= —m' 0
Pl

0
Al
0

Pl
0
Pl

+10

Pl= —m' 0
—Vl

Al 0
Pl Vl
Pl Pl
0 0 S'2

Pl= —m '
0

QI
Pl
0

0
0

S'4

0 0
= —m' 0 p2 0

0 0 p,

P2= —ml 0
0

0
A2

0

0
0
P2

+17 p2 0 0
= —m-' 0 p2 0

0 0 A2

+21

+35

P3 V3——m ' y3 P3
A3

+30 P3
m 1 —V3

73
P3
63 A3

$25
—m ' P3

V3
V3
P3 —e3

A3

XP3 P3——m 1 —V3
73 63

P3 &3 )
A3

Q2S
= —m

&3 &3
A3 63

P3 $36
—m ' t3

V3

A3

e3

P3 —e3 'y3

)
P3

+39

XP4

A8
= —m ' P3 &3

y3 P3

= —m '
63 +3

t8

P3
P3 r034

P8= —m '
V3

6'3

A3

C3

y3

P3

= —m '
A3

E3

63
P3 V3

y3 P3

A3
= —m ' e3 p3—P3 P3

+41

$27

P3
1

63

+3 &3

Y3

P3

& The atomic force constant matrices times the negative reciprocal of the nuclear mass, 772,
b Neighbor sites numbered as in Fig. 1.

equilibrium positions; whereas our calculation by Feyn-
man's theorem of the coefficient of the quadratic terms
includes the first-order perturbation of the electronic
wave function by the nuclear displacement.

3. CRYSTAL SYMMETRY AND THE
ELASTIC CONSTANTS

The low-frequency normal modes of thermal vibra-
tion in the crystal can be identified with the longi-
tudinal and transverse modes of vibration in classical
elasticity theory. Thus the elastic constants can be
equated to certain sums of the atomic force constants.
By a theorem of Born the stability of all the normal
modes of vibration is assured if the elastic constant
values correspond to stable acoustic modes. "

Fortunately symmetry considerations greatly reduce
the number of distinct afc. Because of the translational
symmetry of the crystal, the nine afc between a pair
of nuclei do not depend on their absolute location but
only on the di6erence between their equilibrium position
vectors. Hence all the afc are given by three-by-three
force constant matrices between one nucleus, which we
shall take as the origin, and the other nuclei in the
crystal. In applying Feynman's theorem, we shall take
the virtual displacement of a nucleus used in calculating
the afc as occurring for the origin nucleus.

The afc matrices between nuclei, from their definition,
behave as tensors of the second rank with respect to
coordinate transformations. Certain rotations of the

'' M. Born, Proc. Cambridge Phil Soc. 38, 82 .(1942);J. Chem.
Phys. 7, 591 (1939).

@Cubi
=2Pr+2ns+8ns+4Ps

+further neighbor terms, (3.1)
"M. Born and G. H. Begbie, Proc. Roy. Soc. (London) 188,

179 (1946-7); G. H. Begbie, Proc. Roy. Soc. (London) 188, 189
(1946-7).

coordinate axes lead to the new position vector of each
nucleus being the same as the former position vector of
another nucleus and will leave the over-all lattice
position unchanged. When these transformations are
applied to the afc matrices between the origin nucleus
and the nuclei at a given distance away, it is readily
seen that the nine elements in one matrix are merely
permutations of those in one Of the other matrices for
members of the same ring of neighbors. Moreover, some
of the rotations will leave the position vector of a given
nucleus unchanged while leading to an apparent trans-
formation of the afc matrix: then one finds symmetry
restrictions on the internal structure of the force con-
stant matrix by requiring the transformed matrix to
be identical with the initial matrix.

The details of these derivations can be found in
Begbie" and Jacobsen. s The results are given in Table I
for the conventions of Fig. 1.There are nine independent
afc from the first- through third-neighbor rings. Two
diGerent e3's, on opposite sides of the diagonal of the
afc matrices, would in fact be consistent with lattice
symmetry requirements. However, in order for the
squares of the vibration frequencies of the normal
modes to be real, the afc matrices must be Hermitian.
The formulas connecting the afc and elastic constants
for the face-centered cubic lattice are
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FIG. 1. Face-centered cubic structure.

CC44 =ni+P, +2Ps+ 2ns+10Ps
+further neighbor terms, (3.2)

4. ION CORE MODEL

We shall not attempt to calculate the exact one-
electron wave function of the copper crystal called for
in Feynman's theorem. The ion core electrons will be
taken as localized about the various nuclei in tight
closed shells which are spherically symmetric. We
assume that the origin ion core moves nearly rigidly

44(cis+c44) 27i+4'74+ 16es

+further neighbor terms, (3.3)

where u is the spacing of atomic planes, 1.80 A in the
case of copper. We will see later than the fourth- and
higher order neighbor afc are very small, but the num-
ber of nuclei in further neighbor rings is large and we
have not proved that their contribution to the elastic
constants is negligible. Since the elastic constants are
known with accuracy, we shall use the foregoing equa-
tions as a guide in the calculation of the afc. However,
these equations would not be exact even if all the afc
were included and were correct, because the afc only
represent the quadratic terms in the expansion of the
effective nuclear potential energy about the equilibrium
configuration. The values of the c;;used shouM be those
determined in ultrasonic not static experiments, since
the latter imply macroscopic distortions of the crystal
not consistent with the assumptions of our afc
calculations.

for the virtual displacement 6. Then the change in
Coulomb field resulting from the shift of the origin ion
core charge is to a first approximation that of a dipole
with charges e and moment arm 5 (located 5/2 distant
from the origin). Because of shielding by the ion core
electrons, the eRective nuclear charges exposed to the
dipole field will be just +e. The resulting contributions
to the force constants are given in column 1 of the
Table of Results, multiplied by 1.06 for reasons ex-
plained later in this section.

The ion cores are not tiny, and the shift in the origin
ion core will result in addition in changed penetration
of its ion core into the ion cores of its twelve nearest
neighbors. According to Feynman's theorem the effect
of this changed penetration is given by the classical
Coulomb force produced by the corresponding change
in charge density. However, we shall treat. this closed-
shell repulsion eRect phenomenologically. The inter-
action force is central, of short range, and two-body.
The virtual displacement of the origin ion core along
a crystal axis leads to a change in the magnitude and a
change in the direction of this interaction force, say E
and A, respectively. From the geometry it follows that

Pi ——R—A, yi ——X+A, and ni= —2A.

Fuchs in his calculation of the elastic constants of
copper" used an approximate form of the closed-shell

"K. Fuchs, Proc. Roy. Soc. (London) 153, 622 (1936); 157,
444 (1936);but see F. G. Funu LPhil. Mag. 46, 1007 (1955)j for
a later calculation.
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interaction developed by Lenz from a Thomas-Fermi
approximation. If 2W(r) is the interaction energy of a
pair of copper ions, in terms of the above notation we
have

Here ro is the first-neighbor distance in copper, 2.54 A.
Lenz' values are

A =0.08SX10' dynes/cm, 8=1.40X10' dynes/cm.

However, Seitz and Huntington distrust these values
for a variety of reasons. They have suggested" both
shifting his distance scale by 17% to smaller values or
alternatively using a Born-Mayer type interaction
energy: W(r)=A exp( —r/ps). Subsequent articles by
them and other authors on copper have generally fol-
lowed the latter suggestion. "The A and po parameters
are chosen to give agreement with the experimental
elastic constants using a variety of assumptions about
what fraction of the c;; result from the closed-shell
interaction and what fraction from conduction-electron
contributions. Our detailed calculation of the conduc-
tion-electron contribution to the afc and thence to the
elastic constants is probably more reliable than any
published previously and so we shall treat E and A as
disposable parameters to be chosen to give the best
match of our calculated totals to the experimental
elastic constants. It is superQuous for this purpose to
assume any particular functional form for the inter-
action energy between the closed shells.

The remaining problem, on which we have chosen to
focus the major share of our attention in this paper, is
to evaluate the change in conduction electron charge
density produced by the virtual displacement of the
origin nucleus plus ion core electrons. Exchange and
correlation between the origin ion core and the con-
duction electrons have an effect, which we crudely
approximate together with the self-consisten t-field
effect resulting from the size of the ion core as follows.

There is a partial exclusion of the conduction elec-
trons from the ion core, as can be seen for example
from Fuchs' self-consistent-field wave function for the
4s electron in copper. "We assume that the conduction
electron is free and therefore uniformly distributed
everywhere outside the copper ion core, from which it
is entirely excluded. We take the ion core to have the
effective radius 1.1 A suggested both by Fuchs' results
and the semiempirical calculations on additivity of ion
core radii in crystals. ' The virtual displacement of the
ion core will eliminate a crescent of conduction elec-
trons from its path, and a similar crescent of volume
formerly occupied by the ion core will be filled by con-

ts F. Seitz and H. B. Huntington, Phys. Rev. 61, 320 (1942).
'9 H. B. Huntington LPhys. Rev. 91, 1092 (1953)j summarizes

and evaluates the situation; but see K. Kambe, Phys. Rev. 99,
419 (1955).

duction electrons. The net electrostatic effect of the
change in conduction electron distribution is exactly
the same as if a sphere of the size of the ion core and
with a positive charge density equal in magnitude to
that of the conduction electrons is shifted 8 away from
the origin. That is, the effect is that of a pure dipole.
For the ion core radius we use, the dipole moment is
about six percent of that of the ion core, and adds to it.

S. THOMAS-FERMI MODEL FOR THE
CONDUCTION ELECTRONS

It is the electrostatic field of the dipole of moment
(+e5), representing the virtual displacement through
a distance 6 of the origin ion core, which produces the
major perturbation of the conduction electron distribu-
tion in our model. In the treatment of this perturbation
the following considerations should be borne in mind:

(1) A formulation should be used which is suitable
for a localized perturbation, such as one of those de-
veloped for impurity problems.

(2) The calculated change in conduction electron
density must give rise to complete screening of the ion
core dipole within a few angstroms, from electrostatic
principles.

(3) A self-consistent-field technique must be used,
since the perturbing potential affecting a given elec-
tronic wave function will be in large part the effect of
perturbations in all the other electronic wave functions.
In a Geld with dipole symmetry, no bound state can
emerge to effect most of the screening.

(4) The calculations must be accurate within the
immediate vicinity of the origin. Within a radius of,
say, 3 A is found the largest change in density and con-
tribution to the afc.

(5) First-order perturbation theory is rigorous,
because the virtual displacement 8 is by definition
in6nitesimal.

We call the change in conduction electron density
hp, and we assume that the displacement of the ion
core is along the x& axis without loss of generality.

First we develop an approximate Thomas-Fermi
treatment, following Mott's approach for the screening
of an impurity atom in a metal. "Assume that the con-
duction electrons form a plasma gas with initial Fermi
level Ep through which the neutralizing ion core charge
is uniformly spread. Let U be the electric potential
acting on each electron as a result of the dipole per-
turbation at the origin. The density of the electrons p
will be approximately proportional to (EF eU)& from-
the Pauli and Heisenberg principles. Then by Poisson's
equation, the Laplacian of the total electric potential
on the electron is proportional to (Er eU)'*. We ex-—
pand the parenthesis by the binomial theorem and
since U is infinitesimal, neglect all terms beyond the

ssN. F. Mott, Proc. Cambridge Phil. Soc. 32, 281 (1936);
I. Isenberg, Phys. Rev. 79, 736 (1950).
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afc q=1.81 A '

—0.08
0.19
0.26
0.04

q =0.93 A '

—0.43
0.58
1.01
0.34—0.07
0.07

~ ~ ~

0.02
0.05

a In unitS Of 104 dyneS/Cm.

second. We cancel the terms not containing the per-
turbation potential U and find that

V'U = q'U where q'= 167r'me'(3ns/7r) &(1/h')

mo is the density of atoms, and we use esu. U must
vanish at infinity and reduce to a dipole potential at
the origin. The latter boundary condition is equivalent
to adding the inhomogeneous term @re(3(r—3i) —3(r))
to the right side of the equation. Using the standard
Green's function approach and neglecting higher order
terms in the virtual displacement 5, we obtain

U(r) = L(e3) cose/r'$(1+qr)e

which in fact exactly satisfies the scalar wave equation.
The quantity in brackets is the potential of the ion
core dipole; our screening factor diGers from that of
Mott by the (1+qr) term.

The change in conduction electron density is pro-
portional to U(r). The total screening charge, the
integral of the magnitude of Ap, is (eqb) and it has a
dipole moment of (—e3). By direct calculation q
=1.81 A '. With this value of q all but a few percent
of the hp lies within the first-neighbor ring.

The forces on the neighboring nuclei can be calcu-
lated directly by taking the gradient of U and include
the effect of the ion-core dipole as well as of the change
in conduction electron distribution. Dividing by 5 we
find the afc listed in the first column of Table II.
Jacobsen's afc' are given in the Table of Results. The
closed-shell repulsion is negligible beyond 6rst neigh-
bors; so the x-ray values should agree with those
calculated from the Thomas-Fermi U for second and
third neighbors. Instead the x-ray values are much
larger. Moreover, the first-neighbor Thomas-Fermi afc
are so small also that very large closed-shell repulsion
contributions must be assumed to obtain elastic con-
stants as big as the experimental ones.

If almost all the Ap is within the first-neighbor ring,
its electrostatic 6eld at and beyond this ring is equiva-
lent to that of a multipole expansion at the origin,
according to a well-known theorem. It is easy to show
that in th'e fcc lattice the forces due to (axial) quadru-
poles and sixteen-poles have the wrong symmetry for
afc. The dipole and octopole forces have the right
general symmetry, but only for the dipole is there a

TABLE II. Atomic force constants' from Thomas-Fermi model.

single value for e3. In Table IV we exhibit the afc
produced by a dipole in column 1:they do not have the
same relative sizes as the Thomas-Fermi afc for an
undifferentiated plasma with q=1.81 A '.

Mott treated q as an undetermined parameter, which
he chose to be 3 A ' to give best agreement with the
measurements on impurity resistivity. Trial and error
led us to the value of q=0.93 A ' as giving reasonable
agreement with Jacobsen's second- and third-neighbor
x-ray afc (see Table II). About 20% of the Ap lies out-
side the 6rst-neighbor ring for this value of q and we
therefore do not expect the rrr, P&, and yr to be those of
a dipole. The second- and third-neighbor afc for q
=0.93 A ', however, are in rough agreement with those
caused by a dipole of positive moment at the origin.

Although the Thomas-Fermi treatment has the five
characteristics called for at the beginning of this sec-
tion, it is not satisfactory. It does not reQect the fcc
structure of copper. We have no rationale for treating

q as a disposable parameter. In any case it is not
pleasing to choose q so as to reach the best agreement
with the x-ray afc whose validity we wish to test.

A perturbation theory solution of the Schrodinger
equations of the conduction electrons is called for. We
assume that expansion of the perturbed wave functions
in the unperturbed wave functions of the 4s band alone
is sufhcient, and we shall approximate the latter by
free-electron plane waves for actual calculations. Most
of the published formulations of localized perturbations
in a periodic potential" are not appropriate to our
problem, usually because they critically depend on the
spherical symmetry of the perturbation and on the
creation of bound states which account for most of the
screening by conduction electrons. The Thomas-Fermi
treatment above will serve as a zero-order approxima-
tion indicating what simplifications of the self-consistent
perturbation potential can be made.

6. SLATER-KOSTER FORMULATION FOR LOCALIZED
PERTURBATIONS IN A MICROSCOPIC CRYSTAL

In a macroscopic metal crystal the conduction elec-
tron eigenvalues are very closely spaced, but since they
are discrete it is theoretically possible to formulate
perturbation effects in terms of changes in eigenvalues.
Such a formulation becomes feasible when restricted
to crystals with dimensions of a few atomic planes, in
which there are but a few, rather well-separated states
in the conduction band. Koster and Slater have found
for a monopole perturbation in an idealized simple
cubic lattice that the curves of the energy of the state
split off from the band vs perturbation magnitude are
nearly identical for the in6nite lattice and the lattice
of twelve atomic planes on an edge."

'E.g. , E. Conwell and V. F. Weisskopf, Phys. Rev. 77, 388
(1950); H. B.Huntington, Phys. Rev. 61, 325 (1942); J. Friedel,
Phil. Mag. 43, 153 (1952), Phil. Mag. Suppl. 3, 446 (1954).

~ J. C. Slater, Technical Report No. 5, Solid State and Molecu-
lar Theory Group, Massachusetts Institute of Technology,
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where V is the perturbation energy and Hou&=EI, NI, .
Multiplying by u&* and integrating over the crystal
volume, we obtain

Fs Es +Q(k)F&(k'~ V ~k) =EFi;, (6 1)

where (k'
~

V~ I) =t'Ni, *VIE,dr, and P(k) means sum-
mation over k. Let a(r —R,) be the Wannier function
centered on the site R, in the lattice; ui, = (1/gX) P (R;)
Xexp(ik R,)a(r—R,), with the summation over all
the sites in the lattice and Ã the number of atoms in
the crystal. Equation (6.1) can be rewritten

F'= (I/&)[1/(E —E')]Z(k)F. 2(R', R )
Xexp(ik R~) exp( ik' R,)[—R;~ V ~R~). (6.2)

Here [R,
~
V~R,j is the average of the perturbation

energy U over the Wannier functions localized about

Cambridge, 1953 (unpublished); G. Koster and J. C. Sister,
Phys. Rev. 95, 1167 (1954); 96, 1208 (1954); G. Koster, Phys.
Rev. 95, 1436 (1954).

N lYY, Lederman, Proc. Roy. Soc. (London) A182, 362 (1944).

We shall find Ap, the perturbation in conduction
electron density, by discrete eigenvalue perturbation
theory applied to microscopic crystals. Since the dipole
perturbation is by definition infinitesimal, even for a
macroscopic crystal first-order perturbation theory is
rigorous. We use Born-von Karman periodic boundary
conditions. ' I.edermann" has shown they are equivalent
to surface e6ects; so we justify their use when we con-
vince ourselves that the smallness of the crystal does
not appreciably aRect the Ap resulting from the localized
dipole perturba tion.

Expansion of the perturbed wave function in terms
of localized and orthogonal orbitals such as the Wannier
functions would seem appropriate. Substitution of the
expansion in Schrodinger's equation leads in the stand-
ard way to a set of linear homogeneous equations in the
coefficients and a corresponding secular determinant
fixing the energy. However, the determinant has as
many rows and columns as the crystal has atoms.

One way to simplify the determination of the ex-
pansion coefficients is to split them into a factor corre-
sponding to the unperturbed wave function and a
factor representing the eRect of the perturbation. By
suitable approximation Wannier's differential equation
in the perturbation factor can be derived, in the free-
electron approximation a second-order equation. An-
other way, developed by Slater and Roster, 22 retains
the focus on the perturbation in eigenvalues and the
advantages in using localized Wannier functions but
uses an initial expansion in Bloch waves.

Expand y, a perturbed wave function, in the un-
perturbed Bloch wave eigenfunctions, Ni, . x=+Fi,us,
where the summation is over all the propagation
vectors k in the 4s band Brillouin zone. Substitute this
expansion in the Schrodinger equation

&ex+ Vx =Ex,

sites E; and R;:

[R;~ V~R,j=, a*(r —R;)Va(r —R,)dr.

By expanding the F& coeKcients in the coeKcients of
the expansion of y in Wannier functions, one can obtain
from Eq. (6.2) a transformed determinant for the energy
E of much smaller size than the usual secular deter-
minant mentioned earlier. One finds the same trans-
formed determinant by introducing displaced Bloch
waves, "however, and we shall find this approach more
efficient for calculating Dp.

I.et us define

A (R;)= (1/E)Q(k, R;)[R,
~
V~R;] exp(ik R;)Fi,. (6.3)

Substituting Eq. (6.3) in Eq. (6.2), we see

Fi, 1/(E —Ei,——)P(R~)A (R;) exp( ik'—R;). (6.4)

In turn substituting Eq. (6.4) in Eq. (6.3), there results

A (R') = (1/v'&) 2 (R,R.)
X[R,

~
V~R,]G (R,,R,)A(R„). (6.5)

The quantity

Gs(R, ,R„)= (1/QE)Q(k')
Xexp[ik'. (R,—R,)j/(E —Eg ) (6.6)

is the equivalent for finite difference equations of the
Green's function; the sum in Eq. (6.6) is analogous to
the expansion of a Green's function in the eigenfunc-
tions of the corresponding homogeneous equation. "
Equation (6.5) represents a set of X linear homogeneous
equations in the X unknowns A (R,). For the set to be
consistent the determinant of the coeKcients must be
zero. The Green's function contains E as a parameter;
so the determinant is essentially a transformed secular
determinant, although it is not Hermitian nor in general
symmetric in other ways. The complex way in which
the perturbed energy E appears in the transformed
determinant is oRset by the reduced eRective size of
the determinant. [R,

~
V~R;j is negligible if either of

the Wannier functions centers on a site appreciably
removed from the localized perturbation at the origin.
From Eq. (6.3) we see that A(R,) is also negligible if
8, is not near the origin.

In our calculation for Ap first-order perturbation
theory is gigorous, and this leads to important simplifi-
cations. If E is one of the perturbed energies closest
to the unperturbed eigenvalue E„Eq. (6.6) reduces to

Gs(R;,R„)= (1/QS) [1/(E—E,))
XP (k' degenerate at E,) exp[ik'. (R,—R„)$,

where g ~

k'~'. The determinant in the coefficients of
the A(R;) then applies only to the perturbed states
which reduce to the E, state; but the determinantal

'4 P. M. Morse and H. Feshbach, Methods of Theoreticg/ Physics
(McGraw-Hill Book Company, Inc, , New York, 1953).
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equation can be put in a more familiar form:

0= determinant( (8—8,)5 (R,,R„)—(1/X)P (R;)
X[R;)V

) R;]P(k' degenerate at E,)
Xexp[ik' (R;—R,]}, (6.7)

where the quantity in brackets is the general term in
the determinant and 5(R;,R„) is 0 if R;WR„and 1 if
R,= R„.The determinant is still not Hermitian.

The perturbation energy V necessarily has di-
pole symmetry in the xi=0 plane: i.e. , V(xi,x&,x3)
= —V(—xi,x2,x3) when the origin nucleus displace-
ment is along the xi axis. The Wannier functions
a(r —R;) centered on the sites of the crystal lattice
form an orthonormal set, but they have an identical
functional form, which is symmetric. Hence the di-
agonal matrix element between Wannier functions
centered on the origin site is zero: [0~ VIO]=0. Also
the matrix elements of V between the origin site and
the four first-neighbor sites on the xi=0 plane are
zero. Moreover, on a given side of the xi=0 plane V(r)
has the cubic symmetry of the unperturbed crystal.
Therefore the matrix elements between the origin site
and the four first-neighbor sites on one side of the
xi=0 plane are all equal and are the negative of those
between the origin site and the opposite four first-
neighbor sites; let us designate the four matrix elements
for the first-neighbor sites with xi) 0 as [1

~
V

~
0].

We assume that all other matrix elements iri V are
negligible. The Thomas-Fermi formula for the per-
turbation energy eU derived earlier is a reasonable
first approximation in a self-consistent-field treatment.
Approximations to the exact Wannier function have
been given elsewhere. Rough calculations using these
formulas indicate that matrix elements of V involving
at least one second- or higher-neighbor site are very
small, although there are of course very many such
matrix elements. When R; and E, are diferent first-
neighbor sites [R;~ V

~
R;] is less than 10% of [1j V~ 0].

The weakest assumption is that [R;j
V

~
R,] is negligible

when E, is a first-neighbor site, for the rough calcula-
tion indicates it is comparable to [1

~

V
~

0].
The determinant in Eq. (6.7) can be reduced to size

9X9: with only [1~ V~O] retained, at most nine per-
turbed levels can be split o6 from each of the initially
degenerate groups of eigenstates to which Eq. (6.7)
refers for different E,. Similarly the coefFicients A(R, )
of the displaced Bloch waves are zero save for the
origin site and the eight first-neighbor sites not on the
xi=0 plane. The determinantal equation in fact is
reducible from a ninth-order to a quadratic equation,
one level being split off upward from the group of levels
initially degenerate at E, and another downward by the
same magnitude. This magnitude of the splitoG is a
maximum in the middle of the band and zero at the
edges: no bound impurity levels are formed.

It is an enormous simplification to retain only one
matrix element in V: instead of carrying out a self-

consistent-field solution of many steps, assuming nu-
merical values for the [R;~ V

~
R,]magnitudes retained,

calculating the hp in terms of the A (R,), and then re-
calculating new [R,

~
V~R,]'s, we may factor out the

single magnitude and guarantee self-consistency in one
step at the end. If we had taken [1

~

V ~0] zero and re-
tained instead only the diagonal matrix elements
[R,

~
V~R;] for the first-neighbor sites, there would

have been no contribution from the origin site: A (0)
would have been zero, instead of dominant. Yet the
pattern of the other eight A (R;) would not have been
markedly di6erent. In retaining but one matrix element
we obtain only the main features of the Ap that would
result from the full self-consistent treatment. It is
therefore important with a dipole perturbation to retain
the [1~ V~O] elements which lead to the important
contribution from the origin site displaced Bloch wave.
For a monopole perturbation, such as that treated by
Roster and Slater, " the [R;~ V~R;] for first-neighbor
sites would be the matrix element which would by itself
most nearly lead to the correct hp. The Wannier
differential equation mentioned earlier neglects ele-
ments such as [1IV)0] in favor of the [R,

~
V~Rg]

elements and so is inappropriate for our problem.

7. PERTURBATION IN CONDUCTION
ELECTRON DENSITY

The qualitative results for the perturbation energy
and coefficients indicated above are valid whatever the
unperturbed energy spectrum of the microcrystal. We
obtain specific results for the free-electron model. "
Here the unperturbed energy is proportional to

~

k~',
and so each group of initially degenerate Bloch eigen-
states contains all those and only those states with k
vectors of the same magnitude.

We consider microcrystals of two shapes: (1) cubic;
(2) parallelopiped —specifically, the same shape as the
Bravais unit cell, which contains only one ion core.
Only certain k vectors are consistent with Born-von
Karman boundary conditions applied to crystals of
these two shapes.

For shape (1) k= (m/na)(k, i,+k2i2+k, i,), with no
restrictions on the integers ki, k~, k~, where ii, i2, i3 are
the unit vectors along the xi, x2, x3 axes of Fig. 1, re-
spectively. In this formula u is the spacing of atomic
planes as shown in Fig. 1 (a= 1.8 A for Cu), and 2e is
the number of atomic planes along a crystal edge. For
shape (2) k is given by the same formula, but the k;
integers must all be even or all odd: the allowed k
vectors form a bcc mesh in reciprocal space. In this
case e is the number of Bravais unit cells, of edge length
a, along each edge of the parallelopiped microcrystal.
The edges of the crystal run along the [110], [101],
and [011]directions, for the conventions of Fig. 1.

'~For somewhat more general formulas reference should be
made to the author's unpublished Ph.D. thesis on file at the
Massy, chusetts Institute of Technology.
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We use the correspondence scheme in which the
central Brillouin zone corresponds to the 4s conduction
band. Hence the mesh of allowed k vectors found above
for either shape crystal is terminated at the planes
IkxI &zz, Ik»I &zz,

I
kz

I
&zz, and

I
~k~&kz+kz

I
&Bzz/2.

The free-electron Bloch waves are uI, = (1/gv)
Xexp(ik r), where w is the volume of the microcrystal.
The unperturbed energy is E,= (A'zr'q/2zzz*zz'a')+con-

stant, where q=kP+k»z+kzz, and zzz* is the effective
Dias s.

The free-electron solution of Eq. (6.7) is E—E,
=&(C»C4)'. Cz is [1

I
VIO)/E times the number of k

vectors with the same squared magnitude m'q/zz'a', while

C4=32([OI VI1)/1V)P sin(zrIkyI/zz)

X [cos(~
I
kz I/I)+cos(~

I
k» I/u))

Xsin(zr
I
k~

I
/zz) cos (zr

I
k»

I /zz)

where the sum is to be understood to extend over all
sets of Ik;I integers (positive) leading to the same
squared magnitude qm'/zz'a'. The corresponding A(E.,)
coeflicients are

A (3)/A (0), A (5)/A (0), A (6)/A (0), and

A (10)/A (0)=+Cz/(E E,);-
A (4)/A (0), A (9)/A (0), A (11)/A (0), and

A (12)/A (0)= —Cz/(E E,), —

using the notation of Fig. 1 for the first-neighbor sites
E,. A(0) is determined by normalizing the perturbed
wave function y, .

1= IA (0) I' +{1/(E—E,)'
+[16C»z/(E E»)4) sin'(zrk—g/zz)

X [cos (zrk »/n)+ cos (mk»/zz) )'},
with the sum as above. The Wannier function derived
from free-electron Bloch waves is real and so [1 I

V
I
0),

C3, and C4 are real. It can be shown by a little manipula-
tion that

IA(0) I'=4L1I v fo)c,/x.
The perturbed wave function split off the top of the

group of levels initially degenerate at E„call it X,+,
and that split off the bottom, call it X, , are as before
the sum over all the k vectors in the 4s band of the
Bloch functions u~ times F~. F~ is given by Eq. (6.4).
Let us designate as e,+ and n, the linear combinations
of the unperturbed Bloch wave eigenfunctions N~ with
eigenvalue E, to which the perturbed wave functions
X,+ and X,—reduce as the perturbation goes to zero.
The perturbation in conduction electron density caused
by the displacement of the origin nucleus along the xi
axis is

gp= 2e +{X»+*X»+ u»+—*u,++X, 'X—
» u, *u, }, ——

where the sum is over all q in the lower half of the 4s
band except q=0. The factor of two in front represents

the effect of spin degeneracy. Evaluating this sum is a
straightforward though somewhat intricate matter. We,
of course, neglect all terms proportional to the square
of the ion core displacement 5. For convenience we define
the subsidiary functions,

Q,=z-*g uj„

zE»= 8' P slI1(zrk~/zz) [cos(zrkz/zz)+cos(zrkz/zz))uA, ,

where the sums are over all k degenerate at E, (in
contrast with the sums above). The crystal volume v

equals 2Ea'. Both Q, and R» are real. The formula
becomes

~p = —16&(zz'/&')Z[Q»E'+Q» E»)/(q' —q); (7 1)

here we sum over all g' in the upper half of the 4s band
and q'=0, and also over all q in the lower half of the
4s band, provided qWq'. R = —ezrz*[1

I
VIO)/azr%', and

is positive since [1IVIO)&0. Q, represents the effect
of the A (0) perturbation coeKcient.

Equation (7.1) has the correct general properties.
If we extend the sum of q and q' over all the 4s band,
Dp becomes zero, as we must require for a closed shell.

Q» is even in gz and E» odd; so Ap is odd in xq, and it is
of the right sign to tend to cancel the ion core dipole
effect. Similarly, Ap is even in x& and x& and symmetrical
between them. Once we have calculated Dp in the one-
sixteenth of the crystal bounded by the planes @~=0,
x» ——0, and xz=x2 in the (+++) octant, we know Ap

everywhere in the crystal. For small r, Ap is linear in
x~, but not in the same way as it is in the Thomas-
Fermi model. It is consistent to assume [1IVIO) is
independent of m for large e: the various powers of n
to which separate terms in Ap are proportional for
large e cancel out on this assumption. Moreover, the
sum of the magnitudes of the perturbation in energy
levels in the band, twice the sum of IE—E,

I
where q

runs over the lower half of the 4s band, is independent
of n for large e. For large enough e, Dp is independent
of the shape of the crystal, since the ratio of surface
sites to total sites goes to zero.

Our first task is to show that even with e small
enough for calculations to be feasible, the hp from Eq.
(7.1) does not depend strongly on the exact value of zz

and the shape of the microcrystal but rather is a good
approximation to the Dp for a macrocrystal. Satis-
factory accuracy in the evaluation of hp by Eq. (7.1)
for small e requires that care be taken with certain
details. Some of the points in the mesh of k vectors
allowed for a given microcrystal lie on the surface of the
central Brillouin zone and thus only partly belong to
the central zone. When we sum over such a set of k's

to evaluate Q,. and F.; for maximum q' we must
multiply the result by the reciprocal of the number of
zones which share the set; in this way the symmetry
of Dp is not disturbed by totally excluding some of the
k's on some arbitrary basis. The summation over q in
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Ts.nxx III. ()s(r) and R,(r) for various patterns of the wave-vector integer components, k;, and for r
along the [110]axis: r= (n,n,0)a.

(ki, k2, kg)

(9,0,0)
(a,a,0)
(a,a,a)
(a,b,O)

(a,b,b)

(a,b,c)

(ki, ks, kg)

(a,0,0)
(a,a,0)
(a,a,a)
(a,b,O)

(a,b,b)

(a,b,c)

2[2 cos(rran/n)+15
4[cos'(s.an/n)+2 cos(m.an/n)]
8[cos'( aa/n)]
8 [cos (surr/n) cos (sba/n) +cos (sarr/n) +cos (rrbu/n) ]
8[cos'(7rba/n)+2 cos( ran/ n) cos(rbn/n)]
16[cos(rrun/n) cos(rbn/n)+cos(7ran/n) cos(ncn/n)+cos(7rba/n) cos(rrccr/n)]

Ra(r)

4[sin( as/ )nsin(ran/n)]
4(sin(sa/n)[1+cos(su/n)]} {sin(nun/n)[1+cos(nan/n)5}
16[sin(7ra/n) cos(na/n)][sin(ran/n) cos(ran/n)5
4{sin ( s u/n) [1+ cos(rrb/n) 5}{sin (sacr/n) [1+cos(nba/n) ]}+{4 sin (nb/n) [1+cos (na/n)] }

X{sin (rba/n) [1+ cos(s-arr/n)] }
16[sin(na/n) cos(7rb/n) sin(nan/n) cos(rrba/n)5+8{sin(rrb/e)[cos(na/n)+cos(nb/n)5

Xsin (7rba/n) [cos (rraa/n) +cos (7rba/n) 5}
8 {sin (rra/n) [cos (rrb/n)+ cos (rc/n)] sin (rran/e) [cos (sba/n)+ cos (rca/n) 5}

+ 8{sin (rrb/n) [cos ( a/vn)+cos (7rc/n)] sin (rrba/n) [cos(rracr/n)+cos(rrccr/n) ]}
+ 8 {sin (nc/n) [cos (era/n)+ cos (rb/n) 5

sin�

(vrcn/n) [cos(ran/n)+ cos(nba/n) 5}

Eq. (7.1) should include only those states in the lower
half of the band, since there is but one conduction elec-
tron per atom in our model. In general the half-way
mark falls within a set of degenerate states. A (0) has
opposite signs for the two perturbed states, one split
off upward and one downward from the degenerate set,
so the contributions from the two states together to Ap
have dipole symmetry, but not the contribution from
either by itself. On thermodynamic grounds it might
appear that the electrons would only occupy the state
perturbed downward, but the perturbation in our case
is virtual. Therefore we can use in Eq. (7.1) the total
contribution of the half-way set of states multiplied by
the ratio of the number of electrons with that energy to
the number of states of that energy.

Equation (7.1) resembles a Fourier expansion of Ap.
However, the coefficient of a given trigonometric term
in Eq. (7.1) is not the same for two different values of
n. The Q, and R, formulas can be considerably simpli-
fied when the position vector r is taken to lie along the
L100$, I 111), or [110$ axes. Most of our calculations
of Ap were made for points along these three axes. In
Table III there are listed as an example the specific
formulas for Q, (r) and R,(r) when r= (cr,n,0)a; the six
possible patterns of the k; integer components of the
wave vector give rise to distinct formulas.

Equation (7.1) and the subsidiary formulas and dis-
cussion are valid for both the cubic and parallelopiped
microcrystals, but the meanings of e and the range of

q in the sum are di6erent in the two cases. E is the
number of atoms in the crystal and therefore the num-

ber of allowed k values in the central Brillouin zone.
For the cubic shape, E=4e', for the parallelopiped,
X=m'. In the latter case there are only about one-

fourth as many q values in the band as for the former
case; hence the double sum in Eq. (7.1) is about one-

Qp in units
of (-R)

l.o

l.s .
/

— ~ * cubic shaped crystal---- O parallelepiped
shaped crystal

5-

.I
-'

100
t

500 2 000IOOO I 500
Number of atoms in crystal

Fro. 2. Ap es size and shape of crystal at the representative
point r= (a,0,0).

sixteenth as big for the latter as for the former shape.
It follows that even for small e, Ap will be approximately
the same for microcrystals of the two shapes and the
same e. By simply omitting terms in the sum over q
and q' for the Ap of a cubic crystal, we can at once 6nd
the Ap for the parallelopiped crystal of one-fourth the
size with much saving in calculation.

The computations for hp were performed on a Friden
desk calculator. Half an hour was sufficient to calculate
Ap at one location in the smallest crystal; two days
were required to find each value of Ap in the largest
crystal considered. The -variety of crystal sizes and
shapes for which calculations were to be made were
such that the use of a digital computer seemed
inappropriate.

In Fig. 2 the values of hp at the point r= (a,0,0) are
shown for crystals of different sizes and the two shapes.
At several other points with r&a, almost exactly the
same shape curves was found. It seems clear that in
this region of the crystal the Ap obtained for an 864-
atom crystal of cubic shape (e=6) will be an accurate
approximation to the Ap for a macrocrystal. In the
region a&r&2a the behavior of Ap as a function of
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b&(r) 6 I'

in units
of (-R)

5-
e ~(100)axis
Q ~( I I I) axis
h~ (I I 0)axis

4 e

Cll
C

O

$7l
EO

o
gll
4l
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2.5 3.0 3.5
P) in units

of a

Fro. 3. Ap along principal axes for face-centered cubic crystal with
cubic shape and width of twelve atomic planes.

crystal size and shape is not as consistent, but here
too the cubic crystal for n =6 yields satisfactory results.
For r&2a the behavior of hp as a function of crystal
size varies from point to point. The value of Dp is small
in this region, and computational errors are significant.
There is a general tendency at points in this outer
region of the crystal, however, for Ap to become steadily
smaller for larger rl,. In view of the Thomas-Fermi re-
sults in Sec. 5, it is a reasonable approximation to set
Ap zero for r&2a. The sizes of crystals for which we
have computed Ap range from 108 to 2048 atoms.

In Fig. 3 the behavior of Ap as a function of r along
the positive [110],[111],and [100] axes is given, for
the 864-atom crystal of cubic shape (+=6). These are
the results we shall use in computing the contributions
to the atomic force constants. For comparison, in Figs. 4
and 5 the Dp for the 500-atom crystal of cubic shape
(st = 5) is given. From Fig. 5 we can see that Ap is almost
independent of the azimuthal angle at r=0.5c; the
same independence is found for many other values of r.
In particular Dp is no larger at ion core sites than at
other points with the same r and polar angle. It is re-
assuring that hp is not unusually large near the ion
core sites, since we know that our formulas are not
accurate within the ion cores. At any point on the
@~=0plane, Ap is zero.

All the graphs give Ap in units of (—R), [see Fq.
(7.1)] and for x~ positive. The negative hump in the

hp curves near r= 1.5u represents a deficiency of con-
duction electrons as compared with the unperturbed
situation. Instead of screening the ion core dipole, this
hump enhances it. The Thomas-Fermi Dp has no such
feature. However, Huntington" has obtained an analo-
gous result in studying the diffusion mechanism in
copper; when an ion core is removed from the metal he
finds in the free-electron model not only a large deficit
in the conduction electron density adjacent to the site
but a hump of added density distant from the site by
about 1.2a in our units. Since a hump of about the size
shown in Figs. 3 and 4 occurs in the hp curves along the
[100], [110],and [111]axes for all sizes and the two
shapes of microcrystals studied, this feature must be
accepted to the extent the model as a whole is accepted.

It remains to fix [1 I VI 0] and thus the unit E. This
can be done by requiring the [1IVIO] to be self-
consistent. Let q(r)[1I VIO], where g(r) is necessarily
independent of [1IVIO], be the contribution, of the dis-
tortion in conduction electron charge density to the
total perturbation potential energy acting on a conduc-
tion electron. Even for a microcrystal there is negligible

bp in units
of (-R)

~ = points in plane including (IOO)
and(IIO) axes

0 = points in plane including (IOO)
and (III)axes

h=5.60 x cos 8

2-

~ 0 ~ ~ ~ I ~ I

IO 20 30 40 50 60 70 80 9
Polar angle
e in degrees

FxG. 5. Variation of Ap with polar angle at r=0.5a for
500-atom crystal with cubic shape.

error in including the distortion in a given wave func-
tion in the perturbation affecting that wave function,
since no one-electron state contributes a large fraction
of the perturbation potential. We can calculate g(r) by
the usual Coulomb integration, using our results for
hp, which is proportional to [1IVIO]. To insure self-
consistency we require that

[1
I
V

I o]= C1 I V(ion co«)
I
o]+ [1 I

V
I
o][1

I
~(r) I

o
Ap(r)
in units
of (-R) 5.

4-

C:
h
ha

EO

Ol

b.

EP

8
4l
EO

EP
CP

o
EO
'u

C7l

I

e = (IOO)axis
0~(III) axis
6= (IIO) axis

where V(ion core) is the potential energy of an electron
in the field of the ion core dipole and we use the notation
[1IXIO] for the matrix element of X between the
Wannier functions centered on the origin site and a
first-neighbor site with xi&0. Thus

L1
I Vl o]= [1 I

V(ion core) IO]g(1—[1Iv)(r) I0]).
I-o

L

2.0
3.0

3.5
4.0r in

units of a

FIG. 4. d p along principal axes for face-centered cubic crystal with
cubic shape and width of ten atomic planes.

A rough calculation indicates that [1Ig(r) Io] is about
—0.5 and [1 I

V(ion core)
I 0] is about —(35/a) ev.

We establish self-consistency in only a narrow sense
by the above procedure. The values of the matrix ele-
ments we neglected originally are certainly not zero
for the Ap and q(r) we have found; in particular the
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matrix element of V between two Wannier functions
centered on the same 6rst-neighbor site is large. There-
fore we will fix [1 ~

V
~
0j in the next section by the more

general requirement that the total dipole moment of
hp shall cancel that of the ion core dipole plus excluded
electrons, +1.06eh. The L1~ V~O) we determine in this
way, is of the same order of magnitude as, although
larger in absolute value than, that found in the previous
paragraph

TABLE IV. Calculated atomic force constant contributions. '

(1) (2)
Ion core plus

excluded electron Closed shell
dipole contri- repulsion

bution contribution

(3)
Contribution
from conduc-
tion electron
dp for r &a

(4)
Contribution
from conduc-
tion electron

dp for a &r &2a

Cl»

P»
p»

CX3

P3
Y3

—1.47
+0.74
+2.22

+1.04—0.52

+0.28—0.14
+0.14
+0.28

—2A
R—A
R+A

+2.45—1.23—3.70

—1.74
+0.87

—0.47
+0.23—0.23—0.47

—0.70—0.52—0.10

+0.56—0.42

+0.17—0.09
+0.11
+0.20:

a In units of 104 dynes/cm.

Xcos8 sin(rs/1. »a), where 8 is the polar angle measured
from the positive x~ axis to r. This density value ap-
plies within the diGerential volume element for the
spherical coordinate system in r, 8, and y integrated
over y, a volume de=2mr'sinM8dr. Consider, on the
other hand, the change in charge distribution produced
by displacing a sphere of radius r and constant charge
density e centered at the origin a distance dr along the
positive x~ axis. This change occurs in the space entered
and the space vacated by the sphere and is given by
ed~', where the differential volume element at r and 8 is
dv'=2~r' sin8d8(dr cos8). We see that hpdv= ed@' if we
set e= —5.95R sin(rs/1. 1a). Since a sphere of constant
charge density is equivalent when viewed from outside
to a point charge at its center, the external electrostatic
effect of the shift in the sphere of density c is exactly
that of a dipole of moment 3+r'&dr. Yet the eGect of
the shift of the sphere is also just that computed from
the resulting change in charge distribution. Hence the
eGect of the hp in the volume element de integrated

8. CALCULATED ATOMIC FORCE CONSTANTS

The ion core contributions to the afc described in
Sec. 4 are given in the Grst two columns of Table IV.
In the third column appears the part of the afc produced
by hp for r &a; in the fourth column appears the con-
tribution from Ap for a&r&2a. We use a simplified
model of the results of Fig. 3 in calculating the con-
tribution to the afc produced by hp.

For r&a the following formula represents Dp within
an average accuracy of three percent: Ap= —5.958

over 8 is equivalent to that of a dipole at the origin of
moment 43m.r'( —5 95. R) sin(rs/1. 1a)dr. Integrating over
r, we And that the electric field beyond r =1.1a resulting
from Ap for r&1.0a is that of a dipole of moment

(—4.57Ra') along the x~ axis at the origin. Hence
Column (3) in Table IV is proportional to Column (1).
In order to satisfy symmetry requirements the held pro-
duced by the Ap inside r= u has to be that of a dipole
(see Sec. 5); deriving this result directly from our
calculated d p gives us conMence in our model.

We represent dp in the region 1.45a&r&2a by a
spherical cap of constant surface charge density 0.

=+0.065Ra, aperture 8=75', at a radius 1.7a; and
by a similar spherical cap with o= —(0.065Ra) for
@~&0. The electrostatic potential produced by such a
cap can be represented as an expansion in Legendre
polynomials. '4 We carry out the expansion to terms in
the fifth degree LP~(cos8)j both for r&1.7a and for
r&1.7a. The terms of even degree from the two caps
cancel; the terms of odd degree reinforce each other.
The dipole moment along the x~ axis of the spherical
caps viewed from outside 1.7a is (+1.8Ra').

In the region a&r&1.45a, hp can also be approxi-
mated in terms of a pair of spherical caps, but with a
surface density of dipole moment rather than charge.
In view of the crudity of our model we neglect this con-
tribution. For r& 2a, hp is taken to be zero.

The electric 6eld produced by the Ap in each of the
above ranges of r is easily found as the gradient of the
electric potential formulas we have derived. Multiplying
the field by the charge of the ion core, +e, and evaluat-
ing the components of the resulting force at the various
lattice sites, we obtain the forces produced on the other
nuclei by the displacement 8, of the origin ion core. If
we divide these force components by 8, we have the
contributions to the atomic force constants produced
by the distortion in conduction electron distribution.
By inspection of Table I we can observe that all nine
distinct atomic force constants can be calculated from
the virtual displacement of the origin ion core along the
g~ axis which we have specified throughout for conveni-
ence. As mentioned in Sec. 3, two different values of
e3, on opposite sides of the diagonal in the afc matrices,
are consistent with lattice symmetry. Two values were
in fact found from the calculations from Ap for u&r &2a;
each of these two values is within ten percent of the
average v'alue we give for e~ in Column (4) of Table IV.
The 10% discrepancy is a measure of the inadequacy
of our model for hp in this region.

Sy the principles of electrostatics no net dipole
moment should be observed from a distance as a result
of the virtual displacement of the origin nucleus;
clearly no net charge will be observed, because of the
dipole symmetry of the total perturbation. The dipole
moment corresponding to the shift in ion core dipole
plus excluded conduction electrons is +1.06e5; that
corresponding to the Coulomb perturbation of the
conduction electrons, Dp, is —2.74Ra'. Thence R/8
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TAsLE V. Table of results.

Atomic force
constants

A'3

P3
V3
63

Calculated
values&

—0.24
+1.71
+1.66

—0.13—0.07

—0.01
+0.005
+0.02
+0.01

Jacobsen x-ray
values&

+0.48
+0.87
+1.25

+0.35—0.07

+0.09—0.02—0.02
+0.06

In units of 104 dynes jcm.

=+0.39e/a4; and L1
~

V (Og is about —(83/a) ev. Thus
is fixed the average size of hp and of its contribution to
the atomic force constants. In the Thomas-Fermi
model the total screening charge displaced is qeb or
about 1.7'/a; here the integral of the absolute value
of Ap is about 2.3e3/a.

In the second column of Table IV are given only the
form of the closed-shell repulsion contributions to the
afc, as determined in Sec. 4. The numerical values
were found by substitution of the total calculated afc
from Table IV into Eqs. (3.1) and (3.3); fortunately
Eq. (3.2) is consistent with the same R and A values.
The room temperature elastic constants as measured
by ultrasonic techniques" are c»=17.0X10" dynes/
cm', c44——7.52 X10" dynes/cm', (cts+c44) = 19.82 X10"
dynes/cm'. For the closed-shell repulsion parameters
the values 8=2.98X10' dynes/cm and A=0.26X104
dynes/cm are obtained. These values are close to those
used by Seitz and Huntington, " and are considerably
larger than the values Fuchs' took from the model of
Lenz.

In the second column of Table V are listed the atomic
force constants calculated by Jacobsen' from his x-ray
data by application of the Born theory of thermal diffuse
scattering from lattice vibrations. The first column
contains the total atomic force constants we have
calculated using Feynman's theorem. The two sets of
results differ very considerably. Jacobsen calculated
the elastic constants corresponding to his atomic force
constants from Eqs. (3.1), (3.2), and (3.3). The calcu-
lated values agree mell with the experimental ones, the
worst discrepancy being in c44, where his calculated
value is about 15%% too low.

9. DISCUSSION

In this paper the use of Feynman's theorem to find
quantum mechanical forces directly has been shown to
be practicable for crystal problems. It seems clear that
considerable gain in insight as well as in ease of calcula-
tion results thereby. In the application of Feynman's
theorem to the calculation of the contribution to the
afc from the change in conduction electron density,
the advantages of the Slater-Koster formulation for

localized perturbations are brought out: in particular
the relative simplicity of obtaining self-consistency is
made clear. The solution of other crystal perturbation
problems in terms of discrete eigenvalue perturbation
theory applied to microcrystals is worth exploration in
view of the convergence of our results for the conduction
electron behavior in microcrystals of diferent sizes
and shapes.

An adequate treatment of the closed-shell interaction
of copper ions is badly needed; our whole calculation
of the afc will remain unreliable until such a treatment
is available. The semiempirical values we have obtained
for the first and second derivatives of the closed-shell
interaction energy with respect to ionic separation are
in rather close agreement with those chosen largely on
grounds of plausibility by Seitz and Huntington (and
others) in various papers. It seems that the results
obtained by Lenz through a Thomas-Fermi treatment
are too small, but his is the only direct theoretical
trea tment available.

Numerous approximations have been made in our
derivation of the contribution to the afc from the
change in conduction electron density produced by the
displacement of the origin ion core. As a result of our
approximations the only specific attributes of copper
reQected in our results for hp are the lattice parameter
and eGective mass; our formulas would be as applicable
logically to silver and gold and indeed may not be too
inaccurate for the alkali metals. From the de6nition of
afc it follows that our exclusive use of 6rst-order
perturbation theory is entirely rigorous. Use of the
free-electron approximation for unperturbed energies
and wave functions probably does not introduce the
most serious errors. "The chief error is in the neglect
of most of the matrix elements of the perturbation
energy averaged over Wannier functions centered on
different lattice sites: this neglect leads to an unreal-
istically simple form for the change in electron density
and to lack. of self-consistency. The results we obtain
for crystals with dimensions of only a few atomic planes
converge as the dimensions increase and seem for this
localized dipole perturbation to be a good approxima-
tion to those for a macrocrystal.

Our treatment of the Coulomb interaction of copper
ion cores is crude. "In particular our assumption that
the effective charge of the ion core is exactly e is un-
justi6ed. This assumption is particularly crucial in our
microcrystal calculation, in which the change in elec-
tron density hp is very sensitive to the exact fraction
to which the conduction band is filled. The exclusion of
conduction electrons from the ion core is treated in
Sec. 4 in a crude manner inconsistent with the free-
electron model of the later sections. More serious is
our neglect of the inQuence of exchange interaction

"D Howarth (p. rivate communication); also Proc. Roy. Soc.
(London) A220, 513 (1953).

"See K. Ladanyi, Acta Phys. Acad. Sci. Hung. 5, 361 (1956).
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with the ion cores on the density of states in the con-
duction band "

Our results for Ap and the ion core interaction are
reasonable qualitatively. The crucial diKculty is that
many of the afc we calculate are the diGerences of
several large terms, and hence are sensitive to the in-
accuracies discussed above. We cannot give any useful
estimate of the uncertainty in our calculated atomic
force constants for copper.

It is also di%cult to assess the reliability of the afc
Jacobsen obtains by application of scattering theory
to his data for thermal diGuse x-ray scattering from a
copper single crystal. " Only rather crude approxima-
tions to the Compton scattering and the structure and
Debye temperature factors for copper were available
to him. Somewhat diGerent values are obtained for the
afc according to which particular points in the x-ray
reciprocal space are used in the evaluation.

The three elastic constants for copper as calculated
either from Jacobsen's afc or from those found in this
paper are in good agreement with the experimental
results. Only Jacobsen's afc were found in a way for-
mally independent of knowledge of the experimental
values of the elastic constants. Our two parameters E
and A were chosen so that the closed shell repulsion
contribution to the three c;; would equal the experi-
mental values less the Coulomb contributions. How-
ever, the signs and magnitudes of E and A found in
this way are in the range we would expect on inde-
pendent grounds.

As mentioned earlier, the values we choose for E
and 2 and thus for the closed-shell contribution to the
elastic constants do not agree with those used by Fuchs
in his direct calculation of the elastic constants. '~

Moreover, Fuchs' calculations gave for the Coulomb
contribution to c»—c» the value +0.57X10" dynes/

ss J. Bardeen, Phys. Rev. 52, 688 (1937).
ss R. W. James, The Optical Prissciples of the Dzgractioss of

X Rays (G. Bell an-d Sons, London, 1948); M. Born, in Reports oss

Progress sss Physics (The Physical Society, London, 1942-43), Vol.
9, p. 356.

cm' and to cts the value +2.57X10" dynes/cm', our
results are for c»—c» the value —1.8X10"dynes/cm,
and for c44 the value —4.75X10u dynes/cm'.

Sy arbitrarily setting q equal to 0.93 A ' we showed
in Sec. 5 that the Thomas-Fermi model for the Coulomb
contribution could lead to second- and third-neighbor
afc in good agreement with the x-ray results. But im-
plausible values of the parameters for the closed-shell
interaction would have to be introduced to then obtain
even partial agreement between the two sets of first-
neighbor afc. It is dificult to see how a definitely posi-
tive value for nt, such as Jacobsen 6nds, can be recon-
ciled with any model based on Feynman's theorem. In
the case of 0.~ the ion core and conduction electron
Coulomb contributions will tend to cancel each other,
and the closed-shell contribution is surely negative.

The discrepancy between. our calculated and Jacob-
sen's x-ray values for the atomic force constants is so
great that only a few conclusions can be drawn about
the true values. Either set of results contradicts the
familiar assumption of central forces between atoms, for
crt is not zero and Pt/yt, also, second-neighbor afc are
not negligible. Although the third-neighbor afc in either
set are small individually, there are twenty-four sites
in the third-neighbor ring and the total contribution to
the elastic constants is sizable.
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