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Electron Wave Functions in Metallic Cesium*
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Wave functions to order k' are presented for electrons in metallic cesium. The calculation is an application
of the cellular method to a potential adapted from previous work of Sternheimer.

The wave function and energy of an electron of wave
vector k are expanded in powers of k according to the
procedure of Silverman. ' We have, for a state of wave
vector k,

lbp=e' 'N~, Ni =tto+ikPiN, +k'(NSPs+4kp), (1)
in which I'1 and I'2 are the erst and second Legendre
polynomials and the functions ttp, tt&, tts, and Pp are
radial functions. Similarly, the energy is

E(k) =Ep+Esks+E4k4+ (2)

Terms proportional to odd powers of k are absent in

(2) for reasons of symmetry. Terms which have cubic,
rather than spherical, symmetry may be present in the
expansion of the energy, but cannot be obtained by
this method.

The function ttp which appears in (1) is the wave
function of the electron whose wave vector is zero and
whose energy is Ep. It satisfies the boundary condition

(BNo/Br)r, 0. ——(3)

The quantity r, is the radius of the sphere whose volume
equals that of the atomic cell (0). For Ni,

Ni= fo(r') —Np, (4)

where f„is a p-state solution of the radial wave equation
for E=Ep. The boundary condition on N1 is

Ni(r, ) =0.
The other functions are given by

Ns srgi+ sr No+cd f——e,

',rg, + ',r'up+E, (atsp/BE), --
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(6)

(7)

INTRODUCTION

'N the course of a calculation of electron energy bands
~ ~ in cesium, wave functions were obtained to order k'. '
The value of E4 (the coefficient of k' in the expansion
of the energy is powers of k) obtained in this work was
so large in magnitude that a thorough check of the
calculations prior to publication of the wave functions
seemed desirable. Consequently, the calculation was
repeated employing an electronic calculating machine.
The results, which are in good agreement with the
previous work, are presented here.

THEORY

in which fe is a d-state solution of the wave equation
for E=Ep. These functions satisfy the boundary
conditions

(Btts/Br). ,= (Byo/Br)r, 0—— (g)

The boundary condition on N2 determines c&
..

('df&l —2Es

~ dr ) r, r sip(r, )
The function (BNp/BE) satisfies

1 d ( d$ Blp———
]

r' —I(+V—Eo =Up,
r' dr E dr& BE

(10)

subject to the condition that

BQp
'

Np - dy=0y
aE

"rd~
Es——-',r,'Np'(r, )—

p dr 7s

Now dehne the functions

(12)

Rp= rttp, Ri= rtti, Rs ——rip, Qs ——rip. (13)

These functions are tabulated in Table I. The function
Ep is normalized so that

p
T8

Ep df =1.
Jp

(14)

In order to determine E4, it is necessary to obtain N3

and N4. This has been done by Silverman, whose result is

2 4 Esp (r dfey
E,=-r,SE,—

5 15 7 (f. dr)„
yEs Es (Bgp) r,gp(r, ) t"

(16)
Np(r ) y E aE& „,» Ps(r,) "p

in which P= r f„,y= sr sip'(r, ).
In terms of the function (13), the normalization

integral for QA is, to order k',

f
l ifrsr ('dr =

i Ntc ['dr =4srL1+k'(sji+2J, )j, (17)
0 ~n

which implies that Np is normalized for all E. The
boundary condition on Po determines Ep.
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TABLE I. Wave functions for cesium. in which

r (atomic
units) Ro R1 Rg

p7S p&S

0.000
0.005
0.010
0.015
0.020

0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30

0.35
0.40
0.45
0.50
0.55
0.60

0.7
0.8
0.9
1.0
1.1
1.2

1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2

4.6
4.8
5.0
5.2
5.4
5.6

0.00000
0.02484
0.03594
0.03760
0.03285

+0.01276—0.01179—0.03396—0.05040—0.05590—0.06254—0.05910—0.05071

—0.02403
+0.00832

0.03937
0.06469
0.08200
0.09060
0.09088
0.08386
0.07092

+0.05354

—0.00012—0.05438—0.09800—0.12587—0.13707—0.13317

—0.09117—0.02377
+0:04913

0.11491
0.1672
0.2039

0.2319
0.2110
0.1581
0.0876

+0.0098—0.0687—0.1444—0.2154—0.2809—0.3406—0.3947—0.4434—0.4872—0.5266—0.5622—0.5945—0.6244—0.6522—0.6787—0.7045—0.7300—0.7559

0.00000
,
—0.01288—0.04478—0.08745—0.13476

—0.2265—0.2978—0.3392—0.3487—0.3290—0.2849—0.2220—0, 1462

+0.0232
0.1882
0.3262
0.4252
0.4810
0.4949
0.4715
0.4172
0.3389

+0.2437

—0.0283—0.2913—0.5013—0.6403—0,7062—0.7069

—0.5585—0.2925
+0.0116

0.3032
0.5560
0.7602

1.0230
1.1246
1.1172
1.0479
0.9495
0,8436
0.7415
0.6484
0.5661
0.4947
0.4332
0.3799
0.3334
0.2921
0.2546
0.2194
0.1860
0.1533
0.1208
0.0884
0.0552
0.0216

0.00000
0.03878
0.05600
0.05831
0.05043

+0.01768—0.01840—0.04720—0.06864—0.08097—0.08411—0.07895—0.06688

—0.02837
+0.02199

0.07926
0.12706
0.1608
0.1785
0.1803
0.1676
0.1427

+0.1079

—0.0048—0.1266—0.2326—0.3087—0.3493
—0.3545

—0.2736—0.1078
+0.0983

0.3102
0.5056
0.6717

0.8941
0.9699
0.9203
0.7789
0.5765
0.3378

+0.0805—0.1830—0.4441—0.6968—0.9375—1.1637—1.3737—1.567—1.744—1.906—2.054—2.188—2.312—2.425—2.531—2.631

0.00000
0.00025
0.00186
0.00580
0.01270

0.03653
0.07395
0.12351
0.1827
0,2484
0.3175
0.3870
0.4545

0.5742
0.6640
0.7169
0.7307
0.7064
0.6472
0.5577
0,4434
0.3099

+0.1629

—0.2309—0.6121—0.9378—1.1844—1.3426—1.4124

—1.3126—0.9642—0.4584
+0.1269

0.7349
1.3279

2.383
3.200
3.772
4.138
4.346
4.446
4 474
4.457

4.352
4.288
4.225
4.169
4.124
4.092
4.076
4.079
4.102
4.147
4.218
4.312
4.435

CALCULATIONAL DETAILS

The potential used in this calculation was adopted
from one given previously by Sternheimer. ' This
potential is given in reference 1. The wave function
for the 65 state in the free atom has been computed
by Sternheimer using his potential. '

The experimental radius, r„ in cesium varies from
r,,=5.58 atomic units at O'K to 5.79 atomic units at
300'K.' lt is not obvious what value should be chosen
for r, for the wave functions to be most useful. The
value used here, x, =5.735 atomic units, is an inter-
mediate one. An energy Eo———0.4156 Rydbergs was
taken from the previous work. ' The calculated no

for this energy satisfied its boundary condition at this
point.

COHESIVE ENERGY AND KNIGHT SHIFT

The band parameters for r, =5.735 atomic units are
Eo= —0.4156, Rydbergs E2=1.3932, and E4———3.64.
The cohesive energy, computed in the standard way'
from these parameters, including the correlation energy
according to Wigner's expression, is 22.3 kcal/mole.
The experimental value of the cohesive energy is 18.8
kcal/mole. The result of this work differs from that of
reference 1 in that the E4 term has been included.

A value for the Knight-shift parameter P has been
obtained from these wave functions as was done in
reference 1:

in which PF is the wave function for an electron on the
Fermi surface, and f~ is the wave function for the
lowest valence electron state in the free atom. We find

Ifp(0) I'= 2.89.' From Sternheimer's calculation, 4$~'(0)
=2.6. The ratio is (=1.1. Benedek and Kushida find
experimentally that g= 1.13.'
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5.735

&o=
E2-
Ef4

—0.7740 0.0000

Parameters and

5.735 atomic units—0.4156 ry
1.3932—3.615

—2.695

Integrals

Jpr, RPdr =2.0150
Jo"eRPdr =76.81

Jp"eRpP2dr =3.186
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