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It is suggested that the most fruitful study of meson exchange effects requires a unified treatment of all
processes |n which they occur. A new representation of the eigenstates of the two-nucleon system, based on
the Heitler-London method, is proposed as being particularly useful for this purpose. Heitler-London states
have the property that they become equal to the exact eigenstates when the two nucleons are far apart.
Matrix elements between Heitler-London states can be expressed in terms of the properties of isolated
nucleons, by means of expansions in the number of exchanged mesons. The Heitler-London method affords a
mathematically precise method of incorporating phenomenological isobar effects into a field-theoretical
model. Most of the discussion of the details of the formalism is confined to the fixed-source model, but in the
final part of the paper the application to a more general model is discussed brie6y.

I. INTRODUCTION

'HE problem of obtaining an understanding of
nuclear interactions, starting from meson theory,

has considerable general interest and has been the
subject of intensive study. The particular problem which
most earlier investigators have attempted to solve is
that of deriving an equivalent potential, which could be
used in a Schrodinger equation for calculating the
binding and scattering of two nucleons. A general survey
of many of the diferent methods which have been
applied to this problem may be found in the review

paper of Nishijima, ' along with a discussion of certain
limitations of this approach to the problem of nuclear
forces. The general point is that the two-nucleon system
can be represented by a two-body Schrodinger equation
with an energy-independent, Hermitian potential only
when the configuration of the meson field around the
two nucleons is ignorable, as in the familiar adiabatic
approximation. For a more generally valid treatment, it
is necessary to pay more attention to the state of the
meson Geld, and to take account explicitly of the extra
degrees of freedom which are associated with it.

When the degrees of freedom of the meson field are
not eliminated completely from the Schrodinger equa-
tion for the two-nucleon system, it is natural to think of
treating simultaneously such problems as nucleon-
nucleon scattering and the production of mesons. There
is in fact great practical advantage in studying, in a
systematic way, all properties of the two-nucleon system
which involve the exchange of m mesons. Since our
understanding of the interaction between mesons and
single nucleons is still somewhat fragmentary, and since
the interaction between nucleons at very short distances
will involve in addition phenomena which are as yet
unknown, any discussion which can be made at the

present time of the eGects which exchanges of ~ mesons

have in any one problem will necessarily involve con-

siderable guessing. It is to be expected, however, that
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' K. ¹shijima, Suppl. Progr. Theoret. Phys. (Japan) No. 3, 138

(1956).The reader is referred to this article for references to earlier
work on the nuclear potential problem.

in a comparison of several different processes, some of
the uncertainties may be eliminated, and eventually
understood.

A complete discussion of meson exchange effects in
two-nucleon states must encompass the following prob-
lems: (1) the long-range part of the nuclear potentiait ',
(2) the static electromagnetic properties of the deu-
teron' r; (3) the photodisintegration of the deuteron,
especially at high energies' "; (4) the production of
mesons in nucleon-nucleon collisions" rs; (5) the photo-
production of mesons from deuterium" "; (6) meson-
deuteron scattering. '~" While problem (1) is the most
studied, much work has also been done on problems
(2)—(6), leading to much valuable information, but since
a unided method has not been used, it is dificult to
correlate the studies of the various processes. The
purpose of this paper is to suggest a method which may
be used in a comprehensive study of the meson cloud
around two interacting nucleons.

A useful method for treating any of the problems
listed above should satisfy two criteria. The first is that
it should be well suited for treating all of the problems,
and for exhibiting their common features. That is, a
particular problem, such as the calculation of the nuclear

s H. Miyazawa, Phys. Rev. 104, 1741 (1956).
s A. Klein and B.H. McCormick, Phys. Rev. 104, 1747 (19S6).
4 Goldberger, Nambu, and Oehme, Ann. Phys. 2, 226 (1957).
~ S. Matsuyama and H. Miyazawa, Progr. Theoret. Phys.

(Japan) 19, 517 (1958).
e J. Bernstein and A. Klein, Phys. Rev. 99, 966 (1955).
r K. Itabashi, Progr. Theoret. Phys. (Japan) 17, 80 (1957).
s N. Austern, Phys. Rev. 100, 1522 (1955); 108, 973 (1957).' F. Zachariasen, Phys. Rev. 101, 371 (1956).
'0 R. Suzuki, Progr. Theoret. Phys. (Japan) 15, 536 (1956).
» R. R. Wilson, Phys. Rev. 104, 218 (1956).
~Aitken, Mahmoud, Henley, Ruderman, and Watson, Phys.

Rev. 93, 1349 (1954)."D.B.Lichtenberg, Phys. Rev. 100,303 (1955);105, 1084 (1957)."J.S. Kovac, Phys. Rev. 101, 39'7 (19S6)."S.J. Lindenbaum and R. M. Sternheimer, Phys. Rev. 105,
1874 (1957)."S.Barshay, Phys. Rev. 106, 572 (1957)."G. F. Chew and H. W. Lewis, Phys. Rev. 84, 779 (1951).

» M. Lax and H. Feshbach, Phys. Rev. 88, 509 (1952).
» S. Penner, Phys. Rev. 105, 1113 (1957)."K.A. Brueckner, Phys. Rev. 90, 715 (1953).
+ S. D. Drell and L. Verlet, Phys. ' Rev. 99, 849 (1955).
w R. M. Rockmore, Phys. Rev. 105, 256 (1957).
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potential, should be considered not as an end in itself
but as a part of the general problem of understanding
meson exchange sects. The second criterion is that only
physical particles should enter directly into the formal-
ism, so that only the experimental mass, coupling con-
stant, and other properties of a physical nucleon would

appear in equations. This would make it possible to
relate the structure of two-nucleon states to properties
of single nucleons which ha3 a direct physical signifi-
cance.

Most of the previous investigators of the problems set
forth above have used some type of perturbation method,
such as the Tamm-DancoG method. Such methods
satisfy the first criterion, but only in a clumsy way. It
is important to keep in mind the distinction between the
state vector 0' of the two-nucleon system and the "wave
function" P(x), which in the Tamm-Dancoff method
gives merely the probability of finding two bare particles
at given positions; it is only a very limited class of
problems, such as the calculation of the scattering phase
shifts, in which knowledge of f(x) alone suKces. In all
other physical problems, one must 6rst calculate the
rest of O'. The renormalization of the mass and coupling
constant, and the elimination of other "bare" quanti-
ties, must all be done explicitly, and by perturbation
methods. The defects of the Tamm-DancoG method are
all directly related to the fact that the second criterion
is not satisfied.

The question of de6ning and constructing nuclear
potentials has also been approached through the use of
various general properties of that portion of the S
matrix which describes the elastic scattering of one
nucleon by another. ' ~ In these papers, direct use is
made of the properties of physical particles, and hence
the second criterion is satis6ed completely. However,
the 6rst criterion is not satis6ed; the "nuclear po-
tentials" and the associated "wave functions" f(x) are
merely mathematical arti6ces, introduced as auxiliary
quantities to aid in the discussion of the S matrix, and
have no independent physical meaning. The state vector
4 and this it (x) are unrelated except that P(x) gives the
right phase shifts, and it is improper to use such a P(x)
to calculate, e.g., the charge distribution of the deuteron.
A treatment of the two-nucleon problem, in the general
sense, would require an analysis of the remainder of the
S matrix, which refers to more than two incident or
emergent particles.

One general way of treating the above-mentioned
problems, in which both criteria would be automatically
satis6ed, would be to construct the actual state vectors
of the system, in a representation in which the properties
of physical particles were used explicitly. It would be
desirable to imitate much of the recent work on the one-
nucleon system, in which use is made'of the one-nucleon
eigenstates and various identities which these satisfy. ""

"F.Low, Phys. Rev. 97, 1392 (1955).
"G. C. Wick, Revs. Modern Phys. 27, 339 (1955).
"G.F. Chew and F. Low, Phys. Rev. 101, 1570, 1579 (1956).

In the body of this paper, a method which has these
features will be described. It is based on a representation
which is closely related to the method Heitler and
London used to discuss the hydrogen molecule. "It is
remarkable that this famous method has not been used
hitherto in Geld-theoretical problems, especially since it
appears to be even better suited to nuclear than to
molecular physics.

Most of this paper will be devoted to a discussion of
the 6xed-source meson theory. The simplicity of this
model will enable us to present the basic formalism with
as little obscurity as possible, and its study will acquaint
us with some of the mathematical features of the real
two-nucleon problem. One shouM not expect to obtain
from the fixed-source model any quantitatively reliable
information about real two-nucleon states; nevertheless,
one may expect to be able to obtain interesting quali-
tative information about nuclear interactions.

II. HEITLER-LONDON REPRESENTATION

The usual fixed-source meson theory has two simpli-
fying features: the nucleons do not move, and the
mesons do not interact with each other, only with the
6xed nucleons. Thus the uI, * and ul„ the creation and
annihilation operators for bure mesons, also create and
destroy the physical particles in this theory. For con-
venience in later calculations, we introduce the notation
Pk 8k+8 k& ark ss(Gk— 8—k ) ~

Creation and annihilation operators for the bare
nucleons will be denoted by n * and o,„xbeing the
position of the nucleon. The spin and charge indices are
suppressed from the notation.

The vacuum state will be denoted by ). Eigenstates
with one physical nucleon and zero, one, two, etc.
mesons will be denoted by ~x), ~x,E), ~x,EL), etc. We
shall not generally specify whether the states have
ingoing or outgoing scattered waves; it will generally be
sufhcient to assume that all the states are de6ned in the
same way. Similarly, we shall denote two-nucleon
eigenstates by

~
xy),

~
xy, E), etc. ; sometimes we shall also

use the symbols%', „and%', „,z, etc., for the same states.
The Hamiltonian is

H=g~o)~(7r~*m„+ ,'y„*q~)+H. '. -(1)
(Natural units are used here and throughout. ) We shall
assume in the formal development of this section that H'
is some arbitrary function of the pk (and is bilinear in
the nucleon operators). It is assumed that appropriate
counter terms (independent of the pk and wk) are in-
cluded in H', so that H) =0 and H

~
x)=0.

In the development of Wick" and Chew and Low,"
use is made of an expression for the one-meson scattering
state which has the form

The 6rst term contains the incident plane wave; the

s~ W. Heitler and F. London, Z. Physik 44, 455 (1927).
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second, the scattered wave. The second term can also be
formally expressed in terms of the first, as is shown in
references 24 and 25. It should be noted that the
simplicity of Eq. (2) depends on the fact that the meson
operator a&* creates a physical meson. Thus it would
not be reasonable for us to imitate Eq. (2) directly, and
write

I*y)=~.*l*)+x ' (2')

as a first approximation to the eigenstate 0',„.
It is obviously possible to find infinitely many opera-

tors 5:,* with the property of Eq. (3).""One way of
suitably restricting the form of 5,*, so that Eq. (3)
defines a unique operator, is by requiring also that 8 *
depend only on some specified combination of the
operators cps and s.s (5,* must also contain as a factor
the operator 0. *, and depend on the spin and isotopic
spin matrices). That is, if we require that P *=F,*(as*),
or F,*(ps), we obtain in either case a unique operator.
In the first case, the coefficients in a power series ex-
pansion of F * in the aj,*are the same as the amplitudes
in the Pock-space representation; in the second case, the
coefFicients in an expansion in the pI, can also be related
to the Fock amplitudes, or recursion formulas may be
derived directly with the aid of the Hamiltonian. There
appears to be no simple way to decide which of the many
ways of defining F,* is the best. We shall develop the
theory using both methods mentioned above. If the
operators are required to be functions only of the pl„
formulas which are comparatively simple and elegant in
appearance result, and it is easier to examine certain
general convergence properties, but it seems easier to
apply the method to the linear-coupling model when the
operators are chosen to be functions of the c~*.We shall
distinguish operators which are functions of the pI, by a
prime: 5' '*(p&), and shall similarily denote the states
formed by a product of two such operators: C „'
=F,'*F„'*).Operators and states not distinguished by
a prime may be assumed general in the next few

paragraphs, but in the latter part of this paper will refer

'70. W. Greenberg and S. S. Schweber (to be published);
operators with this property, but de6ned differently than in the
present paper, are extensively discussed.

2 Iu. V. Novozhilov, J. Exptl. Theoret. Phys. U.S.S.R. 32, 1262
(1957) (translation: Soviet Phys. JETP 5, 1030 (1958)j.Operators
similar to those constructed in this paper are de6ned, and used as
in Eq. (4). The author is grateful to H. Ekstein for calling atten-
tion to this paper. See also Iu. V. Novozhilov, J. Exptl. Theoret.
Phys. U.S.S.R. 33, 901 (1957) I translation: Soviet Phys. JETP
6, 692 (1958)j.

This would treat the two nucleons unsymmetrically, and
destroy whatever advantages result from including
directly the meson cloud of the physical nucleon at x. A
more suitable approach would be to define an operator
F *, which had the property that

(3)

then we could use the state

to functions of the a~*. There is, of course, no reason
why the operator F * should not depend on some
canonical variables other than those we have chosen;
we shall limit ourselves to a discussion of these two
cases for simplicity.

We define 5 to be the Hermitian conjugate of 8 *;
note that (P,S,*)= 1. Since F,'* is independent of the
mj„we find that if x and y are distinct points, 5 '* will
anticommute with both 5„'* and P„', because n * is
assumed to anticommute with o.„*and n„. In general,
the operator F * will anticommute with 5„*,but not
with 5„.

It is evident that when the two nucleons are widely
separated (r= ~x—y~~~) Eq. (4) gives the exact
ground state of the two-nucleon system (C,„-+@„).
This is a general characteristic of the Heitler-London
method. Some insight into the nature of the approxima-
tion that is made when the exact state 0,„is replaced by
O' „=5,*&„*)can be obtained from Appendix A, which
is devoted to the theory with neutral, scalar mesons.

In general, it will not be sufficient to consider only the
state C,„.In order to define additional Heitler-London
states, we define additional operators, which also are to
depend only on the pI, or a&*, as the case may be.

e.,
x*)= )x,K),

F,, xr,*)=~x)KL), etc. (5)

We remark that having chosen to define a unique F *by
requiring it to be a function of particular variables, it is
obviously desirable to use those same variables through-
out. Then we can define as follows another state C „,~,
which we shall interpret as a Heitler-London state in
which one of the nucleons is in its ground state and the
other is in an excited state (scattering a meson):

4.„,x'= &., x'*&,'*)+&.'*&,.x'*)—9 x*~-"~,'*), (6)

or
x=& x*& *)+& *& x*) &x*& *& *)

The third term is required to make the total amplitude
of the meson plane wave equal to unity. The states
defined by Eq. (6) are asymptotically equal to the
eigenstate%', „,~ when r~~; C,„,~ gives automatically
the impulse approximation to the scattering from the
two nucleons. However, because of the multiple scat-
tering effect, the difference (4», x—C'», x) is of order
r ', while (4,„C,„) is of order exp( ——r).

Before proceeding with the construction of the most
general Heitler-London state C*y,~~ ~„, it will be use-
ful to examine more closely the ones we already have.
It will be observed that there are several differences
from the usual Heitler-London method. First, we have
defined the Heitler-London states by multiplying to-
gether two oPerators, rather than two wave functions.
Secondly, the states are not uniquely defined, and re-
quire an additional assumption (that the operators
depend only on certain canonical variables) to make
them so. Thirdly, the definition of the state C „,z is a
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little more complicated than one might have anticipated.
The origin of these differences, which are really super-
ficial, can be easily understood.

If we were to use the second-quantized theory to dis-
cuss the hydrogen molecule, we would also multiply
together two operators, each of which created an elec-
tron in a state centered around one of the protons. The
resulting state would be automatically antisymmetric in
the two electrons. Thus the representation of Heitler-
London states by the product of operators is the natural
concomitant of a field theory, and has the advantage
that the statistics of the particles need not be considered
explicitly.

The uniqueness of the Heitler-London approximation
to the ground state of the hydrogen molecule is a result
of the simplicity of that molecule. If it were important
to a discussion of molecular binding to include the states
with a positron and an extra electron, the incorporation
of such states into the Heitler-London approximation
would also be somewhat arbitrary. That is, in a situation
in which no single set of Fock states (with a definite
number of particles) forms the principal part of the
eigenstates, there is in general no unique way to combine
two states to form a Heitler-London state.

The extra complications of the definition (7) of C,„,x
(and of the definitions given in Appendix 8 for the
remaining states) result from the fact that we consider
the contielcwz states associated with each nucleon. The
incident plane wave necessarily strikes both nucleons, so
we must use an expression which allows for scattering by
either of them. In molecular theory it is not usual to
include the continuum states, so such complications are
not met.

It is of course not sufficient to de/le a representation—we must also show that it can be used in a convenient
way. Supposing that we de6ne a complete set of states
4~y, ac~ . x, we can represent the ground state of the
two-nucleon system by the expansion

+.„=XsC.„+&leX(&)C'*,, x
+Qxr, X(&,&)C..„,xl,+ (&)

An equation for the p's can then be obtained from the
variational principle

8(e.„,[H—Z,„]e.„)=O,

by varying the p's. Evidently we shall need to know the
matrix elements

(C „,HC „), (C,„,HC, „, ), etc.,

as well as the matrix elements

(C.„,C,„), (C,„,C,„,x), etc.

(The C*il,zci .x„will not, in general, be orthonormal
when r is Qnite, even though the original states
lx,Ei. E„) are orthonormal. ) The necessary matrix
elements can all be expressed very simply by expansions

in the number of mesons exchanged between the two
nucleons. Of course, if explicit expressions for the 5's
were known, the matrix elements could also be evaluated
directly.

Let us consider first the normalization of the state
C,„';we define

(C.„',C,„')= (~„'S.'r.'*S„'*)=1+A.„'.

Commuting the 5"s, and then using a closure expansion,
we find

(p lp lp lgp ISC) (p lp ISp lp IS)

x(u, a„e„'s„'*). (10)

Since F '* and F,„' are independent of the xj„we have,
e.g.,

& '*oi*=os*& '*+-i& '*—& '*& ~'

by repeated use of this rather trivial identity, we obtain

x(yl: ~ i "v.. ly). (»)

The colons denote Wick's normal product. "Note that
in the proof of (11) we used only the facts that the F'
operators are independent of the canonical variables m ~,
and that 5,'*)=

l x), and did not require knowledge of
an explicit expression for F,'*; hence we can use the
same kind of expansion for the other matrix elements.

The zeroth term of (11) is (xlx)(yly)—=1. The next
term involves the matrix element (x l q s*l x), which can
be evaluated directly in terms of the rerIormalised
coupling constant. Similarly, the second term involves
the matrix element (xl: q s*y~ *'.

l x), which can be ex-
pressed in terms of the S-matrix element for elastic
scattering of a meson (og the energy shell —see reference
2), and the higher terms can be related to the matrix
elements for inelastic meson scattering. Hence, each
term of (11) can be expressed —at least in, principle —in
terms of the physical properties of an isolated nucleon.
(See also Appendix A.)

Before discussing the matrix elements of the Hamil-
tonian, we first derive some identities. Let S~'* and
8&'* be operators that create states with energy E&
and E~. We first note that

[HP '*j=P„~„[~„,[~„*P&'*lj
+g~ 2(u~[m. „*,P~'*jm.„+[H',Fg'*j. (12)

Since H' and F&'* both depend only on the nucleon
operators and on the q i, we have [H', F~'*)So'*

ss G. C. Wick, Phys. Rev. 80, 268 (1950).
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= —&B'*LH'PA'*j. Hence

H+A +B ) +A H+B ) +B )+)+A j&

+P, 2~„L~„*PA'*)L~„,rB'*j&
(+A++B)+A +B )
+P„2~„I~„*,VA")L~„PB'e)&. (13)

Ke may also write

+B ) (+A++B)5'A +B )
—Q „(2(u,) I a „FA'*)Lu„,SB'*j). (14)

For our second identity, we let G denote any function of
the ys. Using the fact that s.s)= stipe&, we obtain

H pir*G) = pr. *(H+oirr)G) 2i(urrfvrr—c*,Gj). (15)

Since La„,PA'*j depends only on the variables ys, we
can again use our previous expansion theorem, Eq. (11),
to evaluate matrix elements of the Hamiltonian. Thus
we find for the "potential'"'

V,„'=—(C,„',HC „'):

V.„'=—P(2~„) P P &xl:p,* p„*:a „Ix)
u n=o k1 ~ ~ kss

X(ti!) '&yl: &i v. :ri, ly&. (16)

The first term of (16) is:

V"'"'=—~.2~.(xi~-. ix&(yl~. ly& (»)
It is easy to show that this gives the usual second-order
potential, with the reeorma1ised coupling constant.

The two examples above will suKce for an illustration
of how matrix elements may be expressed in terms of
mesons exchanged between physical nucleons. However,
the matrix elements which involve the other states have
certain complicating features, which we shall now
describe. Let us first consider A „'(;K)= (C,„',C,„rc')—.
Using the same proof as for Eq. (11), we find

a,„'(;K)= P g (e!)-'
n=0 ky ~ ~ k~

x(&xl:~i'" v.*.lx,K&(yl:~i" ~-: ly&

+&*I:~i' ~-"
I x&&y I:~i" ~-: I y K&

—&xl:vi'" ~-* ~~'lx)&yl:~i" ~-:ly&}

n=o ky kn

X(L&xl: q,* s „*.Ix,E)
—&xl:~i* . ~-*~~*:IxH

x&yl: ~i "~.: ly&+&*I:~i*" ~.*:I*)

XL&y: I:~i".p. : ly, K&

—&yl: ~i" ~-~~*: ly&j} (18)
~If the interaction Lagrangian depends linearly on the

Eq. (16) holds with the destruction operators replaced by the
positive-frequency part of p~.

In some of the matrix elements of (18), certain delta-
function singularities arise; it can be seen from the
relation'4

as
I x,K&= by. , rc

I
x& —(H eire—+c i+irl) 'V s—*Ix K),

that in thematrixelement(xl: pi y„:
I
x,K) termslike

err, i,(xl: qi q, iy,+i p„: Ix) (where i=1 .n) ap-
pear, and furthermore, after these singular terms are
subtracted from the matrix element (xI: ioi q „:I x,E'),
the remainder is free of terms which contain the delta
function of two momenta. YVe shall call the nonsingular
remainder the irredlcible part of the matrix element,
and denote it by the symbol (xl:tet p„: Ix,K)r.
Since the difference between (xl yi p„lx,E) and
&xl: &p, y„: Ix,K) also lies in terms proportional to
delta functions like Q;,—k;, which are contained in the
first matrix element but not the second, by interpreting
the expression "irreducible part" and the subscript I to
mean the discarding of al/ such singular terms, we can
omit the colons from the notation. Separating the
matrix elements in (18) into singular and irreducible
parts, we find that the contribution of the singular parts
is exactly cancelled by the contribution of the correction
term —

ply�

"5 '*P„'*&;hence we obtain

gs„'( K)= P P (ri!)—i
n=o ky ~ ~ krt,

X«x I v i* v-*lx,K&r&y I ~i v'-I y&r

+(xi~*" s *lx)r&yl~ "v lyK&.} (19)

The zeroth term of (19) is zero, since (x I x,K)=0. The
significance of the irreducible matrix elements is that by
a suitable definition of C „,~' the contribution of the
incident plane wave to the overlap of the two states has
been made to vanish.

The matrix element (C,„,rc ',C,„,z') obviously con-
tains a term proportional to 8~, ~, and it is clear that the
coeflicient of the delta function can only be 1+3 „'.Let
us define the irredlcible part of (C,„,B ',C,„,rr') to be
A,„'(K', K):

(C..„,&',C.„,~') =b~, ~ (~..'+ 1&+~*,'(K'; K).

It is a matter of straightforward algebra to verify the
form of Eq. (20) and show that

A.„'(K' E)= P P (e!)—'
n j. kg ~ ~ k~

x(&xK'I st* "v-*IxK&r&yl ~ "v-ly&r

+&x K'I e* "v'-*lx&r&yl vi "~-ly,K&r

+(xl pa* q„*lx,K)z&y, K'I yx y Iy)r

+&xi ~ *" ~-'Ix&

x&y,K'I ~ " v. ly, E&.}. (21)
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Similar calculations are used for the matrix elements commutators
of the Hamiltonian. Let V y'(;E)= (C y'»C, y, K'); we
obtain (27)

V*y'(;it) = —Z 2 Z 2~y(~!) '
y n=o k1 ~ ~ kn

x {&*I~„*01* 0.*I*,&&I

x&yl11 „*01 0.ly&1

+&ala„*0,*" P„*lx&I

if the interaction is linear; more generally, the com-
mutators

1
Ulv ~ r)1 "s L r 1~ ~ rl1" e—1y ~8 J

S
1

=-[11., Vl"' 1(1"'] (2&')
r

In discussing the matrix element (C,y, K.'»C „,K') we
proceed as follows. Let &&A*&B*&

X&yl 11 +0vl . . ~ 01 I y Q&1}. (22) are also required. An identity analogous to Eq. (14) is
not hard to prove:

IIC"y, K =01KC'.y, K'+X., K', (23)
= (EA+EB)&A*&B'&

where X „K' is calculated by using Eqs. (14) and (15).
It is only the contribution of I,„,K' to the matrix
element that we can consider as the "potential. " In
order to make Hermitian the irreducible potentials
which are defined, we symmetrize explicitly:

+ Z 2 I 111 L' ' '[+' +A jl' ' 'jV11" N+B
N=l kl ~ ~ 'kN

N=l k1 ~ ~ kN

(4 „,K'»4 „,K')

0 (01K+01K') (C'vy, K' qC'v, y, K )
+ 2 (Xvy, K' vc'vy, K )+0 (C'vy, K' vXvy, K ) ~

X[el [' ' '[IIN fB jj' ' ]V[1 ~ ~ N~A ) (14 )

(24) Using this identity, and proceeding as for Eq. (11'),one
finds

As in Eq. (20), we must separate out the irreducible
potential:

0 (Xvy, K' &C'vy, K )+0 (C vy, K' &Xvy, K )
= 8K, K~ Vv;y +Vvy (E v K) . (25)

In Appendix 8, the general state C~y, K1. K„' is
defined, and the derivation of general expansions similar
to those given above is sketched.

9"hen the operators are chosen to be functions of the
gk"', slight modifications in the previous derivations
must be made. We use an identity for the anticommu-
tator of 5'„(uy) and F.*(al,*),

00

{&„+.*}+Z—Z [~1,[ [~N5:.*j
N=1 gi K1 ~ Kn

x[["P.,~ *j "j~*j=o (26)

and then use a closure expansion to prove that

(e.„,e.„)=1+2.„=&@„S,S,'r„*&

N 0 v=0 yt(Q —y)!

X g &Sl al ' Gv Gv+1 QNI X&
k1. ~ ~ kN

X&yl ~N*" ~~1*~. "~11y) (11')

The matrix elements of the Hamiltonian involve the

(C"y»c'*y)

=1+V,„
oo M—1 oo N=ZZZZ

If=1 V=O N 0 v=0 kl ~ ~ kN yt ~ ~ yII (Q—y)!y!

X {&&I111 ' ' '11v VI" v(v+I" M&v+1
' ' '&N

I &&

X&yIAr 11~1 III ' ' 'lip IIvqt' ' IIIII'' ' 'lolly&

+symmetrical term in (x,y) }. (16')

The general state C~y, K1 K„, and the general expan-
sions, are also given in Appendix 3.

In previous discussions of the interaction energy, the
energy has been expanded in powers of the coupling
constant, or, in the more recent work, in the number of
mesons which are exchanged between the nucleons
during an "elementary" interaction. ' ' The Heitler-
London method leads to a completely diBerent ap-
proach, as two expansions are used. The first is the
expansion of the state vector of the system in the basic
states; the second is an expansion of the "overlap
functions" 2 „and the "potentials" U „in terms of the
number of mesons exchanged between the clouds, or,
more precisely, in terms of the number of mesons that
are found in states which are common to the clouds of
both nucleons. There is, of course, no direct relation
between the number of exchanged mesons as it is used
in the present work, and what previous writers have
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considered to be the number of exchanged mesons when
looking at the net interaction energy.

It is generally believed that the conventional ex-
pansion of the interaction energy in the number of ex-
changed mesons converges when r is sufficiently large.
But it is possible that when r &ro, where ro is some
critical distance, such an expansion does not converge—
there is at present no information about this point. In
other words, the interaction energy calculated in such a
way is not known to be reliable, even qualitatively, at
distances smaller than some unknown distance. The
double expansion provided by the Heitler-London
method fortunately allows us to investigate this mathe-
matical question more fully. As is shown in Appendix B,
provided the one-nucLeon states satisfy certain condi-
tions, the Heitler-London method is a convergent
method for calculating the energy of two-nucleon states,
however close the two nucleons may be. These condi-
tions are expected to be fulfilled in a large class of simple
models, including those of greatest physical interest.
The double expansion of the Heitler-London method
leads most naturally to nonrationaL approximations to
the energy, and is accordingly not equivalent to a simple
perturbative type of expansion. It is therefore reason-
able that in many cases in which the usual types of
expansions diverged, the Heitler-London method would
still give a variety of convergent sequences of approxi-
mations to the energy.

The rate of convergence of the expansion of the state
vector in Heitler-London states is difaicult to assess, and
is perhaps best studied with reference to particular ex-
amples; the existence of a simple model (Appendix A)
in which a single term suffices, suggests that even in
more complicated models a few terms might give a good
approximation. It is important to notice, however, that
for calculating the energy, we may use variationaL
methods, and thereby not only increase the accuracy,
but obtain reliable upper bounds even with crude as-
sumptions about the state vector. It is essential to the
estimation of the interaction energy by a variational
method that the self-energy of the particles automati-
cally be eliminated exactly, and this is achieved by the
use of Heitler-London states.

When we use the method described in the previous
paragraphs to calculate the properties of a two-nucleon
system, we achieve both a more direct relation to the
measured properties of a single nucleon, and a greater
confidence in the reliability of the results, than is
possible with any formalism hitherto applied. A further
advantage of the Heitler-London method is that it
enables us to discuss the structure of a two-nucleon
state in a simple, natural, physical way. For instance,
we wish to understand to what extent, and in what way,
the structure of a physical nucleon is altered, and its
properties changed, when it approach s another. The
meson clouds which make up the outer part of the
nucleons will certainly be distorted in some way when
the nucleons come close together. The Heitler-London

method allows us to make a convenient and important
distinction between two kinds of distortion eGects, each
of which has its counterpart in the structure of molecules.

The first distortion e6ect is due to the Bose-Einstein
statistics of the mesons, and is similar to the effect of the
Pauli exclusion principle on the electronic clouds in
molecules. This mesonic "exchange eGect" arises from
the stimulated emission and absorption of mesons by a
nucleon which is caused by the presence of the meson
cloud of the other nucleon. The density of mesons is
therefore generally difterent from the sum of the
densities associated with isolated nucleons. Another
picture of this eGect is gotten when we realize that the
expression "meson cloud" gives only a meager descrip-
tion of the properties of the meson wave field; when
considering the state of the meson field, we must take
into account the interference between the meson waves
that circulate around each of the nucleons. In the
Heitler-London method, this exchange polarization
e6ect is taken into account automatically, even when
only a single basic state is used.

The other polarization effect, which is related to the
dynamical properties of the meson cloud around a
nucleon, is similar to the polarization of atoms which is
associated with the Van der Waals interaction between
them. It arises from the necessity for adding extra
Heitler-London states to the basic state C,„, and hence
depends explicitly on the properties of the excited states
of nucleons. The incorporation of these excited states
into the formalism affords a mathematically precise way
of treating isobar effects, which hitherto have been
introduced only in a purely phenomenological man-
ner "~ ' When the nucleons are far apart (r& 1) this
polarization effect is the least important; in the atomic
case, the situation is reversed, because there the Van der
Waals interaction depends on the long-range Coulomb
force. The separation of dynamical and statistical
polarization sects is of course not unique; each way of
defining the Heitler-London representation leads to a
slightly different separation,

The distortion of the meson clouds around the nucleons
makes every property of the two-nucleon system, such
as the charge density, a nonadditive function of the
corresponding property of single nucleons. In any
method which centers around the explicit construction
of the states, all the properties of the system may be
obtained directly; in the Heitler-London method all
expectation values and matrix elements can be ex-
pressed by expansions similar to those obtained for the
energy. As an illustration, we shall conclude this section
by writing down the expansions for the average number
of mesons and for the charge density, in the state C,„
(it must be remembered that this state is normalized to
1+2 „). The general method of deriving these ex-
pansions is to commute all the operators of the form aA,

*
or ag, through the F* or 8 operators —then the basic
expression (11') can be used.

The number of mesons in the field is X=+~ a„*a~.
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The average number in the state 4 „ is obtained from

x {(xI a,* a,*xa„+, a~
I x)

x(yla~ a+~ a a~ly)

+(xla,*"
a.
* a„„a~l x)

x(y I
a~* a~~*&a' "a~ ly)

+P,P(xl ag ap'a, *a„+g a~
I x)

X(ylazv*. a, &*a„a„. u, ly)

+(x I
ay* a„*a„ay+) aN

I x)

X(yla&*' ' aw&*ao*a, ' ' 'a&ly)3) (2g)

The charge density at the point z, p(z), consists of
two parts: p(z) =p„(z)+p (z), where p„(z) is the charge
density of the bare nucleons. The meson charge density
is

p (z)= —eeo pp (z)»re(z)=P»„p» (z)»o»»r~,

where

p». ,.p(z) = —eeo.e expLiz (q+ p. )g~,4»—.

With this notation, we have

(C'.»,p(z)C'") = Z Z
iv=o v=o pt(g —p) I og sy

X{(xla& . a„*p(z)a„+& + I*)

x(yl a~* a~&*a, ax
I y)

+symmetrical term in x, y

+P p, „(z)Dx I
a,* a,*»r,a,+~. a~ I x)

x(yla~* a~i*a,a, . aily)

+symmetrical term in x, yj). (29)

An application of the results of this section to the
linear-coupling model will be presented in a subsequent
paper.

III. A GENERALIZED MODEL

Tn this section the method introduced above will be
applied to a more general model, for the purpose of
describing briefly how various additional sects might
be treated.

There is no reason in principle why the Heitler-
London method (with operators defined as functions of
interaction representation variables) should not be
applied directly to the usual covariant theories. How-
ever, the operators F* would then be functions of
operators which did not create physical mesons, hence
the expansions for matrix elements would involve

unrenormalized quantities, which, because it would re-
quire that the meson propagation be treated by pertur-
bation theory, it would be desirable to avoid. The main
diTiculties lie in the treatment of virtual nucleon pairs;
it is reasonable to assume that at low energies such
effects could be treated phenomenologically. This may
be done by an extension of the method of Sec. II.

We introduce operators Ii I,*, which have the property
that Fo*)= I,k), where l,k) denotes a state with a
physical meson of momentum k, which are Hermitian
(Fs*——F o), and which satisfy I P,Fo*j=kF o*, P being
the momentum operator. We may use as annihilation
and creation operators the quantities bo (2&os)

——'(cuoF o—
I H,Foj), and bo*. Operators which create the inner

structure of a nucleon are also considered. We shall not
discuss how definite operators might be constructed, but
use the operators in a phenomenological theory. The
commutators of the bI,*and bI, will, in general, be much
more complicated than the commutators of the uI, *and
a~, but the vacuum expectations of these commutators
have the usual forms. When the operators bI, *and bI, are
used to describe the meson 6eld, the Hamiltonian may
contain terms which lead to an interaction between
mesons, but the self-energy of a meson is automatically
taken into account. The failure of the bj,* and the bj, to
satisfy the usual commutation rules introduces an addi-.
tional, kinematical, interaction between mesons. '~

Meson-nucleon scattering may be discussed in exactly
the same way as in the static model, by using the
operators which create physical mesons. We let Ip, )
denote the state with a physical nucleon of momentum p
and energy E~, and let

I p, k&) denote ascattering state.
Then

I p &~)=b"Ip, )—(&—~s—~.~is) 'Volp), (3o)

where Vo=LII,ho*a —boobs*. A Low equation for the
scattering amplitude (p', O' —

I
Vs I p, ) may be derived in

the usual way. The meson-meson interaction does not
appear explicitly in the Low equation for the elastic
scattering amplitude; it is hidden in the prescription for
extrapolating matrix elements such as (p', O' —

I Vkl p )
oG of the energy shell. It should be noted that quantities
such as (p', O' —

I
V~I p, ) do not have simple Lorentz

transformation properties (except on the energy shell),
because the definition of the bI,* is not covariant;
information about the transformation of general matrix
elements may be deduced by considering the Low
equation in various coordinate systems.

The Heitler-London method is now formulated as
before, using the operators bI, and bI, *, and the nucleon
operators, to construct operators Fo* such that P~*)
=

I p, ), etc., and using these operators to construct the
states 4 „~,4 „~,I„etc. As before, it is necessary to specify
the operators of which the F* are supposed to be
functions; now it is also necessary to specify their order.
Since the bo* create physical mesons (when acting upon

"F.J. Dyson, Phys. Rev. 102, 1217 (1956).
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the vacuum), the effects of virtual nucleon pairs in the
outer part of the nucleon will be accounted for i'n the
meson-meson interaction; remaining effects will arise in
several ways: the nucleon operators may not appear
linearily in the F*and they might not commute with the
FI„ the closure expansion by which the matrix elements
are to be evaluated must include states with real nucleon
pairs, and Heitler-London states which contain nucleon
pairs must be included in the expansion for the eigen-
state. These eGects are expected to be important only at
small distances, and might be treated phenomeno-
logically.

The expansions previously obtained will be modified
by the meson-meson interaction: the meson operators
do not commute, the Hamiltonian contains additional
interaction terms, and in the closure expansion it is not
possible to use a product of n "creation" operators bg,

*
to represent an e-meson state. If some assumed meson-
meson interaction were used, these eGects would be
calculable; for the present it is simpler to neglect meson-
meson interactions (since they are not known to be
important) and use the previous expansions with us and
aI,* replaced by b~ and bj,*. The form of the matrix
elements is slightly modified, because they now refer to
nucleons of given momenta; for instance:

(C„,C„)=5„.„S„S„.,5;„—+ A(p'q'; pq), (31)
and

is omitted) can be approximated by functions of the
diGerence p' —p, which could be identified with the
Fourier transforms of the A „and V,„of the static
model; velocity-dependent eGects appear as depend-
ences on the variable p'+p. Since the velocity-depend-
ent eGects which arise in this way depend on the static
properties of the meson clouds of the nucleons, they are
not to be interpreted as nonadiabatic corrections. Much
more complicated eGects are associated with the ampli-
tudes g(p, k), x(p, ktks), etc. , which refer to excited
con6gurations of the meson 6eld. Inclusion of the
amplitudes for these excited con6gurations in the
Schrodinger equation makes it possible to describe such
phenomena as meson production with the same equation
that describes the deuteron. It is obvious that the
contribution of such states to the interaction energy E,„
only very imperfectly represents their true role, and
may be considered as a measure of the inadequacy of
any method which represents two-nucleon states by a
single amplitude x (p).

In the deuteron, when the two nucleons are separated
by a relatively large distance, the additional amplitudes
should be small, and we might expect the static matrix
elements to be adequate; assuming this to be true, and
treating the nucleons nonrelativistically, we are led to
the equation

(c„;,ae„)= ;(E„+z,+E„—+z;)(e„.;,e„)
+V(P'q' Pq) (32)

where A and V are antisymmetric in p and q, and in p'
and g'.

The Heitler-London method, being based on a
Schrodinger representation, is not manifestly covariant,
but this introduces no insurmountable diTiculties. There
are no renormalization problems, because only re-
normalized masses and charges, and other physical
quantities, appear in any equation. While it is not
possible to use invariance properties directly to simplify
the dependence on the momenta of such matrix elements
as (p'~ Vs~ p), the transformation properties are related
to those of the Low equation.

A two-nucleon eigenstate (in the c.m. system) may be
represented as a sum of the form

=8[1+A (x))x (x), (34a)

where
~=—(1/M) Pg+ Up, (34b)

which is not of the same form as is given by the adiabatic
assumption. The relation of the adiabatic equation to an
equation such as (34) has been the subject of much
discussion in connection with the Tamm-D ancona

method; the proper analysis for that method is appro-
priate, and more directly applied, here. ' ""The correct
normalization of the amplitude x(x) is obtained from the
expansion (33) for 4; if we define F= (1+A) &,

y (x)=F (x)p(x), then the proper normalization is
J'g+@dV=1. The normalized amplitude g(x) satisfies
the equation

+-=2 x(P)c., —.+Z x(P,k)c' —:,—;;+, (33) U(x) = V(x) 1 1
{G;,rG,r}— {V, ,[r,G,.j&,

1+A (x) 2M 2M

and a Schrodinger equation for the amplitudes y ob-
tained by the variational method. An interesting ques-
tion is the relation of the static model with an adiabatic
assumption, that is, with use of the energy E „as the
potential energy in a simple Schrodinger equation, to a
more general model such as discussed here. Velocity-
dependent and other corrections to the interaction
energy appear in several ways. The matrix elements
A (P'; P) and V(p'; p) (q= —

p, and the exchange term

The only true velocity dependence contained in Eq. (34)
is thus the spin-orbit interaction given by the last term
of Eq. (35). The first term in U(x) is the adiabatic
interaction energy; the two corrections do not have

I K. A. Brueckner and K. M. Watson, Phys. Rev. 92, 1023
(1955). The erroneous numerical estimate arises from neglect of
the tensor interaction.

n D. Feldman, Phys. Rev. 98, 1456 (1955).
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great significance. We see that the static model, with the
adiabatic assumption, gives very nearly (but not ex-
actly) the correct potential, when the conditions stated
in the first part of this paragraph are satis6ed.
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APPENDIX A. NEUTRAL SCALAR MESONS

The model in which neutral scalar mesons interact
linearly with fixed sources is well understood; the
eigenstates can be found exactly by very simple methods.
This makes it a good example for illustrating some of the
properties of the Heitler-London method.

The Hamiltonian is

&=&0+gZk(2(uk) 'vk(ak+a k*)g; e'" x'n*;*nx;

EP; nx;*nx;—, (A1)

where e~ is the source function which is introduced to
make the theory finite. The nucleon self-energy is
eliminated by set ting

g Qk g(~k) Vk ~

The following expressions for the eigenstates are well
known:

I
x)=c ' exp{—

g P k v &&v 'e '"'(2(v) 'p k}n, *)
=C.exp{—gQk vga 'e "*(2c—v) lak*}n. ),

icy)=C, „' exp{—gQk v~ '(e'" *+e'" y)

X (2&v) **q k}n,*n„*),
=C,„exp{ gPk v—ko) '(e—"" +e 'k y)

&& (2co) ~ak*}n.*n„*). (A2)

In (A2), C„C,', C „, and C,„' are constants chosen to
normalize the state vectors. The interaction energy is

~—ZV2e i k (x—y)

We see from (A2) that

P,'*(q k) =C.'exp{ —gpk va) 'e'k x(2(o) 'q k}n,*,

P,*(ak*)=C,exp{—gPkvcu 'e '"'*(2a&) '*ak*}n *. (A3)

2gv„e'y *) ( 2g ve' i

&y"'=I —,I"
I —,I&~I*) (A5)

(a~(2a) „)'*) E a), (2(u,)i)

Hence with the notation

we obtain
Q (r) g2 Pk &k &V 2iek( —x y)

(C.„',C,„')=1+a.„'=e»& &. (A6)

If vk ——1, we find A (r) = (g'/4yr)2EO(r)/yr.
It is not hard to show, for instance by using the

expansions of Appendix 3, that the states Cry, qy .q~'
are also eigenstates, and are also normalized to
expL2A (r)j.The simple form of the e-meson eigenstates
is of course related to the fact that the mesons are not
actually scattered by the nucleons, in this model.

The expansion theorem (11') may be used to calculate
the norm of C,„.It is found that (C,„,C,„)=expLA (r)$.
In this example, the terms in the expansions decrease
more rapidly if one uses functions of the ak"' to define
the representation, rather than functions of the q k*.

We have shown that in this special model, the Heitler-
London method gives an exact solution to the two-
nucleon problem. In this example it is natural to speak
of the two nucleons as preserving their identity and
remaining unexcited when they approach one another.
It should be noted, however, that the density of mesons
at any point is not the sum of the densities associated
with isolated nucleons, so that the average number of
mesons in the field increases when the nucleons are
brought closer together. Thus the Heitler-London states
describe correctly the stimulated emission and absorp-
tion of mesons by one nucleon which is caused by the
presence of the meson cloud surrounding the other.

APPENDIX B. N-MESON STATES

We shall first give an inductive construction of the
state 4 ~y, ~~ . ~„', which has e mesons impinging on two
nucleons. Let {n}denote the set of e meson variables,
{nln} one of the 2" subsets, and {yy, ln'} the comple-
mentary subset. Let (n)= (ij ~ ) refer to the subset
{nln} obtained by removing q;, q;, from {I}.Then
we define

1+ l gg
C'ay, f n} =~ +a, f nla} +y, f nla'}

Since Vk*= Lak, H'j commutes with H in this model, we
have

a, le)= —(a+ ~k)-'vk*lx)
= —~;i(2~,)-~gv. k *l*), (A4)

therefore we find that

In either case F * is an exponential function of
the meson variables; hence it is obvious that C „'

+x (Ipk)&„'*(Vk)) and C,„=F,*(ak*)F„*(ak*))are
both exact eigenstates —both are proportional to

I
my).

We may use our expansion theorem, Eq. (11), to
calculate the normalization of C,„'.We first consider

~y- ~=(*l:(ay*+a-.)".(a.*+a-d: I*).

~ Pi 4'ay, f nli}

O. rT.

~

~ ~:Pi Pi:~~V f nl ii}i( j'
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It is not hard to verify that when y—+~,C,y f } ~Q y f }, where

The following lemma is useful for separating the
p v({ } { })matrix elements of the C,„,~

„}'into irreducible parts:

aq I w, f l
=P 50'q 4 „,f„[;j'+(nonsingular Part). (32)

The nonsingular part is free of delta functions of
the momenta. We obtain for the matrix element
(C'aw, [~j vc'aw, faj ):
(@aw fwvj vC'aw (aj )

=A*.'({m}' {qs})

i a

+P P I '%a iqbqbqj+'kb qha qjji(j a&5

=—ZEZ Z
p a P N=O ks ~ ~ kg

X(*,{mIP}I f i* 0N*a pl*,-{~l~}&r

X(y {mlP'} I
qi" ONawly {~la'}&' (BS)

When no= n, the above expressions are symmetrized.
If the representation is defined by functions of the

creation operators, the n-meson state is defined as
follows:

@'aW, [a[=Q +a [a[a[ +Wfa[a'j )

Z ai C'awfa[ij

where

A,„'({m};{qs})

XA,„'({mlab};{qslij})+ ~, (83) ~ ~~i ~i ~y)alii}
i&7

1 Xy' (31')

=ZZ 2 Z (&!) '
a P N 0 ki ~ ~ k~

x(*{mIP}I
[pi*" ~N*I* {~I ~}).

X(y,{mlP'}I&, ~, ly, { I. }&,. (34)

+C'ap, faj =Q tOPaW, fnj ++aW. faj ) (85a)

Unless m=n=0, the X=O term vanishes.
The potentials are obtained by first using a simple

extension of Eqs. (14) and (15):

Equations (82), (83), (BSa), (86), and (87) apply also
in this representation. Equation (84) is replaced by

A,„({m};{qs})

=ZZ E
a, e N-0 v=0 kg ~ . ~ kyar p[(g—p) [

X(~{mIP}lai*" a *a+i" aNI*{ul~})r

X(y{mIP'}laN ''a+i a ' '''arly{~la'}&r (34')

and Eq. (BS) is replaced by
Xap, faj =2 2 00p{L&p~+*,[ala[ Xqrp v+W, [a[a'j 3}r&

p a l'"({m} {I})

~

~ k ~ ~Pi X~y, fn)i} ~:Pi Pq:~~~y, {ntiy}
i i& j'

~ ~ ~ (85b)

~q'Xxy, (n} ~i &Q Qixxy, fn)i}

+ (nonsingular parts). (86)

The matrix elements of H are very similar to (83) and
(34). When m) n, we write

(4'*w, f j'»*w, f j')= t *w'({m}' {I})

The irreducible part (denoted by { }r) of the first
term of (BSb) means the part left over after discarding
the terms containing delta functions such as bpq, .

As with the 4 „,~
}', we find

=ZZZZ Z Z
a, e N Ov=0 M=O WW=kl. ~ ~ kN pl ~ ~ WM p[(g —p)!

X{(*{mlP}I ai* a.*&r ,[,+r ki". ".
Xawk ~ ~ aN I x{Nln})r

X(y{mIP }laN* a *ar" a *a

Xaj[ra ' ' 'arly{&I& })r

+symmetrical term in (x,y) }. (BS')

The states C y, && . .&„ have the property of being
asymptotically statiojsary (in the sense of Van Hove)
when r~~, and are asymptotically orthonormal. '4 It is
not necessary, however, to also remove the mesons very
far from the nucleons in order to achieve this property,

+Q bq;qa'V, w'({ml a};{jsli})
a, a

+' ' '
7

04 L. Van Hove, Physics 21, 901 (1955).The author is grateful to
B. Zumino for pointing out the relation of this paper to the

(87) present work.
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as is the case with the Van Hove states; if r—+~,
C~y, q~" q„describes correctly the interaction of the
incident mesons with one or the other of the nucleons.
The C», st &„ also form an asymptotically complete set
when r~~; we shall in addition assume that they form
a complete set for all finite separations of the two
nucleons. In applications, we must of course require
that a small number of Heitler-London states give a
good approximation to the exact states. In any case, it
is always possible to form other states (by multiplying
together various operators), which are not Heitler-
London states; they do not approach eigenstates when
r—+~.Such states are inconvenient, and it is to be hoped
that they are redundant in physically interesting models,
as well as in the neutral scalar model.

Provided the Heitler-London states are normable and
complete, we may form expansions from them which
will converge (in the mean) to the required eigenstates
of H. It is obviously necessary to assume that the states
Cgy, q~ g„' are normalizable, and in order to insure the
convergence of various matrix elements of physical
interest, we shall further require that

be bounded and square integrable, is satisfied. The
existence of discrete one-nucleon eigenstates, and the
requirement that the same operators have finite matrix
elements between these states, yields only the weaker
condition that

be square integrable. This is equivalent to condition A
when the two nucleons are very far apart, but not when
their meson clouds overlap.

The expansions for the matrix elements were derived
from a closure expansion, which converges, provided the
operators involved satisfy certain boundedness condi-
tions. These conditions are examined in the same way as
in the preceding paragraph. A sufhcient condition that
expansions such as those in Eqs. (B4) and (BS) converge
is that

be normalizable, where S is any integer. (We restrict
ourselves here to a discussion of states formed by
operators which are functions of the q~, other cases
seem to be more diflicuit to analyze. ) This condition,
which is not trivial, may be investigated most easily by
using the representation in which the q A, are diagonalized
(standing waves are also use'd for this'discussion). We
shall assume that only mesons with a sufficiently low
momentum interact with nucleons, and that the system
is enclosed in a box, so there are only a finite number of
degrees of freedom. Then it is sufhcient to assume that
the functions

be square integrable functions of the ps. (We shall call
this condition A.) Condition A will be satisfied if the
more restrictive condition 8, that

be bounded and square integrable, for which condition
8 is sufhcient. If the sufhcient condition B is not
satisfied, the matrix element might still exist and be
equal to the sum of the series, if the sum is evaluated
appropriately (perhaps by first summing over the
kt k„and then over rs). If condition 8 is not satisfled,
the sum might converge only when the nucleons are far
enough apart.

The model with neutral, scalar mesons (Appendix A)
obviously satisfies the sufFicient conditions of this
section. In general, if the interaction Hamiltonian is
linear (H'~g U&io&), then F,'*(ps) has the asymptotic
folm

S,'*(p,)-C exp( —P ~,-'V, p,),

when the argument of the exponential is large. This
asymptotic form is such that we might expect that
condition 8 will be satisfied when the interaction is
linear. It may be noted that the class of models in which
condition 8 is not satisfied includes models in which
discrete two-nucleon eigenstates do not exist when the
nucleons are too close to one another. "

"This occurs in the pair-interaction model PG. Wentzel, Helv.
Phys. Acta 15, 111 (1942)g with a suitable, negative, interaction
constant.


