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Formulation of Field Theories of Composite Particles
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(Received April 15, 1958)

Based upon Feynman's over-all-space-time point of view, a general method for dealing with bound-
state problems is presented. In this paper we are mainly interested in the properties of Green's functions
that should be satisfied in the 6eld theories with bound states. First the Chew-Low or Lehmann-Symanzik-
Zimmermann equations are generalized so as to include composite particles. Then we examine the possi-
bility of distinguishing between elementary and composite particles. Finally, an investigation is made of
how the S matrix elements for processes involving composite particles are related to those involving no com-
posite particles. This problem is illustrated by the relation between p+p —+ n+p+m+ and p+p —+ 0+m.+.

l. INTRODUCTION posite particle in the Gna1 state, then even the nuclear
force has to be retained in the asymptotic form. One
does not know beforehand which of these alternatives
will be realized, but quantum-mechanically all these
three modes can take place with certain probabilities.
For this reason the Hamiltonian formulation describ-
ing the temporal development of the system by means
of the Schrodinger equation cannot give a clear-cut
solution to this problem. It is clear that the time-inde-
pendent formulation is also not suitable for the present
purpose. In order to overcome this difficulty we shall
employ Feynman's over-all-space-time point of view. '
In this description, one sums up the amplitudes over
all possible histories in order to calculate the transition
amplitude. Since in each history the role played by a
virtual meson is definite, it is clear whether one has to
switch on or o8 the corresponding interaction in the
asymptotic form. This is one of the possible reasons
why the Feynman method was so successful in dealing
with renormalization problems and we might hope that
this is also the case for bound-states problems.

There are, however, some exceptional cases in which
the time-independent description succeeds in consist-
ently renormalizing the theory, for example, in Chew's
extended-source meson theory. ' This example does not
contradict our general argument since it results from
the special assumption that there is only one nucleon
and hence all virtual mesons are self-Geld mesons.
Indeed when there is another nucleon or an additional
antinucleon, one has to refer to the over-all-space-time
point of view in order to give a clear-cut renormalization
procedure. '

Based on this viewpoint, we shall give an intuitive
derivation of the S matrix in terms of Feynman ampli-
tudes in Sec. 2. Then in Sec. 3 we shall examine the self-
consistency of the formulas obtained in Sec. 2. In
Sec. 4 various possible forms of the S matrix are given
in connection with the description of composite par-
ticles. Finally in Sec. 4 the relation of the S-matrix
elements between the two reactions p+p —+ rt+p+sr+

HE scattering problems of composite particles in
quantum Geld theory involve serious complica-

tions as compared with those in particle mechanics.
Even the scattering problems of elementary particles
already bare essentially these same complications. In
particle mechanics the asymptotic form of the scatter-
ing amplitude is governed by the free part of the Hamil-
tonian which is obtained from the total Hamiltonian
by dropping the potential acting between particles
separated in distance in the remote future. In field
theory the interaction between a particle and its self-
field should be retained even when the particle is sepa-
rated far from other particles, and when composite
particles are involved in the final state the nuclear
forces responsible for the formation of the composite
particles should also be retained, whereas the inter-
action between two separated particles should be
switched off in the asymptotic form. Thus the question
is raised as to whether it is possible or not to decompose
the whole interaction into two parts, one to be retained
and the other to be switched oG in the asymptotic
form. In Geld theory, however, this is in general not
possible in contradistinction to the case of particle
mechanics. Since a creation or a destruction operator
in the interaction Hamiltonian specifies only the
momentum, spin direction, and similar quantities of the
created or destroyed quantum but nothing about its
history, we do not know beforehand whether it con-
tributes to the self-interaction or to the nuclear force
acting between two separated particles. From this
standpoint the renormalization problem is essentially
of the same nature as the bound-state problem. To be
more precise, we shall illustrate this situation by
nucleon-nucleon scattering. Suppose that the nucleon
"i." emitted a virtual meson. If this meson is absorbed
by the nucleon "2" it gives rise to the nuclear force
which is to be switched off in the asymptotic form. On
the other hand, if it is reabsorbed by the first nucleon
it contributes to the self-interaction and is to be re-
ta
fr

ined even when the two nucleons are separated far R. P. Feynman, Phys. Rev. 76, 749, 769 (1949).
om one another. When the two nucleons form a corn- G. F. Chew, Phys. Rev. 94, 1748, 1755 (1954);95, 1669 (1954).

3 K. Nishijima, Suppl. Progr. Theoret. Phys. Japan No. 3, 138
~ On leave of absence from Osaka City University, Osaka, Japan. (1956).
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and p+p —+ d+s+ is discussed as an application of the amplitude corresponding to a component y by
results of Sec. 4.

lim~(n, TLp(x, ) io(x„)7c.~+&). (2.3)
2. FEYNMAN AMPLITUDES AND THE 8 MATRIX

Following the prescriptions given in the previous
section, we discuss an intuitive derivation of the scatter-
ing matrix elements for processes involving composite
particles. As for the mathematical consistency of this
method we refer to Sec. 3.

We first introduce two complete orthonormal sets of
state vectors {4 &+&} and {C & '}. The superscripts
(+) and (—) refer to the outgoing-wave and incoming-
wave boundary conditions, respectively. Furthermore,
each element of the two sets can be written as

4 i+& =@air(an)( ~ ~ xa, or simply 4aia& a„+ . (2.1)

By this notation is meant that the stationary scattering
state C &+) is formed by stable particles a&, a2, . , a„
coming into collision, and C & ) has a similar interpreta-
tion. Needless to say, they are physically meaningful
only when all individual particles a&, u2, , a„ form
wave packets.

The S matrix is defined as the transformation matrix
between these two sets:

When the momenta and spin directions of the constitu-
ents are not specified, but only the species of the con-
stituents are specified, we shall denote the component
by (y). Since we know the boundary condition at.
t —+ ~ for an incoming state 4p& ', we can readily
evaluate the expression

(2.6)

Namely, this state turns out in the remote future to be
a component which consists of freely propagating wave
packets b„b2, , b~ (P=bib2. b ), and the above
expression survives only when &=P. Hence we get from
(2.4), (2.5), and (2.6) the formula

limP(0, TLq(xi) q(x )7e '+&)

=»mph 2't v'(») P(x-)7+p' ')Sp (2.&).

Since e is arbitrary we shall choose the most convenient
n for the derivation of the S matrix.

(1) When P consists only of m elementary particles
we shall choose ~=m; then we get

Sp =(C'pi, C' + ) or 4' + =ppSp c'p . (2.2)»mp(g 2'Lp(xi). . . ia(x )7Cti. . .g &
—

&)

The Feynman amplitude of a given state C is defined by

(2.3)

where T is Wick s time-ordering symbol and 0 is the
vacuum state. ia(x) is the field operator of a neutral
spinless field in the Heisenberg representation.

By combining (2.2) and (2.3) we get

= Q (0, q(xi)C»i) (0, p(x )e~„). (2.8)
perm.

Since Cg~+)=C~& ) for a stable single-particle state b,
we need not write the superscript (+) or (—).

(2) When P consists of m elementary particles and of
a composite particle 8 satisfying

which serves as the basic formula in the derivation of
the S matrix. In order to derive the explicit form of the
S matrix, it is necessary to introduce the asymptotic
forms of both sides of the above equation. The asymp-
totic form of the Feynman amplitude is obtained by
letting the particles propagate to the remote future and
then bringing them back to the present after switching
oG the interaction between dressed particles. In general,
there can occur various kinds of final states as a result
of the creation and destruction of particles in the course
of collision processes, and in order to derive the asymp-
totic form of a Feynman amplitude it is necessary to
specify the constituents in the final state. For example,
in neutron-deuteron collisions at low energies, there are
two possible final states, a state consisting of a neutron
and a deuteron and the other consisting of two neutrons
and a proton, and we have to evaluate the asymptotic
forms separately for these two components.

We denote the asymptotic form of the Feynman

then we choose N=nz+2. In this case we get

» (»L (*) '(.-")7C '-')

= Q (0, ia(x,)Ci,) (0, q (x„)Ct,„)
perm.

(2 9)

The generalization of the above formulas to more
general cases is clear.

If we choose m smaller than those given above, both
sides of Eq. (2.7) vanish. If on the contrary we choose
e greater than those given above, both sides survive
but it leads to an unnecessary complication. For the
details on this point we refer to the discussions in Sec. 4.

It is worthwhile to notice that the asymptotic forms
satisfy the Klein-Gordon equation with respect to the
elementary-particle coordinates and the Bethe-Salpeter
equation with respect to the composite-particle co-
ordinates. This property shows that the self-inter-
actions, like the nuclear force holding a composite
particle together, are not switched o6 in the asymptotic
form.
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Our next task is to hnd out the procedure for evaluat-
ing the asymptotic form of the Feynman amplitude for
an outgoing wave state C &+). To begin with, we shall
6rst rewrite (2.7) in the following form:

lim(t')(0, TLy(xg) (p(x.)jC.(+))

Q(t)) lim~(0, TL(p(x)) (p(x„))C()( ))Ss . (2.10)

In order to evaluate the left-hand side of the above
equation, we may use the graphical method. The ex-
pression on the left-hand side represents in terms of
Feynman graphs the amplitude for a class of histories
in which the wave packets a(, a2, , a( (o.'=a~ . a~)
collide and then the collision products are annihilated
atpointsx~, -, x .

Let us hrst consider the case in which the component
(P) consists of elementary particles alone and choose
e=m. Choose arbitrarily one point from x&, ~ ~, x„, say
x~, and trace back the graph starting from x~. Then
there are three possible cases.

In the first case, the line ending at x~ will begin at
one of the incident particles, say at a&, without being
connected with any other of the x's and e's. Then the
line connecting x& with uj clearly represents a self-
energy type graph and the Feynman amplitude corre-
sponding to this graph can be factored to give

(0, y(x()C'a()Xfunction of x2& ~ ~ ~, x„.

Since one can factor the operation limit') as

lim(~) =g lim'",
a=1 g'g ~ (e

we have only to establish the operation lim&b& for an
elementary-particle component b. In the present case
one may write

to +~ we may drop the T symbol, and because of the
destructive interference among continuous states we
have to retain only the discrete levels in the summation
appearing in the right-hand side of (2.12). This drop-
ping of continuum intermediate states is also justified
by the requirement that the asymptotic form should
satisfy the Klein-Gordon equation with respect to the
coordinates xi.

In the third case, the x& may be connected in different
ways from what we gave above. Generally they do not
contribute to the asymptotic forms because of the con-
servation of energy and momentum.

(2) Next let us consider a case in which a composite
particle 8 participates in the hnal state. By an argument
similar to that given in the previous case, one can derive
the following relations:

lim(') (0, Tf(p(») (p(x2)]Cg)
(Xl XQ) ~ (O

=(0, TL(p(x() p(x2) jC~), (2.13)

lim(~) (0, TL p(xg) p(x2) (p(x(') y(x2') )0)
(X1,Xg)

=Z(~)(0, Tl:(p(») v (»)3C'~)

X(C~, TL(p(x, ') y(x, ')$0). (2.14)

These relations have already been derived and utilized
in previous papers. 4 The generalization of the above
method to other cases is clear.

The above rules are general enough to calculate the
asymptotic form of an arbitrary Feynman amplitude.
However, there is one thing about which one has to be
careful. The operation lim&&) is expressed by the product
of lim&b) operations, and in order to get a unique result
the latter operations should be commutative with each
other. This is, however, not the case in general, and a
simple example is given by

lim(.')(0, q (x)C,)=(0, q (x)C,). (2.11)
lim(') lim(')(0, TLq (x,) p(x2))0)

Since the interaction of an elementary particle with its
self-field should be retained, there is no difference be-
tween the true Feynman amplitude and its asymptotic
form.

In the second case the line originating from x~ will be
connected to more than one of the a's and at least one
other of the x's, and this graph generally involves a
self-energy part starting from x& and ending at x&'.

Therefore the corresponding Feynman amplitude will
involve a factor (0, TLq (x~) y(x~'))0) representing free
propagation from x~' to x» after su8ering a true inter-
action with other particles. In order to get the asymp-
totic form in this case we shall refer to the following
formula:

lim(')(0, TLq (x() q (xg'))0)
Xl~ oo

=Z(s)(0 (p(»)C'b)(C'( v(»')0). (2 12)

This formula is derived as follows. First, letting lj tend

In order to overcome this difhculty, one has to define
the Feynman amplitude after subtracting such dis-
connected parts from the T product of held operators. '
For this purpose we redehne the Feynman amplitude
in terms of the normal product of held operators,
namely by

(0, cVL(p(xg). . .p(x ))C). (2.15)

Then the operation lim'I') is unique when applied to the
new Feynman amplitude.

For the sake of later convenience we shall give the

4K. Nishijima, Progr. Theoret. Phys. Japan 10, 549 (1953};
12, 279 (1954); 13, 305 I,'1955}.

=P((,)(0, p(x2)C(,)(C(„q (xy)0),

lim(~) lim( )(0, TL(p(x() (p(x2))0)
X2~ (O Xl ~ cO

=Z(~)(0 (p(»)C'»(C'» ( (»)0).
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definition of the normal product. ' Let Q(x) be a c- Hence we get from (2.12) and (2.14)
number source and define the functional V by

U= T exp i —(dx) q (x)Q(x),
lim&'i(0, TLq (x)(p(y) jQ)= (dx')6&+'(x —x': nz)

(2.16)

XE.-(0, TE+(x') p(y)30), (2.21a)
where (dx) —=d'x. Then the T product of field operators
is given by

Iil (p x g (p x 2 (p yi 'p

U
T[q (xi) . .

q (x.)j=i" . (2.17)
-t'Q(») ~Q(x-) a=0

Next put W= U/(0, UQ); then the N product is given by

lVPy(xi) p(x )5=i" . (2.18)
.6Q(xi) 5Q(x„) q 0

Thus the S matrix is uniquely determined by

lim«&(0, Efq(xi) . .q(x„)jC &+&)

=P(p) limP(0, Efp(xi) ~p(x„)jC pi
—

&)Sp . (2.19)

In previous papers' the applications of the above rules
to the Bethe-Salpeter equations were discussed in de-
tail and in this paper we do not enter into this question.

In the case of the Bethe-Salpeter approach the above
rules were quite useful, but this is no longer the case for
the general description of 6eld theories. In order to
apply formulas like (2.12) and (2.14), one has to factor
the Green's functions from the Feynman amplitude,
but this is generally not an easy task. Therefore in
what follows we shall improve the rules so that one can
apply them without factorization of the Feynman
amplitudes. For this purpose the following formulas'
are quite useful:

~ (dx') a &+& (x—x': m) E;"(0,TLp(x') p(y) $0)

=P(t,)(0 q (x)C'b)(4'&, (p(y)0), (2.20a)

XE. «, TLv(x'+lk) ~(x' —l&) ~(yi) ~(y )30)

=Z.i(0, TE~(*+-:~)~(*—!~)j~.)
X(C'&, T(q (yi) q (y2))0), (2.20b)

where the normalization of the Feynman amplitudes for
single particle states is given by

Z&.&(0, ~(*)~)(~,~(y)0)='~&" ( -y: )

=(2 ) ' "(dP) *"' "'e(Po)~(P'+ ').

' E. Freese, Nuovo cimento 11, 312 (1954};P. Kristensen, Kgl.
Danske Videnskab. Selskab, Mat. -fys. Medd. 28, No. 12 (1954);
Z. Maki, Progr. Theoret. Phys. Japan 15, 237 (1956}.' K. Nishijima, Progr. Theoret. Phys. Japan 17, 765 (1957}.

~(dx')6&+i(x —x': M)E. ~

X(0, Tt &(x'+2/) &(x'—kk) q (yi) q (y2) jQ). (2.21b)

By making use of these formulas, one can express the
asymptotic operation in a compact form. However, the
above operation is not a complete substitute for the
lim't'& operation, since we get

)t(dx')6&+&(x —x'. m)E, .~(0, p(x')Ci, )=0,

as a result of the Klein-Gordon equation for single-
particle states, whereas the "lim" operation gives, when
applied to single-particle Feynman amplitudes,

lim&~'(0, p(x)Ct, )=(0, q(x)Ct, ).

Hence one can substitute the above operation for lim
only for contributions from such Feynman graphs that
do not involve freely propagating particles. It is also
worth noticing that the new operation always gives a
unique result when applied to T-product Feynman
amplitudes in contradistinction to the "lim" operations,
since the nonunique parts vanish by this operation.

In this way we get the following expression for the S
matrix:

(dxi ) (dx2 ) ' + (xi xi ~ +)~ (x2 x2 ~ +) ' '

XE 1™E*2' (0, Tt p(»') y(x2') ]e'.'+')

=P&piSp 'Fp(xi, x2, ), (2.22a)
where

Fp(xi, x2 )
= Z (0, v(»)c'»)(0, p(x2)@2). . .. (2.22b)

perm.

In the above formula we considered only elementary
particles in the Anal state, but composite particles can
also be included without difhculty. Sp is obtained from
Sp by dropping the contributions from graphs involv-
ing freely propagating particles, either elementary or
composite. The relation between S and S' is given by

Sp '=P&, (—1)"Spp,, ~ or Sp =P&,Sp~, ~~'. (2.23)

The division of a state by a single-particle state is
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de6ned generally by

4a] ~ ~ a~/b + =P 8((b(b)C'a] ~ ~ a( ia(+] ~ ~ ~ a~ +,

and

For (2,25b) one cannot apply such a simple division,
but instead one needs a special device. Inserting the
relation

6&+)(s:M)
Spy„~p, = (C'pub( )) C'~)& &+)).

As an example, for the process P+P —+ d+z.+, one has

(dx') («')6'+& (x—x': M) 6&+& (s—s': y)
J

—e'~'=
2(2w)» P,

into (2.25b), we get

Q e'"s' (p'+M'=0)
2(2m)' (»

XE ™E.'(Q, TL4.( '+lg)4, (*'——,'t) (")]C., +»

= Z (Q, TLO.(+!~)C.( —:~)3.)
(d). (7 +)

X(Q, q (s)C.+)S(P+P~ (f+'&r+). (2.24)

The formula (2.22a) refers to a special class of matrix
elements, but one can readily generalize this formula to
a wider class of matrix elements. For instance, we get

f
' («')6&+)(s—s'. m)E (Cp& & T(x x„s')C &+&)

=Z(b)(Q, ( (s)C'b)((C'pb' ' T(x *-)C'-'+')

eius ~ z (dz&)e &ps z'E,—M
2(2z.)'

X(C p&-) T(x," x„s'y-', t s' —-,'P)C. &+))

=(Q, T(s+ ,'P, s ,'P-)C B)—j(C—pB& ', T(x . . x )C' (+')

—(C p( &, T(xi x )C (»&+))). (2.25b')

From the translational invariance of the theory, the
z-dependence of the Feynman amplitude for the bound
state 8 is given by

«, T(+l~, -l~)C.)= '"J.(~).
—(C p' ' T(xi x~)C'~~b'+')), (2 25a)

Now choose a function fi&(s,$) of the form

where f& is an elementary particle and T(xi, ~ ~,x„) is
the abbreviation of TL9&(xi) ~ y(x„)j. This formula
was erst derived by LSZ' using the asymptotic condi-
tion. When 8 is a composite particle, we get

which is quite arbitrary except for the normalization
condition

(«')6&+)(z—s'M)E ~

X(Cp' ', T(xi x., s'+-,'P, s' ——',P)C.'+')

=E(e)(Q, T(s+sk, z sk)C's)—

X((C'pB& ), T(xi ~ x„)C &+))

(Cp& &, T(xi x„)C p&&+))), (2.25b)

(dk)a&&(k)~& (5) 1/2 (2'&r)

then integrate (2.25b') with respect to $ after multiply-
ing by fs(z, $) on both sides. Then one finds

(Cp»& &, T(x& x )C &+&)—(Cp& & T(xi x„)C I»&+))

= —s ~(«) (&E)f~(s,k)E*"

where M is the rest mass of B. The proof of these
formulas will be given in Appendix A.

When some of the factor states a~, a2, ~ are identi-
cal, C a&a2. "zs is generally not properly normalized, but
the formula (2.25) holds for the unnormalized state
vector. Now making use of the formula

X(C p( ', T(xi x„,z+-', $, s——,'t)C &+&), (2.27b)

for an arbitrary function fs(s, $) which satisfies

f.( r)«T(+-:& -!&)C.)(d~)=li2(2 )'. (2.28)

sg(+)(s s' ~) =+&»(Q &(s)Cb)(Cb, &(s')Q), (2.26) The recursion formula of the form (2.27b) has already
been discussed before, ' and it is has been proved that
the normalization condition (2.28) is an inevitable con-
sequence of Eq. (2;27b). What is essentially new in'the
present paper is the recognition that the function
fe(s,$) can be quite arbitrary except for the normaliza-
tion condition.

Corresponding to (2.28) we introduce another func-
XE. (C'p& '; T(xi 'x„s)C &+&). (2.27a) tion fe(s, g) satisfying

one can simplify (2.25a) by division to obtain

(Cpb&
—

&, T(x, x )C &+&)—(Cp& & T(xi x )C ib&+))

= —' "(«)(C', (p( )Q)

Lehmann, Symanzik, and Zimmermann, Nuovo cimento j., f
205 (1955); G. F. Chew and F. E. Low, Phys. Rev. 101, 1570, fs(s, $)(@'a, T(s+s$, s—sp)Q)(df)=1/2(2w) . (2.29)
1579 (1956).
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= —i (dz)(4b, &o(z)Q)

If the CPTtheoremholds, wegetforspinless composite (4'ob& ', T(xi x»)Cb &+')—(4'p& ', T(xi x )4 &b&+))

particle 8 the relation

f~(z 5) =f~( z—5). (2.30)

I'„0=0. (3.1)

I et a single particle state u, either elementary or com-
posite, satisfy the eigenvalue equation

&.4.= (p.).4.;

then a general state @ay ~ ~ a t+& satisfies

3. SOME THEOREMS ON THE
RECURSION FORMULAS

The main results obtained in the previous section
are the recursion formulas (2.27a) and (2.27b) which
correspond to the asymptotic conditions in the LSZ
theory. ' In connection with the problem of meson-
nucleon scattering, these formulas were also utilized

by Chew and Low. ' In the previous section these for-
mulas were derived in an intuitive manner, and it
seems to be worth while to examine their self-consist-
ency. Without loss of generality we consider only a
neutral spinless field. We shall give here some basic
assumptions which form the basis of the following
discussions.

Assumptioe I.—The theory is invariant under the
proper inhomogeneous Lorentz transformations.

Hence we may introduce the energy-momentum
four-vector P„. The vacuum state 0 satisfies the
equation

XE,(4s' ', T(xi .*.z)C. '+'). (3.6b)

Equation (3.6b) is the same as (2.27a), and (3.6a) is
derived in a similar way to (3.6b) but by making use
of the rules for obtaining the asymptotic forms for
]—+ —~. For a composite particle 8, we get similar
formulas. In the formula corresponding to (3.6a) one
has to use fo, whereas in the one corresponding to
(3:6b) one needs fr) In t.he latter case the precise form
has been given by (2.27b), and so we do not explicitly
write them down.

Next, applying complex conjugation to (3.6a), one
finds

(4 b&+), T(xi . .x„)Cp& ))—(4 &+), T(xi .x„)Coy& ')

=i~ (dy)(4'b, ( (y)12)

XE„(4 &+), T(xi. . x„z)Ct)&
—'), (3.7)

and a similar one from (3.6b). T is the antichronological
ordering operator. We shall call (3.6) and (3.7) the
recursion formulas for T products. In what follows we
introduce recursion formulas for retarded products and
for advanced products. The retarded or E-product is
defined by'

From the completeness of the set (4 &+)} or (4 & )}, the
positive energy condition is always satisfied.

Assumption II.—The local commutativity condition XL' ' 'CLv (x) (o(xi)l(o(x&)3 . (o(x-)l, (3 g)

p@ (+)—(p y gp ) @ (+) (33) ~( ' ) ~Le ( )' p(*) p( )'3'
= P (-~)-8(x-x,)8(x,-x,) 8(x,-x„)

L&o(x), p(y) 1=0 for (x—y)'&0 (3.4)

LO, p (x)j=0 (3.5)

at any space-time point x, then 0 is a c-number. We
shall call this property the irreducibility condition.

For later convenience we shall recapitulate the
asymptotic conditions.

is satisfied.
AssurrbPtioe III.—The asymptotic conditions are

satisfied. Sy asymptotic conditions we mean the re-
cursion formulas (2.27).

Assur)bPtioe IV.—If an operator 0 satisfies

&o)b (x)= U 'TPV p (x)j, —(3.9)

where U is the functional defined by (2.16). Then
boib(x) is the generating functional of J(!-products as
given by

8"oo)b(x)
E(x:xi x.)=-

.&Q(xi) 8Q(x.) . q=o
(3.10)

Prom (2.17), (3.9), and (3.10) one can readily derive

where 8(x)=1 for xp)0, 8(x)=-,' for xp ——0 and 8(x)=0
for xo(0, and the summation should be taken over all
possible permutations of x~, x2, , x„.. We introduce a
functional &(~b)(x) by

(Ct(& ) T(xi .x )4 b&+))—(Cptb( ' T(x . x )4 &+)) E(x:xi . .x )=
comb. (as}

( b)»( 1)b

= —i ~(dy)(~t, ( (y)4'b) XT(xi. . -xb)T(xxb+i. . .x„). (3.11)

8 See reference 6. Also see I.ehmann, Symanzik, and Zimmer-

/+ ( } p / $ ' (+)Q j3 $ mann, Nuovo cimento 6, 319 (j957); Glaser, Lehmann, and
o( t) ~ (*i ' ' »y)» I~ ( ~ ) Zimmermann, 'Nnovo er'mento 6, 1122 (1957).
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Hence one gets

(C'p&+&, R(x: xz . .x„y)e' &+&)=g P (—i) "+'(—1)b
comb.

X[(e'p'+', T(xi xb)e', & &)

X(e'„&—
&, T(xx+i. .x„y)e &+&)

—(e'p"& T(». . »y)c'v& ')

x(c'&, & ', T(xxb„i x„)c &+&)7.

Now, applying the operation J'(&&ty)(Q, q (y)e») E„on
both sides of the above equation and making use of
(3.6) and (3.7), one 6nds

~ (dy)(fl z (y)e'»E.(e'p"', R(*:* . -* y) e '+')

=(C'p'+', R(x: x& x„)e.b&+&)

—(ep(b'+', R(x: x& . *„)C.&+'), (3.12a)

and similarly

(ds)(e b, b (s)n)E,(e p&+&, R(*:x, "*„.)e.&+&)

=(Cpb&+&, R(x: x& x„)C &+&)

—(C p&+& R(x: x& x )C„)b&+&). (3.12b)

We call these the recursion formulas for R-products.
One can also easily derive similar formulas for com-
posite particles.

The advanced or 3-product is de6ned by

A[b (x): v(») & (x.)7
= Q (—i)"8(xi—x)8(x,—x&) . .&I&(x„—x &)

perm.

XL . L[ (*), (*)7 (*)7" (*-)7 (313)

In an analogous way to the case of R-products, one can
derive the recursion formulas for A-products.

(Cp' ', A(x:xz x„)C& b& &)

—(C pub& &, A (x:» . .x„)C ' &)

= —
) (dy)(fl, z (y)e'b)

XE„(Cp&-& A(x:x, . x„y)e &+&), (3.14a)

(C'pb& &, A(x: x, . x„)e.&-&)

—(C p& ', A(x: xz .x„)e.ib&
—

&)

(&Es)(C b, q (s)Q)

XE,(ep& &, A(x:x& x s)e & '). (3.14b)

It must be noticed that (3.12b) and (3.14b) are ob-
tained by applying complex conjugation to (3.12a) and
(3.14a). This is in general the case even when composite
particles participate in the theory, but this property
in turn imposes a restriction on the possible choice of
the function fs(s, g). Indeed the recursion formulas
(3.12) and (3.14) cannot be proved for an arbitrary
choice of the function fs(s, P), but one has to choose a
function f»(s, $) such that it satisfies

f (s, $)=f *(s,()
Because of the local commutativity condition the above
relation can be satis6ed if we assume a function of the
following type;

f»(s, $) =0 for P(0.
Hence we arrive at the following theorem:

Theorem I.—The recursion formulas for 8- and A-
products follow from those for T-products if one chooses
a function fs(z, P) such that it vanishes for time-like g.

The theorem that states the inverse of Theorem I is
as follows:

Theorem II.—The recursion formulas for the T-
products follow from those for R- and A-products
provided that the irreducibility condition is satis6ed.
In this case too, the function fs(s, g) should be chosen
under the condition given in Theorem I.

The proof of this theorem is elementary but rather
tedious, and is given in Appendix B.

Whenever we are concerned with the relations be-
tween different kinds of products, we have to choose a
special type of fs(s,$). We shall call this special choice
the space-like gauge, since the function fs(z, () does not
vanish only for space-like $.

Next we shall examine the self-consistency of the
recursion formulas, and we begin with the following
theorem:

Theorem' III.—If the recursion formulas for E-
products hold, then the vacuum expectation values of
the R-products of field operators should satisfy the
following set of integral equations:

z'+" &

*-)- (y:**' *.)+' Z Z rr (d,)(d,)rr (dX;)(~~)(dS)(d.;)
comb. (s') l, tn $!~!

X[E & E bExz K~„r(x:xi xbN& I&, X,+-,'(z, Xz——,'(&, , X +2), X —2t„)
X&'+'(Ni —

z&&)
. . 6&+&(zzg—&&g)A&+&(Xi—I'z. tiz») -6&+&(X„—I"„:g„z&„)

XE~z . E~&Ei&. . Er~r(y: xb+z. x„ztz z&), I'z+zz&i, , I'~+zz&~, I'~—
zzI )—(x&—y)7=0, (3 15)
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where r(x:xi. x„)=(0,R(x:xi. x„)0),and the Klein-
Gordon operators E„and E, refer to the elementary
particle and ICx and E~ refer to the composite particle.
The function 6&+&(I—v) also refers to the elementary
particle, and 6&+&(X—F: P) is defined by

&~&+&(X—I"Sn) =Z f (&,k)f *(I'~)
(&)

The boundary conditions to be imposed upon the
above equations are

(1) r(x: xi x„) is symmetric in xi, , x„.
(2) r(x: xi x„) is a real Lorentz-invariant function.
(3) r(x: xi. . x„)=0, if x&x; for any x;.

If there are no bound states, the equations are reduced
into much simpler ones.

r(x: yx, x„)—r(y: xxi. . .x„)

i' ~

+' Z Z-rr I'(d-,)(d;)
comb. l $!

(Ca& "~&+&,R(x: xi. . x„)0)

(dsi) (ds )Ezi Ez

X(Q, R(x:x, "x„s, .s„)0)

X(+a&, q(si)0) (+~„, p(s.„)0). (3.18b)

Inserting the above expressions into the vacuum-vacuum
matrix element of (3.17a), one arrives at (3.15). The
extension of (3.18) to composite particles is clear.

What is important in the present formulation is the
inverse of Theorem III.

Theorerrb IV.—If a set of functions {r(x:xi x„))
satisfying Eqs. (3.15) as well as the three boundary
conditions be given, then one can construct a 6eld
operator q (x) so as to satisfy the recursion formulas
for R-products. We shall again only brieQy sketch the
proof. Introduce the following notations:

D,'= ) (ds)(0, p(s)C'b)E. , D.'= (ds)(C„p(s)0)E„

XLEu, . Keir(x:xi. . xbui Ni)

XA + (ei—vi) 6&+&(ei—vi)Ezi Ezir

D ts= I (ds)(dP) f»(s, ()K,~,

X(y: xb+, .x„vi .vi) —(m~y) j=0. (3.16) D t.
—— (ds)(dg) f»*(s,()E

Since this theorem has been proved for the simpler case
d f(3.16), we shall briefly sketch the proof. We start from

the recursion formula: D~ =D~~ D~ D&= D~~ ~ D~

R(x:yxi x„)—R(y:xxi . x„)

+i Q LR(x:xi xb), R(y:xb+i x„)]=0,
comb.

R(x:yxi x„)=0 if x&y. (3.17b)

(0, R(x: xi .x„)C.i".~&+&)

(dyi) . . (dy )Kiji Kv„

X(0, R(x: xi x„yi y )0)
n

X(0, & (y,)C'.i) "(0, «(y„)C~), (3.18a)

This is equivalent to the de6nition of the R-product
provided that it is symmetric in the variables standing
to the right of the colon. Take the vacuum-vacuum
matrix element of (3.17a); then the second term
involves a summation over all possible outgoing-
wave stationary states {C &+&). By the repeated use of
the recursion formulas, one can express the matrix
elemerit of an R-product between vacuum and an out-
going wave state C (+~ in terms of the vacuum expecta-
tion value of the R-product.

when P= bi f& . Unless there might be some confusion
we shall spare the subscript s or s, P. Then with this
notation, Eq. (3.18) assumes the form

(Q, R(x:x," x„)C.&+&)=D-(Q, R(x:x, " x., )0).

By the repeated use of the recursion formula, we get

(4s&+&, «(x)C &+&)=P)D ~"De~'(0, R(x: )0). (3.19)

Now when Eqs. (3.15) are satisfied by {r(x:xi .x„)),
we shall deline the field operator y(x) through

(Cp&+&, S (x)C &+&)=PbD~&"D«'r(x: -. ); (3.20)

then with the help of mathematical induction one can
prove in a straightforward manner that the recursion
formulas for R-products are satis6ed. In this connection
we shall notice that the theorem is true independently
of the form of the function fi&(s,() provided that the
normalization condition is satis6ed. As for the details
on this point we shall refer to Sec. 4.

Thus the self-consistency of the recursion formulas is
reduced to the existence of the solution of the integral
equations (3.15).

Theorem' V.—The recursion formulas for A-products
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are equivalent to those for R-products provided that
the CPT theorem holds.

Proof: As has been proved in the previous two theo-
rems, the recursion formulas for R-products are equiva-
lent to the integral equations (3.15). Similarly one can
prove the equivalence between the recursion formulas
for A-products and corresponding integral equations for
the functions {a(x:xq x„)}={(n,A(x: x~ x„)n)}.
It is important that the functions u satisfy exactly the
same equations and boundary conditions (1) and (2).
The third boundary condition turns out to be

a(x:x, . x„)=0 if x)x, for any x;.

Now the CPT theorem in Jost form is given by

(n, q(xg) S(x )n)=(n, p( —x„) p(—xg)n), (3.21)

from which the following relation is derived:

u(x: x, x ) = (—1)"r(—x: —xi, , —x ). (3.22)

One can directly check that if the functions
{r(x:x& x„)} satisfy the integral equations (3.15),
then so do the functions {(—1)"r(—x: —xq —x„)}.
It is necessary, however, to choose the space-like gauge
for f~(x,P) so that one can utilize

A~+&(X—Y: $g)=A&+'(X—F:g(),

which results from the choice that g~($)=f~(0,$)
=e '»'f~(s, $) is a real even function of $. As has
been proved by Jost, ' (3.21) follows from the assump-
tions I, II, and the positive energy condition.

Hence, combining Theorems I, II, and V, we get:

Theorem VI.—Vnder the assumptions I, II, and IV
all three kinds of recursion formulas for T-, R-, and
A- products are equivalent to each other, so that Kqs.
(3.15) guarantee the existence of two sets {C&+&}and
{e& &} and consequently the existence of a unitary S
matrix.

4. DEVIATION OF THE S MATRIX

The explicit form of the S matrix follows from the
recursion formulas for T-products. Before entering into
the question how one can express the S matrix we shall

erst discuss related problems. We shall 6rst discuss the
arbitrariness of the function f~(s,P), and for this pur-

pose we generalize Eqs. (2.20).
Let a be a stable particle either elementary or com-

posite; then generally we get

t

(ds')6&+&(s—s'. M,)K;

X(n, T(z'+$x, , z'+g„, y& y„)n)

=Z&.~«, T(+~, "'+~-)e.)

Or, taking a special Fourier component, one can derive

e+'&" ((dz')e+'& "K"
2(2z)'

X(n, T(z'+(~ s'+t y~. y )n)

=(n, T(s+t„s+~.)e.)(e., T(y, y.)n)

for the upper sign,

=(n, T(y, y„)e.)(C., T(s+g„. s+g„)n)

for the lower sign. (4.1')

The recursion formula for the composite particle 8 is
given by

(es& &, T(x~ . x„)C q'+&) —(ep/g' &, T(x~. x„)e &+&)

= —i ~(ds)(dk)f~(»k)K*

X(C p(
—', T(xx .x„,z+-', Q, s——,'$)e (+'). (4.2)

Now we shall prove the arbitrariness of the function

fs, and without loss of generality we shall show this
arbitrariness in the case C p& '=Q.

Take arbitrarily an f~' that satisfies the normaliza-
tion condition

~(dk)f '(,$)(e, T(+l$, —lk)n)=1/2(2 )';

then what we have to prove is the relation

(d )(dk)f '(»5)K"

X(n, T(x, x., s+-,'P, s——,'P)e.&+&)

=(n, T(xg. x„)e ~&+i).

Kith the help of the recursion formula and the
notation D introduced in Sec. 3, we have

(n, T(x, "x„,sy-', P, s—-', P)e.)
= (—i)-D-(n, T(x, "x„,s+-', g, s——',p, y, . y.)n),

where the y's are the arguments upon which D" oper-
ates. Now applying J'(ds) (dg) fs'(s, ()K,~ to the above
equation, we have with the help of (4.1')

(—).D'( —) (d )(«)f '(,r)K*"

X(n, T(xx x„,s+-', P, s —-,'P, ys ~ .y )n)
t'= (—i) D'

I
2(2~)' (dt)f~'(z ()

where
X(e-, T(y y.)n), (4.1)

X(eg, T(sy~g(, s—2$)n) ~
(n, T(xy x„yy y )es)

Q g;=o.
' R. Jost, Helv. Phys. Acta 30, 40 (1957).

= (—i) D (n, T(x~. . x y~ y )ea)
=(n, T(x&. x„)e p&+').
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Thus the arbitrariness of the function fn is proved.
Eventually fn can also be an operator as we shall discuss
in the next section. The arbitrariness of fs can also be
proved in the case of R- and A-products with the aid of
relations like

Ol

(«')6(+) (z—s'. M.)Ks"

X(Q, R(x:s'+gr, ., s'+p„, yi . y„)Q)

=i Q( )(Q, T(s+b, , s+$„)C',&

x(c., R(*:y," y.)Q),

I («')6(+) (s' —z: M.)Ks"

X(Q, R(x:z'+(r, ., s'+.-, yi y.)Q)

= (—&) Z (.)(Q R(z: yr ' ' ' y )~"&

x(c., T(.+g„,.+g )Q&.

for two fields without bound states can be transformed
into the integral equations (3.15) for a single 6eld with
bound states. What is interesting is the fact that the
inverse is also true, riamely a composite particle can
always be described as the quantum of a new field. The
problem is to prove (4.3) starting from (4.4), and since
we have to prove it also for other products we shall
choose the space-like gauge for the function fn. Hence
we have

f.(s,()=e"""g.(5),

where g, ($) is a real even function of g and survives
only for space-like $. Now in order to carry out this
program we take a special form of g, ($):

g.(~)=~(~)G.R),
where G, ($) is a I orentz-invariant function of g and
p . Then the normalization condition. turns out to be

(dk)~R)G. u)(+., Tl:~I (lk)~I (—lh)]Q&

=1' G.(t)(C'., TI:4(lk)~I (—lk)7Q&= Il2(2 )'.
Next let us consider two interacting neutral spinless

fields (p and f. Suppose that we have

(Q, TI.4(*)II(y)lc.&&0,

where C, represents a one q-quantum state. The usual
recursion formula for the q-field is given by

(g p(+) T(. . .)@ (+)) (g&p/ (—) T(. . .)g (+))

i (ds)(Q—, v (s)4.)Kz

X(Cp(-), TL" y(s)3.(+)), (4.3)

but in this case one can also derive

((pip(
—) T(. . .)I)I (+)) (@Ip/ (—) T(. . .)cy (+))

=—» ~(«)(dk)f. (s,t)K*

X(c '-', T[ .4(+lg)4( lg)]c'. '+'), (4—4)

provided that the normalization condition is satisfied,
1.e.)

f
~

(«)f.(,&)

X(~., TL4(»+le)4(» —l5)lQ&=1/2(2~)' (43)

Equation (4.4) can be proved using exactly the same
technique as that used in the proof of the arbitrariness
of fn. The recursion formula (4.4) shows that within
the framework of our formulation the p-field quantum
can be treated also as a composite particle consisting of
f-6eld quanta. Therefore the integral equations (3.16)

The function G, ($) should be so chosen as to cancel the
singularity of (C„TLf (—', $)P(—2rp))Q& at /=0, and the
limit should be taken for space-like P in conformity
with the space-like gauge. A possible choice of G, (P) is

G.(~)= e(e)L ( )'(~., B(l~)~(—'~)3Q&j-' (4 )

If we insert this function G, ($) into (4.4), we get (4.3)
again with the help of (4.1'), provided that p(z) is
dined by

&La(*+!~)s(*-l~)j
q (x) = lim , (4.7)

(2(2~)')'* ' ' (~'. TL4(2()~I (—»t)3Q&

where again the vector t whould approach to zero from
a space-like direction. We took here the normal product
of 6eld operators in accordance with the relation
(Q, p(x)Q&=0 required from the recursion formul'a. The
independence of the field operator q (x) on the direction
p, is guaranteed if the limiting value (4.7) is inde-
pendent of the direction in which P approaches to zero.
Since we choose the space-like gauge, the same argu-
ment applies to E- and A-products. Similar results have
been obtained also by Zimmermann" and by Haag. '0

Irreducible Set of Fields

As shown above, there is no essential diGerence be-
tween elementary and composite particles, and it is to
some extent a matter of convention to call a particle
elementary or composite. "Therefore we shall look for
a substitute for the concept of elementary particles.

"W. Zimmermann (private communication); R. Haag (private
communication).

"The author is indebted to Professor W. Heisenberg for valu-
able discussions on this point.
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Let us consider a set of fields (pi, y2, . , p„), then
some of them might be treated as composite in the
sense mentioned above. Now choose a subset (p„p~, )
from the whole set, and if the equation

LO, q.(x)]=jO, pg(x)]= =0 (4.8)

which holds at any space-time point x requires that 0
be a c-number, we shall call this subset an irreducible
set. In general there are many ways to select an irre-
ducible set. For instance, a set consisting of an irre-
ducible set and some other fields is also an irreducible
set. If the whole set is divided into two subsets S~ and
S&, one can regard the quanta belonging to S& as ele-
mentary and those belonging to S2 as composite only
when Sj is an irreducible set, since otherwise Assump-
tion IV of our formulation is violated. For example,
take the pion field y and the nucleon field f. If there is
no interaction between them, the only irreducible set is

(p,P), while if there is an interaction of the Yukawa
type the possible irreducible sets are (p,P) and Q). In
the former case both the pion and the nucleon should
be regarded as elementary, while in the latter case the
pion might be regarded as composite.

Quantization

Finally it must be noticed that our theory is quantized
through the recursion formulas which give relations
between fields and particles. It is not yet clear if our
quantization procedure leads to the usual one, namely

Lp(x), p(y)]= c-number (4 9)

for equal time.
Now we are in a position to write down the explicit

form of the S matrix. By the repeated use of the re-

Field Equations

In our formulation the equation of motion is given by
(3.15), and once the field operators are decided on, one
might hope to obtain the field equations of the usual
type. It is, however, not clear if it is always possible,
since local field equations involve products of field
operators at the same space-time point and hence
bring about divergent constants in the equations. In
this respect our equations involving no divergent con-
stant seem to have a great advantage over the field
equations. The defect of our approach consists in the
lack of knowledge of the detailed nature of interactions,
but the author hopes that it might be overcome to
some extent. Indeed it might be possible, at least in
special cases, to determine the theory almost uniquely
by imposing some additional restrictions upon the
integral equations. For instance, in quantum electro-
dynamics it might su%ce to assume the nonexistence
of bound states and gauge invariance, as suggested by
perturbation theory. '

cursion formulas for T-products we get

or
Sp =Qg( —i) (—i)~D i"D&i"(0, T( . .)0), (4.10)

Sp =Pi(—i)@"D@"(0,T( )C gi&+&) (4.11a)

=Z.(-')-I"D-I"(~.~.i-&, T(») «»»
In (4.11a) and (4.11b) the T-products can be replaced
by the normal products to achieve the same results as
shown in Appendix B.The arguments in the T-product
upon which D and D operate are spared for the sake of
simplicity. The operator D is defined in the proof of
Theorem IV in Sec. 3, and the operator D is not the
same as D but the former is obtained from the latter by
substituting fbi for fg*

In order to prove the unitarity of the S-matrix we
start from the functional equation U~U=1. By dif-
ferentiating this relation with respect to the external
field Q(x), we get

(—~)"(—1)"
comb. (x&)

)& T(x, xl) T(xI+, x„)=0. (4.12)

Apply D D& on the vacuum-vacuum matrix element of
the above equation, then we get with the help of the
recursion formulas for T products the desired relation
S~S=1. The conjugate equation SS~= l follows from
UU~= 1.

S. RELATION TO THE S-MATRIX THEORY
OF BOUND STATES

As we have seen in the previous section the function
or eventually an operator f~ for bound states can be
arbitrary except for the normalization condition. Mak-
ing use of this property it seems to be possible to relate
the S-matrix elements for reactions involving composite
particles to th.ose involving no composite particles. To
illustrate the problem, we discuss the relation between
the following two reactions:

p+p~ n+p+~+,

p+p ~ d+~+.

(5.1)

(5 2)

The answer to this question is that if one knows the
analytic forms of the S-matrix elements of (5.1) and
of the scattering process

(5 3)

one can derive the S-matrix element for (5.2), pro-
vided that these S-matrix elements satisfy certain
analytic properties. Generalizing this statement one
may infer that the S-matrix elements for reactions in-
volving only the quanta of an irreducible set would
determine the entire S matrix.

For the sake of simplicity we shall consider that all
particles participating in (5.1) and (5.2) are spinless.
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S(p+p ~~+p+~') = (—i)' (ds~) (d») (dy)

The S-matrix elements for these reactions are given by where Sz is the S matrix element for (5.5). Of course P
and k are not independent of one another but related
through (5.11).With the help of (5.11) one also writes
(5.12) as

X&C., ~.*(s,)fl)(4 „~„*(")fl)(C., ~.*(y)fl) Sg 4——ic lim(k'+y') S„„(P,k), (5.13)

S(p+p d+ +) = (—)' (d )(d~)(dy)

&+&
where y'= (m —-', M) (m+-', M) =mB, 8 being the bind-
ing energy of the deuteron. This formula shows the
possibility of relating (5.5) to (5.4), and the problem is
reduced to the determination of the normalization con-
stant c in Eq. (5.8). This problem is answered in the

Xf„(s,g)&C., &.*(y)n) K,' K„- following way: we start from the equation

X&fl, TLv-(z+sk) v.(z—2t)s-(y)74'-"') (55)

Now choose such a fq as
~I (dx')e'~'* *'&K ~(Q T/p (x'—-'g)

2(2s)'"

f~(z, k) = a~(z, t)K ~"K*2",

where z&——z+-', $, s2 ——s——,'P, namely

(5.6) X s „(x'+-',f) s „*(y+-',p) s'„*(y—-', p)7&)

= Z &fl, Tl.~.(*—!~)~-(*+l~)7~.")
8PI

~1cj 8~' )18 cj)'
K*i"=

I

——+—
I

—~-', K*2"=
I

———
I
—~'

E2 Bs Bg) E2 Bs Bg)

X&C' ", TL .*(y+-:~) .*(y—lv)7fl), (5 14)

where CP" represents a deuteron state with momentum
P. Next we introduce fz and fz satisfying the normaliza-

and gq is a suitable function, then (5.5) turns out to be

( i) (dz&) («2) (dy)h(z~, z2)

X&4', p*(y)~)K."K*i "K*2 "K;
x&&, T(q. (zi) q. (s2) q. (y)7C'..'+'&. (5.7)

~"(dk) f.(*5)

X(fl TLs.(x—l8)s.(x+2k)7C'~")=1/2(2~)'
(5.15)

This expression is very similar to (5.4) and if we had put 4) & ypl

g.(,")= (~-, ~-*(")fl)(~., ~.*(")fl), (5 8)

X&4'z, T(p *(y+—', p) p„*(y——',p)70)=1 /2( 2r7)'the similarity would have been complete. In order to
interpret (5.8) let us denote the momenta of neutron ~ujtjplyjng (5 14) by f&(x $) snd f&(y ~) and jntegrat
and proton by p„and p» respectively; then they satisfy jng over $ and g we get from (5 15)

p '+m'=p '+m'=0 (5.9)

where nz is the nucleon rest mass. Put

P= p-+p. k= (p- p.)l2—(5.10)

(dx')e'~ &* *'~K; ' (d'() (dg)f~(x, t)

X&fl, TLq, (*'——',P) s'.(*'+-,'t)
then P has to satisfy P'+M'=0, 3II being the rest mass
of the deuteron. Equation (5.9) is expressed in terms
of Pandkby

P'4+k'+ 4440, k P= 0. (5.11)

S~———sc lim (P'+M')S„„(P,k), (5.12)

The second equation shows that k is a space-like vector
and the first equation implies

k-'= (M/2)' —444'(0.

Hence k cannot be a real vector. Assume that the
S-matrix element for (5.4), denoted by S„„(P,k), can
be analytically continued to such a complex value of k
and has a pole at the value of k given by (5.11), then
the relation between (5.4) and (5.7) is given by

X s -*(y+2n) v.*(y—2n)711)f.(y,n) =i/2(2~)',

where we have interchanged the order of integration
between x' and P, q

If fd and fq are of the form (5.6) and (5.8), one
arrives at

(2c)4slim (P'+M')S(P, k) =i/2(2 )'s, (5.16)
P~Pg

4ic's. ' l—im (k—'1y') S(k)= 1,
l&l~&v

(5.17)

from which the normalization constant c is determined.

where S(44+p —& p+e) =e4(P; P~)$(P,k). In the cen--

ter-of-mass system S(P,k) is the function of k alone
and we denote it by S(k), then (5.16) is rewritten as
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Equation (5.17) shows, in agreement with the S-matrix
theory of bound states, that S(k) has a pole at i

k
i

= iy.
Thus the problem is formally answered. In the S-

matrix theory"" the levels of bound states could be
obtained as the poles of the S matrix, but in the present
theory not only the levels of bound states but also the
S-matrix elements of reactions involving composite
particles can be derived. In this sense the present
theory exhibits a possible generalization of the S-matrix
theory of bound states.

In what follows we shall illustrate this method by
assuming the possible form of S„„(P,k) phenomeno-
logically. From now on, we go over to spinor nucleons;
then we have to replace the Klein-Gordon operators
for nucleons by Dirac operators. 6 So far as only non-
relativistic nucleons are concerned, however, the for-.

mulas given above are still useful and we shall deter-
mine the normalization constant c in the nonrelativistic
approximation. In the normalization employed in this
paper the S matrix in the 'S state is given by

production is given by

day 4R q

dQ BE (5.23)

where E is the total energy of the system in the center-
of-mass reference, and q denotes the absolute value of
the three-vector q. Then in order to simplify (5.21) let
us study the kinematics of the system. Let 3f be the
rest mass of the e+p system; then the total four-
momentum of this system is given by

P= [—q, (M'+q')'j

Since k is orthogonal to I', we get

kp= —k q/(M'+q')l

Upon inserting this result into the first equation of
(5.11), it follows that

—(Ms/4)+ nF+ k' (k q)'/—(M'+ q') =0.

m e"'
S(k) =S(k)=-

k 2x
(5.18)

Since the final nucleons are assumed to be nonrela-
tivistic, we make an approximation ko= 0. Then we have

M'= 4(eP+ k'), P()——L4(p)ps+ k')+ q'g&.

j.
k cotb = +-rpk'. ——

8 2
(5.19)

Combining (5.17) and (5.19), we get

where 8 is the phase shift in the 'S state. For simplicity
we dropped the 'D state and retained only the 'S state
to describe the deuteron state. In the eGective-range
theory, "the phase shift 8 is given by

In this approximation the differential cross section is
given by

d'(T„„kr' krkq
IS„„I,

dqod0 B ~o
(5.24)

where k= i ki. k and qp are not independent, but they
are related to one another by

qp= (E'+P' —M')//2E,
f pP

C =2—
8 my

(5.20) which follows from the conservation of energy. M is a
function of k, and we have

4)r' i.dqdP——6 (Pg P~) ispi,» qo~p
(5.22)

where q is the four-momentum of the produced pion and
& is given in terms of the four-momenta p") and p")
of the incident protons by

(p 0)p„(s) p (0)p„(t))s/4jl
—

i
(y(t)g(s) —p(s)/(0) 0—(y(&)Xp(s)) qk

From (5.22) the differential cross section for pion

"W. Heisenberg, Z. Physik 120, 513, 673 (1943); Z. Natur-
forsch. 1, 608 (1946)."C. Mufller, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
23, No. 1 {1945);24, No. 19 {1946)."J.M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).

The cross sections for (5.1) and (5.2) are given by

kr' r dqdp„dp„
&'(Pf P;) iS „i', (5—.21)

I70 Pap Pyp

or
(qp)

—
qp

—(Ms —M,. 0)/2E= 2ks/E

Tp—T= 2k'/8 (5.25)

where T is the kinetic energy of the produced pion and
Tp is the maximum value of T.

In order to compare the present theory with Watson's
theory, "we make a nonrelativistic approximation for
the produced pion to get

q= (2p,T)&.

To simplify the formula, we may roughly put

&o=E—qo= E=2ns.

Ke shall further assume that this reaction takes place
mainly in the following states:

p+p ~ tp+p+pr+,
IS p

(5.26)

", K. M. Watson, Phys. Rev. .88, 1163 (1952). For the compari-
son of Watson's theory with experiments, we refer to A. H. Rosen-
feld, Phys. Rev. 96, 139 (1954).
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at least at low energies. Then we may take the q-
dependence of S„„aslinear:

Thus we Anally get

5 „=qR. (5.27)

d' .o„4n-' 4Irv2p&T'(To T)&—

dQdT 8 m&
(5.28)

We do not know the precise form of E, but Watson's
theory on the final-state interactions yields the basis
for assuming

One readily notices that (5.36) corresponds to (5.17)
in the present formulation. In (5.17), c' was inversely
proportional to the residue of the S matrix, but this
does not contradict (5.36) since what really corresponds
to the wave function f is not fz but the Feynman
amplitude (II, T(It„Ik„)cq) which is inversely propor-
tional to fq

Rigorously speaking, the results obtained in this
section are just conjectures, since it still remains to be
justified that the analytic continuation of the S-matrix
elements to the complex values of k is really possible.
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fixed angle one obtains

where

do„„V2 (rrI,)t
3 (sin'5q"=—

(

—
i T:(T,—T) &i iG, (S.30)

dQdT ~ & p) k' )

4r (47r'A'p')

gE gp j (5.31)

= —8cyqA
fog

Inserting the expression for c, (5.20), into this relation
we have

and 6 is generally a function of the angle between the
momenta of the incident proton and the produced pion.
S~ is now readily obtained as

Sg———8' lim (k ip)S—„
@~i7

APPENDIX A. DERIVATION OF THE
RECURSION FORMULAS

In this appendix we shall derive the recursion for-
mulas (2.25) by generalizing the relation between the
Feynman amplitudes and the S matrix.

Let D be a finite space-time domain, and we introduce
an external source Q(x) in this domain. Since D is
finite, we may assume that the asymptotic conditions
at t~ &~ are not invalidated. The 5 matrix is then
a functional of the external source and is given by

so-LQ1= 8'o' 'I:e), O'-"'Pe)). (A 1)

The state vectors C&+~ cannot be time-independent
because of the interaction with the external source; so,
choosing a definite space-like surface o-, we",'shall 6x
them by

8Hz( q'A' q

~ EI—r,&)'

«& (v(v/w)')

dQ I 1—roy&

(5.33)
where

(5.34)

C's' 'Lel= U(" ~)'C'o' ', (A 2)

U(om, ag) =T expi i ~ (d—x)H g(x) i, (A.3).J., ) '

Watson's formula for do.o/dQ agrees completely with

(5.34), and although in both theories (5.28) and

(5.29) were assumed for the reaction (5.1), this agree-
ment still seems to be very interesting. In his derivation
Watson utilized Heisenberg's method of normalizing a
bound-state wave function. Namely, let the asymptotic
form of a bound state wave function be

and C &+~ and C p&
—

& are the state vectors in the absence
of the external source.

Hence we obtain

Ss«Lel =(C'o' ', U(" —")~'-'+'). (A.4)

The occurrence of U(~, —~) does not damage the
asymptotic condition, since

2~rV2

then the normalization constant C is given by

(5.35) U(~, —~)=T exp) i t P,—(x)(dx) (,J

where D is a finite domain.
In what follows we assume P,„~(x) to be of the form

iCi = dks(k).
~ $7

(5.36) a, (x) = y(x)e(x); (A.s)
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then, expanding (A.4) in powers of Q(x), one obtains

~p.[Q]=(cp&-), c -"'&

(d»)Q(»)(~p& ', ~(»)c'-")&

( i)' &'+- (d*.)(d. )Q(*)Q( )

x(cp' ', 7'[&p(») ~(»)]c-'+'&+ (A 6)

Corresponding to (2.22), we get in this case the equation

RDLo: &p(») . .~(x-)]

(—i)"0(ti—x,)e(xi —x,) . 0(x„ i—x„)
perm. (x')

X[' ' ' LLO, &p(xi)]&o(x2)] &p(x„)]. (8.1)

For this new kind of product, we have the following
lemma:

Lemma. —If the recursion formulas for R-products
hold, then the following relation holds for an arbitrary
element 0 of %:

(ds)(e&„q (s)Q&E,

(dx, ') (dx, ') . .5&+& (xi—xi') 6&+'(x2—x2')

XE 1E* ' ' (fl [Q] Tl ÃQ(xi)vo(x2) "]C-"'[Q]&

X(&'p +, Ri)[0: (p(xi) &o(x„)&o(s)]c + )

=(C pb&+), Ri)[0: &o(xi) q (x„)]C &+»

—(4, +, R [0: (,) " (*.)]C.„+). (8.2)
=P Sp.'[Q]Fp(xi, x2, . ), (A.7)

(p) (Proof) If Eq. (8.2) is true for Oi and 0&, then it is
also true for ciOi+c202. Then making use of the relation

where q o(x) is de6ned by

&oq(x) = U(o„o) 'q (x) U(o.,o) if o,&o.
(A.S)= U(o, o..) p(x) U(o.,o.) ' if o.&o,

R)&[0)02.xi. x ]
Ri)[0).xi x),]Rr&[02. x),+i x„7, (8.3)

comb. (~i)

and as for g& &[Q],c &+)[Q],g[Q] we refer to (A.2) one can prove that it is also true for the product Oi02.

and (A.4). Inserting (A.g) into (A.7), one finds Therefore if (8.2) is true for &o(x), where x belongs to
D, then (8.2) is true for an arbitrary operator 0 of

t the form
(dxi') (dx2') . 6&+) (xi—xi')6&+) (x2—x2')

XE., E.,'. (ll, 2'[U(-, — ),(., ) &p(., )

=Zip)~p-'[QXp(» x2 .") (A g)

0=co+ ci(x) &p(x) (dx)+ c2(xi x2)
J~ Jn

X p (xi) p (») (dxi) (dx2)+ ' ~ ~ (8.4)

where 5'[Q] is related to S[Q] by (2.23). and hence for an arbitrary element of R. So we shall

Fxpanding both sides of (A.g) in powers of Q(x), we prove (8.2) for 0= &p(x), x being an element of D. Let

arrive at us assume ti&xi, , x„ in (8.2), since otherwise both
sides of (8.2) vanish and the statement becomes trivial.

f Then, for 0= y(x), xcD, the right-hand side is rewritten
(dx, ') (dxg') by the ordinary R-product,

Xt) &+)(xi—xi)6'+'(xQ xg ) ' ' 'Exi E$2'

x(fl, 2"[ ( ) " ( -) ( ') (* '). "7~-"'&

XFp(», x2, ), (A. 1O)

from which we immediately get (2.25a). In a similar

way we can derive (2.25b) from the rules for evaluating
the asymptotic forms for t ~ —00 ~

APPENDIX B. PROOF OF THEOREM II

Let the slice of Minkowsky space [ti,t2] be called D,
and let R be the ring generated from field operators
whose arguments belong to the domain D. For an
operator 0 of Q we define the RD product by

fright-hand side of (8.2)]

=(4 p&,
&+), R(x: xi x„)C &+&)

—(C p&+), R(x: x, "x„)e.„&+)&, (8.5)

while the lef t-hand side is also equal to the usual
E-product except for the case xo)2;0 & t~, and can
generally be written

f
(left-hand side) = (ds)(c&„&p(s)Q&

XE,(4p&+&, R(x: xi. .x„s)C &+&)

(ds)(eb, ~(s)n&E.{[0(x—s) —e(t,—s)]
X(ep&+), R(x:xi. . .x„s)C &+)&}.
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Since the first term is equal to (3.5), one has to prove where Tp„ is defined by

Tp.= Z (—')"D'&Q T( ")c' « "') (312)
PIXP2=P

~ («)(C, V (z)n)R, ([e(x—z) —0(t,—z))

X(C'p+, R(x: x& x~z)4~+ )}=0. (3.6) By comparing (3.11) with

This expression remains only for xp & sp + $~, and in this
case s&x~, . , x„holds. Hence the R-product in
(3.6) is given by

(c,&-&, on) =g,(cp(-), c„(+))(c„&+&,on)

=Q,Sp,(c„'+', OQ),
(8.13)

perm. (xs)
g(z —x,)" e(x,—x.)

we get
(S—T)On=0. (8.14)

X[ [[y(x), q (z))( (»)) ( (x.)).
Therefore it suffices to prove the lemma if one can show
that the Fourier transform of [t&(x—z) —t&(t) —z))
X[p(x), (p(z)) with regard to z has no pole at P'+m'
=0. However, this is easily proved since 2 can move
only in the finite time interval (xo & so & t&). This argu-
ment is also true for composite particles. It is clear
that a similar lemma holds for A-products.

Next we shall introduce the generating functionals
of E.- and A-products by

ra(x: Q) = U 'T[U~(x))
z (:Q)=T[Uv(*))U ' (37)

from which we have

S=T. (8.16)

The explicit form of the Smatrix is given by (8.12), i.e.,

In the limit t~ —& —~, t2~+~, state vectors of the
form OQ span the whole Hilbert space, i.e.,

(3.15)

This follows from assumption IV. To prove (8.15) let
us first assume its inverse. Namely we assume that
RQ is a true subspace of @;then the projection operator
to this subspace commutes with y(x) at every space-
time point x. Hence it must be a c-number, and this
contradicts the fact that %Q is a true subspace of @.
From (3.14) and (8.15) there follows the relation

z&g(x: Q) U= U p~(x: Q). (8.8) S,.=+,D (n, Z( )c.,„+), (8.17)
In a similar way one can introduce O~(Q) and O~(Q),
for an operator 0 of 5, satisfying where X(xq, ,x„)=(—i)"T(x~, ,x„). If we start

from
o (Q)U=Uo (Q) (3.9)

q g (x:Q) W= W q g (x:Q),
with the understanding that under the time-ordering
operation 0 is regarded to have the time coordinate t~.

By differentiating (8.9) with respect to Q, we get

(—1)"( i)"
comb.

X(n, A»[0: x& x„)T(x„i&, ~ ~, x„)Q)

= Q (—i)'(n, T(x) x&)Rg)[o:x)~& x„)Q).(8.10)
comb.

We apply DP=DD~' on this equation, then due to the
positive energy condition only the term e=m survives
on the left-hand side, which is given by

&cp(
—

&, OQ)

as a result of the lemma. The right-hand side is given
again with the help of the lemma by

Q (—'l)p'Dp~(Q T(' ' ')c' (+))

instead of (8.8), one can prove that the T-product in

(8.17) can be replaced by the normal product.
From (8.7), or more explicitly from Up@(x ~ Q)

=T[Uy(x)), one can derive

g(xx& x„)= g Z(x& x„)R(x:x„+& . x„). (8.18)

Therefore, one has

DP(n &(x .)C &+&)

=PD@"(Q Z( )C &+') D"(C &+& R(x )C &+&)

D"'&Q &(" )c' '+')( —1)"

X (C (+) &(x)@ (+))

PIXP2=P

xDp (c &+), RD[o: )n)
DPI~~(Q 9 (. . .)C t„(+))(—1)v

g ( i)PDP (n T( .)c &+&)(c,—p, &+) on)
- PIXPg=P

(—i)p1Dpl(n T( ~ ~ ~ )cy /p (+))(gl (+) On)
PIXP~=P q

X=@,v, y

x(c, + (*)c., +)

Spt„, ,(C,'+, q (x)C',t„+ )(—1)

=Q,T„(c,(+), on), (3.11) =Z.(—1)"(c' .' ', (*)c'-.'+')
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where for the sake of simplicity the arguments upon
which D~ operates are omitted. By mathematical in-

duction this result can be generalized to yield

and similarly

D (Cp& i, Z(xr. x„~ )n)

The recursion formulas for T-products are the direct
=P&(—&)"(C'e»' ', -(xi' ' 'x~)@»'+'), (& &9) consequences of (B.19) and (8.2O).
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Folly-Wouthuysen Transfoririation. Exact Solution with Generalization
to the Two-Particle Problem
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The Dirac Hamiltonian for a particle in a nonexplicitly time-dependent 6eld is converted to an even
Dirac matrix by means of a single canonical transformation. When the interaction term is an odd Dirac
matrix, the transformed Hamiltonian is expressed in a very simple form. An exact transformation is also
found for two-particle wave equations of Breit's type. The transformed Hamiltonian is then a NU-separating
matrix, in Chraplyvy's sense.

In the nonrelativistic limit expansions in powers of 1/m or 1/c are made. The approximate wave equations
are in agreement with previous transformation results.

INTRODUCTION

A SPIN ~ particle in interaction with various types
of external fields is described by a spinor f

satisfying an equation of the Dirac type. ' ' For different
purposes it is of interest to have this equation converted
to a two-component equation of the Pauli type. This
was earlier achieved by an elimination method that
gives an equation for the large components of f. In
this equation, however, there are terms nonlinear in
t3/t)t and non-Hermitian interaction terms like the
imaginary electric moment term. Furthermore, the
exact interpretation remains in terms of the four-
component wave function.

A diferent treatment is due to Foldy and Wouthuy-
sen. 4 By means of a canonical transformation of the
wave equation, a representation is found where the
Hamiltonian is an even Dirac matrix. Then the Dirac
equation splits into two uncoupled equations of the
Pauli type, describing particles in positive- and nega-
tive-energy states, respectively. When the particle is
free, the transformation is exhibited in a simple, closed
form. In the presence of interactions, however, a
transformation in closed form has not been found, but
an infinite sequence of transformations can be made,
each of which makes the Hamiltonian even to one
higher order in the expansion parameter 1/srt.

' W. Pauli, Revs. Modern Phys. 13, 203 (1941).
~ L. L. I"oldy, Phys. Rev. S7, 688 (1952).' W. A. Barker and Z. V. Chraplyvy, Phys. Rev. S9, 446 (1953).' L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).

Progress on this point has been made by Case' who
found the transformation in closed form for spin ~

particles and spin 0 particles in time-independent
magnetic fields.

The Foldy-Wouthuysen transformation method has
been extended to two-particle wave equations by
Chraplyvy, '' who found that in the case of equal
masses, the postulate of an even-ever transformed
Hamiltonian is too far-reaching. When the less stringent
requirement of a uU sepuratirtg -(or an /I. separatirtg)-
Hamiltonian was introduced, a whole class of usable
transformations could be found, but none of them is
given explicitly.

In the present paper it is found that the exact
transformation of the Dirac equation for one particle,
can easily be generalized to two-particle wave equations
when Chraplyvy's less stringent requirement is used.

SUMMARY OF THE FOLDY-WOUTHUYSEN
TRANSFORMATION

The wave function in the Dirac theory is a column
matrix with four components f„, where fi and its are
called upper components and fs and ice lower compo-
nents. P satisfies the wave equation,

its (ct/c) t)P =HP,

the Hamiltonian being a Hermitian four-by-four matrix,

H= prrtcs+cet p+interaction terms.

~ K. M. Case, Phys. Rev. 95, 1323 (1954).
~ Z. V. Chraplyvy, Phys. Rev. 91, 388 (1953).
r Z. V. Chraplyvy, Phys. Rev. 92, 1310 (1953).


