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He4 and the closer orbits of the E -helium system; both
of these differences favor E capture from states of
higher angular momentum than those which may be
'eGective in E -proton capture. Since the direct observa-
tions necessary to establish whether or not a 7 ray
accompanied an observed +84 or &He4 decay event
appear to be very difhcult, the possibility of formation
of &H4*, &He'* may lead to considerable confusion
concerning the interpretation of any observations of
the aH', &He' hypernuclei following E +He' rea, ctions.
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It is postulated that fermions with identical space-time properties have to obey the exclusion principle
unless they diGer dynamically in their interaction with other particles. This postulate is formulated within
the framework of a theory of the internal degrees of freedom. When all possible Yukawa-type couplings are
examined, this postulate together with some other specification singles out the P s interaction between pion
and nucleon. Finally, when applied to electric interactions it requires the displacement of the nucleon center
of charge.

l. INTRODUCTION

A N important prediction of quantum field theory is
that the quanta of one field are identical and obey

the Pauli principle. By Pauli principle we shall mean
more generally the requirement of symmetric or anti-
symmetric wave functions for particles with integral or
half-odd-integral spin, respectively. Diferent particles
are conventionally represented by diferent fields and
the formalism does not require the Pauli principle in
this case. The diR'erence between the particles may lie
in their space-time properties like mass and spin or in
internal properties like the electric charge. Nevertheless
it is mathematically also perfectly consistent within the
present theory to have several fields which dier in no
respect. For instance, a theory characterized by

L=Pz (8—M)gz+ gzz (8 M)fzz-
+l(~. ,~' ~)+g V*~+-A ~**)~ (l)

describes two kinds of fermions interaction with a
scalar boson, the former having completely identical
properties. Vet the theory asserts that the Pauli prin-
ciple is not effective between them. Such a case does
not seem to be realized in nature. As far as we know all
particles with, for instance, unit electric charge, spin -„
and mass of the electron actually obey the exclusion
principle. This observation leads one to analyze the

*This paper is part of the content of lectures given in summer
'1957 at the University of Washington. They were partially sup-
ported by the U. S. Atomic Energy Commission.

usual formulation of the exclusion principle more
carefully. The statement "identical Fermi particles
cannot occupy the same state" requires an explanation
as to what identical particles are. One can adopt the
two points of view:

(A) Nonidentical particles differ in their space-time
properties or in their interaction with other particles.

(B) Identical Fermi particles obey the exclusion
principle. The definition (B) leads to a circle and most
people will agree that (A) makes more sense. However,
conventional quantum field theory does not imply the
exclusion principle in form (A) but only in form (B).

We shall now sketch a formulation of the Pauli
principle which implies (A) and makes it more precise.
For this purpose we consider a theory with Ãy diferent
kinds of fermions and X~ diferent kinds of bosons.
Such a situation will be described by 1Vf+1V t, Hermitian
fields. Now we imagine that in the Bureau of Standards
they have 1Vz+1V& boxes, each containing one of the
different kinds of particles. (For bosons the box may
contain a piece of a static field instead of a particle. )
Now we require that with the aid of this set of boxes
we can determine to which of the 1Vz+1V& kinds any
given particle belongs. We just do not permit to put
for instance, a fermion into a box with fermions for this
determination. For in this case we would use the exclu-
sion principle as a criterion for identity. In other words,
we shall not perform experiments in which the wave
function of identical fermions (or bosons) overlap. If
even with this restriction we can distinguish all par-
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ticles we shall say shortly that the "distinction prin-
ciple" is satisGed, The distinction principle is thus a
formulation of the Pauli principle which uses explana-
tion (A). For instance, in the above-mentioned theory
characterized by (1) it does not hold since in an external
Bose Geld the two kinds of fermions behave in exactly
the same way. To satisfy the distinction principle it is
not enough that a state with two I fermions is different
from a state with one I and one II fermion. In one case
the exclusion principle is efI'ective and in the other not,
so that in any case there will be a difference in the
scattering cross section in the two states. Furthermore,
conservation laws may a6'ect the two states diGerently
so that the annihilation cross section may also be
different in the two situations. But the distinction
principle requires more. For theories of the Yukawa
type it asserts that different isolated fermions interact

differently with the Bose Gelds.
We have now to decide with respect to which group

of interactions we want different particles to behave
diQ'erently. By groups of interactions we mean the usual
categories of strong, electromagnetic and weak inter-
actions. Because of the Quid state of our knowledge
about weak interactions we shall forget about them and
about particles interacting only weakly. A little con-
sideration shows that all other particles with identical
space-time properties can be distinguished electro-
magnetically. ' Since there are no charged particles of
the same sign with identical masses (Z+ and Z ought
to have the same charge but different masses) we have
to consider only neutral particles. Now n and n, A.' and
A.', Z' and 2' diGer in the sign of their magnetic moment.
The neutral heavy mesons undergo the following virtual
dissociations k -+ p+Z+, k' —+ p+Z+, so that their
charge cloud will be diGerent. We take the point of
view that it is not a coincidence that the distinction
principle holds if one considers only electric interactions.
Of course, there is no logical necessity for this belief
and we shall see that it is also possible to couple the
electric Geld such that the distinction principle is
violated. It will turn out that it is just the distinction
principle which forces the displacement of the (pe)
center of charge.

Less obvious is the question whether also the strong
interactions alone distinguish all particles. It is tempt-
ing to conjecture this to be true since one knows that
the internal degrees of freedom dominate the dynamics
of the pion-nucleon system, at least at low energies.
Thus it seems plausible that the strong interactions are
the mechanism which shows the differences in the
internal properties of particles. A detailed study of this
question is the content of the present paper and with
our present knowledge the answer will be that also the
strong interactions separately satisfy the distinction
principle.

'We shall discuss later in what sense this statement does not
contradict the observations of Wick, Wightman, and Wigner,
Phys. Rev. 88, 101 (1952).

A striking feature of the strong interactions is their
high symmetry with respect to the internal properties
of particles. This is reQected, for instance, by the great
number of different particles having (at least approxi-
mately) the same space-time properties. In fact, the
guiding principle in the construction of interactions is
usually to achieve maximum symmetry. This principle
is, however, not too powerful since we shall see that the
theories with maximum symmetry (which means that
they allow for the largest invariance group) are not
realized in nature. It is clear that by having too much
symmetry the particles will lose their difterence and we
shall violate the distinction principle. In fact we shall
see that the interactions we know to exist are such that
they have the maximum symmetry which under, , the
given circumstances is compatible with the distinction
principle. It will turn out that for Ey&4 and Eq&3
the only theories of the Yukawa type which do not
violate the distinction principle, conserve fermions and
give no mass splitting are the electric and the P. ~
interaction. By not requiring the distinction principle
one increases the number of possible theories by a
factor 10. In particular the neutral or the charged
meson theory do not satisfy the distinction principle
since they do not distinguish between nucleon and
anti-nucleon in the required fashion. As a consequence,
for instance, the forces between pe and pp are the
same in those theories as long as pp do not touch each
other so that they can annihilate. This, is not the case
in the P r theory for pseudoscalar mesons but would
also hold in this theory with vector mesons.

In the next section we shall develop the theory of
internal degrees of freedom not connected with space-
time. Although most of the material is well known it
had to be included since there is no systematic account
of it in the published literature. '

In the following section we shall investigate all
possible Yukawa couplings for EJ &4 and X~&3. The
reasons for choosing the couplings linear in the Bose
Geld and quadratic in the Fermi field are not very deep.
It is just that at present it seems that the dominant
features of strong interactions (like single boson emis-
sion) can be accounted for by them. We shall, however,
not rely on arguments like renormalizability. One
might hope that one can study the symmetry properties
of the internal space independent of a possible modiGca-
tion of our space-time concepts at small distances. In
fact, all our results would hold if we were to make the
theory Gnite by, for instance, a nonrelativistic form
factor. We shall use only the general features of rela-
tivistic Geld theories like the connection between spin
and statistics. Thus we do not necessarily consider the
form of the interaction as something fundamental but
rather as a phenomenological description of observed

~This. section is closely related in the corresponding part of
J. Schwinger, Stanford Lectures summer 1956, mimeographed
lecture notes. In the meantime this has been partly published in
Ann. Phys. 2, 407 (19S7).
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processes. It is to be expected that our considerations
could be carried over to a more detailed model where,
for example, one replaces the bosons by bound states
of an even number of fermions,

In the last section we shall discuss the introduction
of an electromagnetic field into the systems considered
before. It turns out that the distinction principle elimi-
nates some possibilities but does not lead uniquely to
the actual form of the interaction. For this one has to
add the requirement that the charge of a fermion is
(—1,0,1) times the elementary charge.

The investigation of systems involving more particles
than considered here becomes very complex and had to
be deferred to a separate paper. There the principles
proposed in this work will be applied to other systems,
mainly to the E-meson baryon couplings. It will again
turn out that the distinction principle helps somewhat
but does not uniquely lead to the observed picture.
There are several theories with many particles which
comply with the distinction principle and it requires
another point of view to explain why only a particular
one is realized in nature.

2. GENERAL FORMALISM

In this section we shall develop the concepts relating
to the internal symmetry properties of a system con-
taining Nq kinds of bosons and Ef kind of fermions.
We consider only the case where all Bose fields and all
Fermi fields have the same transformation properties
with respect to the full Lorentz group. The Fermi fields
we take to have spin —,

' and the Bose fields to have spin
0 or 1. It is convenient to consider all Fermi fields P,
as components of the Fermi field f and similarly for the
Bose 6elds P. Since supposedly each field component
represents only one kind of particle of given space-
time property we require that the field components be
Hermitian:

(2.1)

For spin 0, one Geld component will be represented by
one Hermitian scalar field which is known to describe
one kind of particle. In the case of spin —'„one com-
ponent is represented by a four component Hermitian
spinor field, that is to say by a Majorana field. This
describes for given momentum two kinds of particles,
diGering by their spin direction. Here we need twice
as many components for describing one particle since
the Dirac equation is of first order. We shall usually
suppress the labeling of spinor or vector components
and be explicit only with respect to the internal space.
A Hermitian vector Geld contains four kinds of par-
ticles. One of them has a negative energy and has to be
eliminated by Ps, b

——0. This will always be understood
in the followi. ng without explicit mention.

The free Lagrangian is a quadratic form of the Bose
(and Fermi) 6eld components. Is will for Bose 6elds be
of the general form

P,q;; with kg =f, ;g ' m'fg. —

Since the energy must be positive definite, the quad-
ratic form q must be positive. By a suitable rotation
and scale transformation, it can be reduced to the unit
form which we take as the convenient standard form.
Thus we write I.' as

(2.4)

The interaction we take of the Yukawa type, that is to
say of the form

N'y

=g Z Zr fgMab FIPbgi)
a, b=l i=1

(2 5)

where g is the coupling constant and M,bi is a set of
numerical matrices which will be discussed below. The
I" are a set of 7 matrices corresponding to which of the
5 types of space-time coupling we have. The scalar P
the pseudoscalar nrnsnsP and the pseudovector (rr&nsrzs,

crsrrs, nsnr, rrins) are in the Majorana representation odd
whereas the vector nb and the tensor p 'fcrb, n -7 are
even. We shall not consider mixtures of couplings which
mix odd and even F's and have therefore' I"~=~I'. In
view of the commutation relations we must have
correspondingly

3I,pi= ~JIg,'.

Furthermore, we shall take all the I"s to be purely
imaginary. Then the hermiticity of L' requires the M's
to be purely real. The total Lagrangian I.=L'+L,' and
the commutation rules will be invariant under a group
of linear transformations among the field components,

P;~As';;P, , P, —+A~;,Q, ; A*=A. (2.6)

For g=0 the invariance of I' and the commutation
rules requires A~A= 1 and AA~= 1 respectively. Thus
the A" and A~ will be the matrices of the orthogonal
group of cVf and E& dimensions respectively. L' will
destroy this invariance to some extent so that the A' s
will constitute only a subgroup of the orthogonal group. 4

Let us first consider the case where this subgroup is a
continuous group an.d the A(n, ) depend on, say, tb real

3This essentially excludes a scalar field coupled by a scalar
and a vector coupling.

4That the study of the internal space is connected with the
orthogonal group was first emphasized by A. Pais /Proc. Natl.
Acad. Sci. U. S. 40, 484 (1954), and private conversation7. Salam,
d'Espagnat, and Prentki [Nuclear Phys. (to be published) 7 have
assumed that a theory can be invariant under a Lorentz trans-
formation in the internal space. This does not seem to be possible
since Jo and the commutation laws are not invariant under such
a transformation.

Here n and P are the usual Dirac matrices in the
Majorana representation:

Qp =
1& at = zo'p, &s= zo'sps, &s= so s,' P =o sps. (2.3)

The canonical commutation rules are
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parameters o,;. The elements in the infinitesimal neigh-
borhood of the unit [=A(0)) will have the form

n n

4~=1++n T ~ A"=1++n, T,~, (2.7)

0 1q
T =12i r=21

0&'
(2.10)

and a 6nite rotation is represented by

1t ((g) —etT2ld (2.11)

For iV=3 we introduce a vector notation, calling
T»= e3, or generally

where T„~=—T„and T„"'=T„so that AD~=1 holds to
first order in n and A*=A. For the full orthogonal group
(e.g. , for g=o) the T constitute a set of —2,1V(1V—1)
linearly independent odd matrices. It is convenient to
take them as the generators of an infinitesimal rotation
in a coordinate plane and label them by two subscripts
indicating in which plane the rotation occurs:

(il T12l i) =~ J~21—~*A1. (2.8)

Correspondingly they obey commutation relations of
the form,

[T'2,T1 )=41T' +&' T21 &,1T2 —4Ta —(2.9)

For Ã= 2 there is only one matrix

f
„=i'd~2(pn" T„rp+p'T, ~p). (2.19)

Being translationally invariant they commute with the
Hamiltonian and can be simultaneously diagonalized
with it. It is useful to redefine V', by additional constants
such that the ground state of the system

l 0) (vacuum)
has eigenvalue zero:

(2.20)v„lo)=0.

For definiteness we shall now consider in more detail
the ease of highest symmetry, namely g=0. The modifi-
cations for lower symmetry when the iriteraction is
present will be obvious. With the representation (2.8)
for the T we find that they obey the same commutation
relations (2.9).

ing, a rotation around n say with an angle of 360'
corresponds to A= —1.In the following sections we will

always use those representations of the orthogonal
group.

It is well known that to each infinitesimal trans-
formation which leaves the action integral invariant
there corresponds a constant of the equations of motion.
In particular, transformations which are not connected
with space-time yield invariants. By the latter we mean
that they are given by an integral over a space-like
surface and are in fact independent of this surface.
Correspondingly we get e invariants

(il22lg)=e, ;2. (2.12) [r;„,V', )="03,E, +e;„T2, "e,, E2 "e2 K—;1. (2.2—1)

L31,22) = 33, etc. (2.14)

show that 2 transforms like a vector under A(n).
It is conventional to represent the four-dimensional

rotations by the product of two independent three-
dimensional rotations. By forming the combinations

T12 s3+r3 T13 s2+r2 T23 sl+r1
(2.15)

T34—$3 f3 T24 $2 P2, T]4= Sy

we see that the r and s obey the same commutation
laws as the e

$r;,s;)=0, [r,,r,)= 3;;2r2, l ;, s)=s2;;2s2. (2.16)

The representation (2.8) for the r and s can also be
expressed in terms of two sets of independent Pauli
matrices o and p:

r=-', io2(p3, o2p2p1), s=-'2ip2(n3e2p201). (2.17)

A finite rotation depends on six parameters n and n'

A(n, n')=exp(s n+r n') (2.18)

and s and r transform like vectors. In this way of writ-

A finite rotation depends on three parameters n and is
given by

h. (n)=exp(n e). (2.13)

The familiar commutation rules

Thus there will be no eigenstate common to all of them
with eigenvalue &0. To construct the eigenstates of 1
explicitly we start from the commutation relation

LV'1,lP)=iT 1 lP, ['r1,$)=iT 1 y (2.22).
iT& has the eigenvalues &1,0 and is diagonalized by
the combinations (1/V2)($1&ip ), p2 for k&l, 223. Call-
ing P one of those combinations belonging to the eigen-
value e of T we find

(2.23)

Thus the eigenvalues of T are eigenvalues of V" and
similarly for P and T~. Furthermore the sum of two
eigenvalues of 9" is again an eigenvalue since the 5 are
additive quantities. To show this we remark that the
structure of the commutation rules (2.22) implies that
if 'EiPlo)=eglo) and Eif'lo)=e'P'lo) then

r~'IO) = (e+")PP'I O). (2.24)

This observation gives us a complete picture about the
eigenstates and eigenvalues of the V"~ .

Some or all of the A may not be continuously con-
nected with the unit. In the former case there .is an
ambiguity in the choice of the basic improper trans-
formations since they can be combined with an arbi-
trary continuous operation. Since there is no improper
transformation in the infinitesimal neighborhood of 1
we cannot use the usual procedure for constructing the
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~eb)= lim vr' d'xU(x)g;(x) ~0),

~
vn)= lim vii'~ d'xf(x)P;(x) ~0).

(2.27)

5This trivial case will not be mentioned again in the later
analysis.

6 Case, Karplus, and Yang have considered theories of this
type )Phys. Rev. 101, 874 (1956)j. Similarly B. d'Espagnat and
J. Prentki /Phys. Rev. 102, 1684 (1956)g tried to associate
strangeness with a discontinuous operation to explain why there
are no particles of higher strangeness. The present experimental
data do not decide whether strangeness is an additive or the
logarithm of a multiplicative quantity U with U4=1,

generator in terms of field variables. Nevertheless the
invariance of the formalism under A; assures the exist-
ence of a unitary operator U; such that

U,gU; '=-APP, U,yU;-'=A, ey, (2.25)

even if we know only in special cases the explicit form
of U. For instance every theory of the type we are
considering is invariant under'

t)' ~ —4
It is not hard to guess that U is in this case exp'
[number of fermions]. However, since U; commutes
with I and therefore with the 10 generators of the
Lorentz group it is an invariant like the V ~ even if the
number of fermions is not. We shall consider only those
A.; which obey A.;4=1 so that the U; have the eigen-
values &1, &i Wr. iting U as i~ we see that Q can
change only by multiples of four. Thus the invariance
under Gnite transformations yields those characteristic
conservation laws where certain quantities can only
change by some integer amounts. A familiar example
is the m' decay which can go only into an even number
of photons. A multiplicative factor left arbitrary by the
definition of U is conveniently normalized such that
UI 0)=10).

The structure of the relations (2.25) shows that the
U's are multiplicative quantities. Indeed, if f and f'
are eigenvectors of A; with eigenvalues e and e' then one
readily deduces

U'll" 10)=e'1t'~ 0) (2.26)
and

U~'(0) = ee'~'~ 0

It can happen that I. is only invariant under a Gnite
subgroup of the orthogonal group. We shall Gnd many
examples of this kind in the next section, in which case
there are only multiplicative invariants. '

To discuss the physical significance of our theory we
assume as usual that the adiabatic hypothesis holds.
Furthermore, we do not bother about renormalization
because it has nothing to do with our problem and
could be done easily. Accordingly we assume that a
state

~
e) with one physical particle of a type n is given

by applying the following limit of a Heisenberg operator
to the physical vacuum:

Here vb' (or ee') are a set of Xr (or 1Vb) complex num-
bers which we normalize according to m'v'*=1. U and
f are solutions of the Dirac and Klein-Gordon equation
with the renormalized masses. Since there are only Ef
(or Nb) linearly independent tt's we have at most as
many kinds of particles with the same mass as field
components, not counting possible bound states. Par-
ticles corresponding to v's which are connected by a
transformation A will have the same mass. To see this
one has to apply the corresponding operation to ~e)
and remember that ~0) is supposedly invariant. Hence,
if the matrices A. are an irreducible set under unitary
(not only orthogonal) transformation, all fermions (and
bosons) will have equal masses. For reducible 4, par-
ticles belonging to diferent invariant subspaces of the
A will, in general, have diferent masses. Since the prob-
lem of not being able to distinguish particles does not
arise for particles with diferent mass we shall concen-
trate on theories where the A. are irreducible. There are
exceptions to this rule owing to the fact that the self-
energy does not depend on the sign of the coupling
constant. For example, if L'= g (frPipi+Psfsps) then gi
and ps particles will clearly have the same mass. Never- '

theless, the invariance operations f~ iree, P airs/
and p ~

rsvp,

p ~ @ give a reducible he. However, the
self-energy would also be the same for L'=gQiPipi
—fgksp, ) so that it is eifectively invariant under

P —+ P, p —+ rgb and irs and rs are irreducible.
When we want to express the distinction principle in

formal terms we have to remember that the diferent
components of P and P in a one-particle state get mixed
by virtual processes like p ~ rb+a-+. It is conventional
to characterize the physical particle by some invariants
V, . Of course, not all of them can be diagonalized
simultaneously nor are they all needed for specifying
a particle. For instance, for X=3 one of the e and for
X=4 one of the s and one r can be used. The sample
boxes of our heuristic argument in the last section will
be represented by external Bose Gelds acting on the
physical particles. ' In an external Bose Geld the number
of invariants is reduced but in our cases there will be
always enough left over to specify the particles. In
meson theory, for instance, they will be the isotopic
spin in the direction of the external Geld and the number
of nucleons. With those explanations we shall say that
a theory does not satisfy the distinction principle if
even in the presence of arbitrary external Gelds there is
an invariance operation which exchanges two or more
physical particles. Our example (1) for instance, is
invariant under fr ~fir even in external Bose field.
In a theory which satisGes the distinction principle
like electrodynamics an external field enables us to
distinguish the two kinds of particles. This does not
mean that any combination of the P's can be dis-
tinguished from any other. For instance, it is well

~ That bosons and fermions are not treated on the same footing
has its origin in the form of the coupling, as will be seen later.
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odd s, f:
even 1, s,w~.

6
10

This observation will serve as useful criterion for showing
that a theory belongs to (C).

known' that fr~0) and ps~0) cannot be distinguished.
But they do not diagonalize the charge and are mixed
by an external field. The (ft+ifs) ~0) diagonalize the
charge and correspond to the physical particle. Those
actually behave differently in an external field. In
most cases which do not satisfy the distinction prin-
ciple it happens that there is always an invariance
operation which exchanges two groups of particles and
lets one particular V„go over into its negative. This
implies also that this V„ is not an observable quantity.
The corresponding T„~ must clearly be zero since the
external Bose field is fixed. The different position of the
Bose fields in this formulation of the distinction prin-
ciple has its origin in the fact that the theories we are
considering do not allow for an invariance operation
with T~=O. Thus an arbitrary set of external sources
will destroy any invariance connected with the Bose
fields and will, therefore, enable us to identify all bosons.

3. CLASSIFICATION OF THEORIES

In this section we shall investigate the symmetry
properties of all theories of the form (2.2) and (2.5)
with S~ &4 and E~ &3. It is convenient to group them
according to increasing symmetry. The group A con-
tains all theories where the A. are a reducible set of
matrices, in which case not all the masses will remain
degenerate. Theories of group 8 have no mass splitting
but satisfy the distinction principle. This group will
be subdivided using as criterion whether or not the
theory has an additive invariant containing only
fermions. Finally, theories violating the distinction
principle constitute group C. This classification is com-
piled in Table I, where x means that the corresponding
criterion is not relevant in this ease.

Considering the M,~' as a set of E~ matrices Ef)&Xf
we see that we have to study all such sets of matrices
for the Ef and E~ within our limits. Sets which can be
transformed into each other by an orthogonal trans-
formation lead to equivalent theories and need not be
considered separately. Furthermore, those linear com-
binations of the M' which correspond to an orthogonal
transformation of the Bose 6eld give nothing new either.
Also a factor common to all M' can be absorbed in g.
Since the M' have to be even or odd it is convenient
to represent them by a basic set of independent even
or odd matrices which have a simple transformation
property under the standard transformations (2.10) to
(2.17). For the different dimensions we take

odd Z7 2.'

even 1, v~, v3..

odd 8: 3
even. s{e' es) = e'g, '. 6

TABLE I. Classification of theories.

I. A's irreducible
II. For ah. Tf, =0 Tf/0

III. Violates distinction principle

A B1 B2 C

no yes yes yes
x no yes yes
x x no yes

In Table II we shall summarize the properties of the
theories under consideration. If a coupling can be
written as the sum of two parts such that each part
has the same or higher symmetry properties than the
sum, the sum will not be mentioned separately. Since
we are not interested in class A, some cases belonging
trivially to A will not be listed. The material we arrange
so that we give first the matrices M' which characterize
the theory. Then we quote all independent invariance
operations and abbreviate a continuous operation by
rot. and a discontinuous operation by ref. Finally, on
the right in boldface we tell the class to which the
theory belongs, like "(C)" and say why unless it is
obvious. If a coupling is one of the usually considered
ones we shall mention it.

Naturally most couplings belong to (A). (Bs) con-
tains only three couplings; the two odd ones of this
class are X~——1, Ey=2, M=i~2 and X~=2, Nf —4,
3f~, 2=ip2, i02. The first one is the coupling e-y or p-y
and the second one is created from it by a doubling
process. We shall see in the following paper that this
process creates from any theory of class (Bs) another
theory of the same class with twice as many particles.
The even coupling of class (Bs) is the symmetric s-X
interaction. '

Many theories have no continuous invariance group
but enough symmetry to give no mass splitting. Since
they do not have any additive invariant they all belong
to (Bt).It is good to keep in mind that it is the existence
of additive invariants and not the mass degeneracy
which allows one to infer the invariance under a rotation
group.

Of the ten theories belonging to (C) none is realized
in nature. The theories with the largest invariance
groups belong to (C). For instance, for Ef=4, 1Vs=3
the coupling with M= S has an invariance group iso-
morphic to the four-dimensional rotation group. It
belongs to (C) since, in conventional language, it does
not distinguish between nucleon and antinucleon.

4. ELECTRIC INTERACTIONS

We shall 6nally investigate the possibilities of intro-
ducing an electromagnetic interaction in the conven-
tional way into the systems considered previously.
They require the existence of a current j' which satis6es
j'„=0. Such a current is only available in theories
with a continuous invariance group. Systems with a
finite invariance group only cannot have an electro-

I' Note that our result implies that the space-time form of the
pion-nucleon coupling must be 1, y~, y„y5. It cannot be, for
instance, a vector coupling.



TABLE II. Properties of the theories.

Type of theory Invariance operations Class

gy=1

Ef=2 odd: M= rot. P —+Pe'~'"P @—+y0 1

ref. p ~ re, @-+ —p

(B~), is electron-photon coupling

even:

Xf=3 odd:

even:

Sf=4 odd:

even:

1Vg=2

gf =1
Ef——2

even:

odd

even:

gf =4 odd:

iaaf =3 odd:
even:

M=
0 b

in diagonal form

All = 1 0
0 rot. f ~ e' ~"f, Q ~ @

ref. p ~ rip,

1 0M-
0 1 rot. none

ref. f —+ re, p ~ @
lit' ~ re') gati'

~ —4'

M=v c is equiv. to M=c1
rot. f —+ e""f P ~@
fu 0 0)

M=~ 0 b 0
~

(in diagonal form)
(0 0 c$

M=V1 r+v2 s is equiv. to 8s2+br2

8/0 rot. f —b e'~I""+""'~p, p —& $
b&0 ref. f~ pla. 1$ @—+ —@ reduc.

8=0 or b=0 is equivalent to M=p2.
rot. f —+ e'~'"P

4~4
P —+exp(s n)P

ref. lIt
—+ 2r3$ p —+ —p

8 0 0 0
M= 0 0 c 0

,0 0 0 d.

&1=8, M2=b is equiv. to M1 ——1, M2 ——0

M1= ir2 =Sf2)& COnSt.

3E]= 1 M2= r3 iS equiV. tO I-'=$1&1@1+$2/2/2

This theory is exceptional as it gives obviously no mass-splitting
although A~ is reducible

Mj=rl ~2=r3:
rot. P ~ e'b~2~/2$

ref. f ~ ryP,

M1= V1 ~ 8, M2= Vg 8

M1——1, M2 ——bc1'

&1=cP, M2=be22 +

~1—&12' ~2 —. b&23~

iV1 =v1 s My, =v2 ' s ol v2 ' r

4 ~ e'""4
M1= $1 M2= $2. 10t. f ~ exp (r.n) f, P ~ P

ref. P ~ 2sgP, $ —+ rQ

1II11=sm, Mg=rg

Belongs to (A) except for (a) =
) b(

(C) since for ref, p —+ p but V „~—1~

(A), is similar to pion-photon system

Belongs to (A) except for [a) =
( b) =

( c[. In
this case it is (C)

(A)

(C) since, for instance, P —+ 2s~g, p —+ g,
V nR~ —Vn2

Belongs to (A) except for
( o( =

) b (
= (c( = [d ~;

in those cases it belongs to (C) (neutral m —X
theory)

(A)

All theories with Mr =M 2 Xconst. belong to (A)

(B,)

(A)

(A) Even for b=i the invariance operations
are reducible

Belong to (A) except for:

(C) Since there are operations

~n~ —~n, @~



THEORY OF THE INTERNAL SPACE 993

TABLE H .(—Corrtinssed)

Type of theory Invariance operations Class

even: Not belonging to (A) are

Mg ——1, M2=fgsj

My=f2$3 M2=f3sg no I'ot.

ref. f —+ 03$ O' P&4'1 0' &B0'

P~P34' f —+ + f, @ —+~j@
4 ~41

2

M&=f2s3, M2=f2S~

rot. f~ e' " f qb ~ e" "@

ref. P —+o.~P, qb
—+ ~3@

(&gael ~ &Ol )
4 ~ Pit', 4 ~ 4

M&=f2s3, M'2=f1s), no rotations

ref. P ~ 0).f lIt' ~ PA ~ 4' ~ &34'4~ —41
P —& erg' 4 ~P34') 4~4

This is again exceptional since A.g is reducible but there is no mass-
splitting since I™P(o3&q+o ape&i)$

(C) is a doubling of Ps=2, %~=2,

Mg ——1, M2= v.3

(B&)

(C) (Charged x-E theory)

(Bi)

Ny=1 and Ny=2
N~=2 even:

Ny=3 odd:

even:

odd, belong trivially to (A)

M~ ——1, M2 ——r~, MB=r3.. rot. 1ft
—+ e'""~2 @=a""qb,

ref. f —& vgP, @3—+ —
qh3

Not to (A): M=e: rot. /~exp(e n)P, &~exp(e n)p
ref. none independent of P ~ —P

not to (A):
no rotations

(A) since h.s= reducible

(B&)

M&=~P,

My= 62 +63 ~

Ml 612y

M2 ——ep,

Mp= 63 +Op~

M2 6/3 )

M3= ~3

M3 ——~p+ep p

M8 ——eg3

ref, fy ~ Pg @g ++ fy

Pg ~ $3y @2~@3&

1/8 ~ Pg, @3++fg '

Ny =4 odd:

even:

Not to (A). M=S, rot. &~exp(s n)p, @~exp(e n)p

f ~ exp(r n')f, g ~ @

jf,=Sq, Ms ——Ss, Ms rs belongs to (A)——
not to (A)

M =res P ~ exp(s. n)$, @~ exp(e n)p
rot.

4 ~4&
ref. p ~ 2f @fan,

M=r)&s: rot f~ exp.t (r+s) nQ, /~exp(e n)@

MI =fjsI Mm=f2sg M3=fss~. No rotations

ref. f ~ —', (1+2sa) (1+2re)|i, p& ~ Ps

P ~ -', (1+2rs)(1+2ss)f, @& ~ps

(C) since for all three n' there is an operation

Wn's ~ —V n,';, @~ @

(Bs) (sym. x fir theory)-

(Bg)

(B&)

magnetic interaction. In theories with a continuous
invariance group of several parameters there are several
independent currents satisfying the continuity equation.
Correspond'ingly, the introduction of the electric inter-
action is not unique in this case. Any linear combination
of tjie currents can be used without leading to forrnal
inconsistencies. To get some restriction we postulate
that the distinction principle has to hold for the electric
interactions separately. To show how this works we

consider the case Ep=4, X~=3, even: the pion-

nucleon interaction. There are four additive invariants,

isotopic spin and nucleon number. Correspondingly the

current can generally be

j;=fn, (as+br&)P+@„a +,
where a and b are 4 arbitrary numbers. We shall now
show that a=0 or b=0 is forbidden by the distinction
principle when required for the electric interaction
separately. "For b=0 we characterize the particles by
the nucleon number and the isotopic spin in direction
of a. I'= eA j will then be invariant under the operation
f-+2rsf, p —+p which changes the sign of nucleon

'OThis means, as mentioned before, that we can distinguish
all particles using an external electric field only.
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number. Similarly we see that for a=0 the distinction
principle is violated. It is clear that for p, rt positive
and p, n negative and x neutral, the electric fi.eld cannot
distinguish all particles. Thus the distinction principle
forces the center of charge of the nucleons to be dis-
placed. However, any other current with a/0 and
b/0 would satisfy the distinction principle. To get the
observed interaction we have to postulate that q=a. S+b has the eigenvalue &1,0 or q'=q. This re-
quires I

a
I
=

I
b

I
= 1, which gives the neutron and anti-

neutron charge zero."There seems to be at present no
theoretical argument why q' must be q. It would, for
instance, be mathematically possible to have an addi-
tional charge which is proportional to the nucleon
number. Why this is absent seems not to be understood,
although several people thought about this point. "

Let us finally try to couple to the electric fi.eld this
theory of (Bs) which is not realized in nature. This was
1Vs=4, X&——2 with L'=f(rgr+sg&)f Correspo. ndingly

j in L"=eAj will be /cry/ with q=ctrs+bss q'=q .is

"Thus the distinction principle for the electric held is satisfied
only if the pion-nucleon interaction exists and gives the neutron
a magnetic moment.

"See T. D. Lee and C. N. Yang, Proceedings of the Fifth Annttel
Rochester Conference on High-Eeej gy Physics, 1955 (Interscience
Publishers, Inc., New York, 1955), p. 66.

satisfied for tt =O, I b I
=2, b =O, I tt I

= 2, I
tr

I
= 1, I b

I
= 1.

This gives two nonequivalent cases q= 2rs and q =rs+ss.
A short consideration shows that both do not satisfy
the distinction principle.

To summarize we can say the following. The theory
of multicomponent 6elds, being a phenomenological
description of diferent particles, is too wide a frame-
work to lead uniquely to the observed particles and
interactions. Some conditions have to be added to ex-
clude many possibilities which are not realized in
nature, though they are mathematically possible. One
might hope that those conditions can be formulated in
a simple fashion like the quantum conditions in Bohr's
theory. We have seen that for the systems we con-
sidered this is actually possible. The requirement of a
conservation law for fermions, q'= q and the distinction
principle lead to the observed systems. A more funda-
mental theory which leads to our principles and renders
any other theory inconsistent requires, of course, an
entirely new approach.
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