
VARIATIONAL METHODS IN SCATTERING PROBLEMS 957

crude calculations show that it is dificult to obtain good
approximations from the formulations for the total
scattering amplitude. The formulations for the phase
shifts are much easier to use and, as noted by others,
give fairly good answers. Scattering amplitudes calcu-
lated from these phase shifts automatically conserve
probability. The only disadvantage in using the phase
shifts is that, at intermediate and high energies, one
must calculate large numbers of them to obtain the
scattering amplitude.

In closing, it might be worth mentioning a method
which removes some of this difhculty and gives good
results in an essentially closed form. It can be obtained
by combining the Born scattering amplitude with a few
variationally determined phase shifts. This is done by
re-writing the Born scattering amplitude, f~, given in
Eq. (17a), in the form

00

f~ (H) = P(2l—+1) tanH ~~8~ (cosH),
p t=o

where tanb && is given by Eq. (26). Subtracting Eq. (56)
from the usual phase shift expansion, Eq. (12), we have

1 ~ tanb)
f(H) fs—(H) = P-(21+1)

P t=o 1—~ tan5)
—tan8~~ Pg(COSH).

Since the Born phase shifts are not far from the correct
ones for the higher l values when the phase shifts be-
come small for most potentials, the right side converges
satisfactorily. Even if only one or two terms are retained
in the sum, the results are surprisingly good. ' Conse-
quently, only one or two phase shifts need be deter-
mined and for that purpose, variational methods are
quite satisfactory.
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The relativistic generalization of Pauli's equation for the electron has recently motivated Feynman and
Gell-Mann to propose a specific form of universal Fermi interaction. Particles satisfying this equation
are studied from the viewpoint of their electromagnetic interaction. It is found that an anomalous magnetic
moment similar to the Pauli moment violates the Hermiticity of the theory, and that only vector and
axial vector interactions lead to simp]e two-component equations, even with parity conservation. Rules
for calculation in quantum electrodynamics are developed which have definite advantages over the usual
Dirac formulation.

Y considering a description of the known fermions
in terms of two-component spinors satisfying the

relativistic generalization of the Pauli equation and
requiring that only direct (nonderivative) couplings
act in the weak interactions, Feynman and Gell-Mann'
have been led to a universal Fermi interaction which
is essentially unique' and which has a considerable
measure of agreement with experiment. While the
solutions of the Dirac equation even in the presence of
the electromagnetic field are exactly equivalent to
those of the relativistic Pauli equation, the latter
equation is more restrictive in several useful ways:
it is CP-invariant, but not separately C- and P-invariant
(though electromagnetic effects have the f'ull invariance);
it does not permit the simple addition of an anomalous

*Work supported in part by the National Science Foundation.
'R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193

(&958).
~R. E. Marshak and G. Sudarshan, as well as J. J. Sakurai,

and others, have also proposed this interaction.

intrinsic magnetic moment; it leads to a unique Fermi
interaction when derivative couplings are excluded.
It leads to simp/e interaction forms only of the vector
and axial vector types, even for parity-conserving
interactions (though this is not certain to be an
advantage) .

The present work is mainly concerned with a detailed
formulation of the electromagnetic interaction of the
two-component fermion and its relation to the Dirac
formalism. New physical results do not, and should not,
appear since the present predictions of quantum
electrodynamics are in substantial agreement with
experiment. However, one is led to calculational
methods which are simpler; also, well-known results
can be exhibited with a transparency which is sometimes
clouded in the Dirac formalism. For example, the
parity-conserving property of electromagnetic interac-
tions will be seen to follow from a symmetry between
the fermion spinor and a certain derivative spinor or,
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more simply, from the velocity dependence of the
interaction.

For brevity we shall restrict ourselves to the essential
features of the theory, to the extent of treating only
the c-number formalism. One of the advantages of
the two-component theory is that, unlike the Dirac
equation, it is susceptible to treatment by the path-
integral method as well as by the standard quantum
deld-theoretical techniques. However, such a develop-
ment is not considered in this paper.

I. NOTATION, ETC.

The theory is most conveniently formulated in
terms of 2)&2 matrices which have properties similar
to the 4&&4 P=P„y„ introduced by Feynman. Accord-
ingly, we dehne'

P =Ps+&' P=0sPw

p =po rr'p= rrvps—
(1a)

(ib)

Here p„ is an ordinary four-vector having components
(po, p) and we adopt the metric goo=1, gii=gss=gss
= —1. 0&, 0-2, 0-3 are the usual Pauli matrices, always
taken in the standard representation, and we may
regard o„as the matrix four-vector (1, —0) while 0„
is (1,rr). We have, therefore,

2=m '(II+0) (II it) —mQ it (7)

We note that II+ and II are Hermitian operators and
use

8
' Zdv-=0

to obtain
(g)

(9)

and their Hermitian adjoint equations.
We will discuss the invariance properties of the

theory in more detail below. For the present we remark
that

II. CANONICAL FORMALISM

It is our purpose to formulate a description of a
relativistic fermion of mass m in terms of a single
two-component spinor P. For convenience, however,
we introduce a second two-component spinor 0, which
at the outset will be independent of it but which we
will shortly relate to it in such a way that the observables
of the theory will be Hermitian.

Our Lagrangian density is (t denotes Hermitian
ad joint)

&v&. =gvv+ hp v, -

Io„rr„=g„„+h„„, (2b)

(10)

where the subscript c means the sign of the charge is
changed. On the other hand,

where g„„ is the metric tensor, and the antisymmetric
tensors A„„and h„„' have

&o;= —jt;o= —A'o =&;o =0.;;
(2c)

hzj= h&j ='s (0'&0'j' rrjrrz) i zv g
= 1v 2) 3,

From the above it follows that for ordinary four-
vectors k„, q„,

It+q-+q+k-= It q++q It+= 2h-„q„= 2k-q

PII =II+)

where P is the parity operation. Therefore, the equations
of motion (8) and (9) transform into each other under
C or P but are unchanged, except for the sign of the
charge, under "combined inversion" CI'.

The fields canonically conjugate to f and Qt are

while for p„=i8/Bcc„and A „, the electromagnetic
potential (times the electric charge),

P+A +A+P =P A+A P+ih„„BA,/rice„(4).
We can also write

ih, „rjA„/rjx„= ',ih„,F„„=irr (E+iB)-

= (i/m) (II+n) t,
rj(8$/rjt)

From Eqs. (8) and (13),

(12)

(13)

while
—,'ih„„'F„„= irr (E——iB). (Sb)

II+II =II„II„—~ih„„F„„

II II —II„II„~eh„,F„„.

(6a)

(6b)

Thus, with II„=—P„—A„, and II+—=P+—A+, we have
Similarly,

imlI+ic= mQ,

II II+p=m2p.

II+II y=m~g.

(14)

(15)

(16)

A comparison of (16) with (8) suggests the identification
We take A= c=1 throughout. iy=it. (17)

3 Matrices of this type have been used for the representation of
relativistically invariant quantities by many authors, especially
by B.1.van d. Waerden, Die gruppentheoretische Methode ie der
Qnajrtelmechavrjh (Verlag Julius Springer, Berlin, 1932l; and by
H. A. Kramers, Quotum j/Iechueics (Interscience Publishers,
Inc., New York, 1957, translated by D. ter Haar).

If we now operate on both sides of Eq. (17) with II
and use the adjoint of (12), as well as (9) and (13),
we deduce that

jy=Q.
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zBs./Bx
19

and since
20

II+Q =mP,

P f=mQ+A f, etc. ,

The last two equations can now be rewritten as fusing The current, of course, obeys the continuity equation as

(12) and (13)$ (P—e)&+a'P o (P—+Q)'Q+Q"P~,

with

(rt, —~ D—Pm) ( (=0,
Ep)

p
—e 0~ (0 i y

0 ~) (1 0)

(21)

(22)

For y„= (p,po) and ys=ipiysysyp we then have

(0 oy )1 0~
»=I

&~„ 0 ) (0
(23)

The standard form of the Dirac equation is obtained
from Eq. (21) by the unitary transformation

which expresses the relation between f and Q that will

make the observables Hermitian. It is important to
note that we can consider P to be obtained first by
solving Eq. (8); the auxiliary spinor Q is then obtained
by the operation indicated in. Eq. (20).

Equations (19) and (20) can be written as a single
Dirac equation4

we have
its„/Bx„=O. (29)

III. FREE-PARTICLE STATES

Setting A=O in Eq. (8), we obtain as elementary
solutions:

P(x)=Pe '& *. (31)

P is an arbitrary constant two-component spinor. I In
(31), and hereafter, in referring to free-particle states
we shall mean a constant spinor whenever no explicit
argument is written. ) Particle and antiparticle states
have pp respectively positive and negative; the four-
momentum of an antiparticle is —p. The auxiliary
spinor Q(x) is then, from (20),

with
Q(x) =Qe-'&', (32)

The component
sp ——ftP+QtQ (30)

is positive definite and must therefore be interpreted
as the particle density, not the charge density, despite
the equations being second order in the time.

1 )0 —iq
S=exV(zps~/4) =—(1+zps), ps= I . l. (24)

0)
P P=mQ, P+Q=mf. (33)

On substitution of (31) and (32) in Eq. (26) with
A =0, we obtain the energy density:

F.=pp(ptp+QtQ) = ppsp. (34)

States of negative energy are to be reinterpreted as
antiparticle states of positive energy according to the
method of Feynman.

We next consider the normalization of the particle
density. We use (33) to write Eq. (30) as

That 1s~

~Qq 1 ~f+Q~

(if' V2 (f Q)—
satisfies. the usual Dirac equation.

Returning now to the two-. component formulation
and Eqs. (17) and (18), we write the Hamiltonian
density

sp=m spt(tns+p p )f.

m +P P =Pp +P +tn 2Ppo' P=2PpP—
(35)8$ BQt

X=xt—+ oo
—Z

Bt Bt
(25a) Since

( Bg cjQt )X=i~ ft Q[ m(f—tQ—Qtf)— —
a~ at )

we have
(25b)

so= (2po/tns)ftp p= (2po/m)ptQ= (2po/m)Qttp. (36)

Setting so= 1 corresponds to the Dirac normalization
Using (19) and (20) to eliminate BP/Bt and BQ/Bt, we
obtain is to take
X=m(ftQ+Qtg)+fry pP+QtA pQ

+Pta II/ (o.IIQ)tQ, (26)—

which is evidently Hermitian. This is also true of the
current density

s„= i (BZ/8$„—)P+iQt (82/BQ„t)
=go „f+Qto„Q. (27)

4A di6'erent representation of the Dirac matrices is used in
reference 1. See also Appendix IV.

y&Q=Qty= po/~ p, ~

=—.. (37)

sp= (2pp/m) e=2~ pp~/ . m(38)
Transition amplitudes are then proportional to matrix
elements of the form (Q&(x), Pr(x)).

Now introduce normalized spin eigenfunctions'
' Note that in the free particle case P(x) may be chosen as an

eigenfunction of spin in an arbitrary direction, unlike the Dirac
case. However, the direction of the momentum is still the most
convenient choice for most purposes.
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X,=X~ such that

0 XPs SXs& Xs ~s' Ass

Then if p= a,x„we find

(39)

'(p —lpl)4= (p+ III) 4 (4o)

From Eqs. (37) and (39), we obtain

~=~(po+~I I I)-'I a, l'

and therefore, in accord with (37),

a =&'I (po+&I pl)/~l'*.

In summary of this paragraph, we have

(41)

(42)

t o) (o') (b')(b)

FIG. 1. Diagrams for the second-order interaction. The interac-
tion matrix is the suIn (superscripts have been olnitted) of
(a) (p"—m') '(puA2+A~p') (p'A&+A~pq); (a') —A2A&, (b)
(p" —m ) '(p2A&+A+") (p"Ag+Agp, ); (b') —A, A~.

/=a, X„Q=a .X„a,a,= c. (43)

To calculate the probability of transitions between
plane wave states caused by an interaction matrix M,
we frequently have to evaluate the sum over spins of

I (Q2,Mpg) I'= (QgtMpg) Q gtMtQ2). (44)

While P.&P&f&t is not very simple, we can make use of

Qfggt ——QQgpp= eg(x~x+t+x x t) = c,I, (45)

(in the Klein-Gordon theory) scalar form. For compari-
son with the diagrams usually drawn for the Dirac
equation (see Fig. 1) it is convenient to associate
with each fermion line containing successive single
vertices (say, in the order A&, A2) a double vertex at
which the interaction is —A2+A~ . As there will
always occur the corresponding diagram with the
"single" interactions in the reverse order, the two
"double" interactions will yieM

—A,+A, —A,+A;= —2g, .g, . (52)

where I is the unit matrix, to write

Q I (Q2,Mpg) I

' =Q (Q2tMpg) (Qgt3II$2)
sl sl

= eg (Q2tMM$2),
with

(46)

Although the notation is rather cumbersome, it will
be seen shortly that the superscripts & can safely be
omitted and that transition probabilities will assume
a simple form.

Consider the "single" vertex interaction

M=m 'pg+Mtp2 . (47) M&'& =p2+A—+A+p,—. (53)

Similarly, on summing over the final spins, we obtain

Z I (Q2,Mp~) I'= ~~~2»CMMj.
sl~s2

(4g)

To obtain results for particular spin situations, one
inserts the conventional spin projection operators, '
e.g. , 2 (1&v p). The usual "energy" projection operators
are rot required. It may appear that they are already
contained in the de6nition of M, but we shall see in
the next section that this is not the case.

IV. QUANTUM ELECTRODYNAMICS

We write Eq. (8) in the form

(p' —m')p(x) = df(x),
with

g =p+A—+A+p- —A+A,

(49)

(50)

where p„=is/Bx„and for A+A we can equivalently
write A'. The corresponding integral equation,

tp(x) =go(x)+ (p' —np) 'dp(x), (51)

can be interated and transformed to momentum
representation, yielding the usual S-matrix formulation
of the Klein-Gordon equation except that the "vertex
interactions" are given by (50) instead of the usual

Since pm+, A—,etc., are Hermitian matrices, we have

M&"t=A p2++pg A+.

From Eq. (47) and pp= pp=m', we get

3II&~~=pg+A +A+p2 .

(54)

(55)

which does not spoil the alternation, and since these
are precisely the algebraic relations for the Dirac
p, q, the procedures for evaluating traces are unchanged.

A further simplification, as well as additional physical
insight, can be gained by introducing into (53) the
momentum transfer q= p2 —p~.

M&" =-'(q+A- —A+q-)+ (pg+pg) A.

It can be seen that M&" in the form (55) exchanges

That is, 3II&" is 3f~" with the factors written in reverse
order and with superscripts plus and minus inter-
changed. This is, indeed, the general rule for writing
M for an 3/I of any order. (The proof of this "backwards
rule" is contained in Appendix I.) Thus in writing M,
3II or Trt M3II] there is a uniform alternation of
"plus" and "minus. " We can therefore omit the
superscripts. Furthermore, the traces are evaluated by
successive applications of

p'r+e'p =2p ~ (56)
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do= (pi+ps) A —A' (58)

subscripts 1 and 2 in M'". But this is equivalent to
writing (57) in reverse order and exchanging super-
scripts. The "backwards rule" is thus valid also for
the form (57) and one need not apply the definition (47).
The same remark applies to the term —A+A (see
proof in Appendix I).

In momentum representation the interaction
consists of de+ de where the "charge" or Klein-Gordon
interaction is

11+II-y(x)= (ms —i1,')it (x),

11-H~(x)= (~ —~,')Q(x).

(62)

(63)

Since 8~' contains no differential operators, the
canonically conjugate fields (12) and (13) are
unchanged. Consequently, Eqs. (12) and (13) hold and

To obtain this interaction let us add to the Lagrangian
density a term Qtde'P, where by 8s' we mean (X/res)

Xih„.F„,. Equations (8) and (9) become

and the "spin, " or additional Dirac, interaction is imII+q (x) = (ms —de'g (x), (64)

V. ANOMALOUS MOMENT AND
OTHER INTERACTIONS

In the terms of the preceding discussion one is led
to inquire whether it is possible to consider an arbitrary
mixture of "charge" and "spin" interaction. That is,
can we write

8= do+ (1+X)de P (61)

If so, this would correspond to an intrinsic anomalous
magnetic moment Xe/2ris having different dynamical
properties from the familiar Pauli addition to the
Dirac Hamiltonian. t It can be seen by reference to
Eq. (6a) that (61) is equivalent to multiplying the
term h„„F„„by(1+X), and that such a term cannot be
formed by interation of the Pauli-Dirac Hamiltonian. f
Like the Pauli addition, it violates what Gell-Mann has
called the principle of minimal electromagnetic interac-
tion. In this sense a theory in which it would be
impossible to add such a term would be distinctly
advantageous. This appears to be true of the two-
component theory. '

6 This situation has been discussed from a somewhat different
point of view by R. P. Feynman /Phys. Rev. 84, 108 (1951),
Appendix Dg. There the iterated Dirac equation is considered
from the standpoint of the path-integral formulation and the
connection with the classical limit. It is pointed out that transition
probabilities are positive dehnite only if ) =0 (fermions) or ) = —1
(bosons). Thus P«0 for fermions would violate not only the
Hermiticity of the theory but the connection between spin and
statistics as well. The conclusion made in the above work that
projection operators are necessary does not hold in our case, but
arises there from the fact that the iterated Dirac equation has
four components.

This separation of the interaction can be useful for
approximate calculations. Evidently only dt.- contributes
for small momentum transfers. 8g can also be written as

da=q+A —
q A= —A+q +q A (60)

which is useful as q A is often zero (e.g. , for free
photon interactions or potential interactions). do is
merely a number and does not enter in the calculation
of traces. Since there are no "energy" projection
operators and only momentum transfer and polarization
vectors occur in 8g, traces are aheays simpler than
those written in a straightforward way from the Dirac
theory. Examples are given in Appendix II. ix=f, iy=Q, (67)

to make (66) Hermitian. That is, we must take X=O, '
since other values are excluded by (65).

It is tempting to try to generalize the above conclu-
sion and to see what other interactions, for example
with meson 6elds, have a natural place in this theory.
Clearly the exclusion of the interaction dq' is connected
with our inability to factor the second-order equation
into a pair of equations of 6rst order in the space and
time derivatives, i.e., to write it as the Dirac equation.

Conversely, we may ask which of the relativistically
invariant interactions possible in the four-component
theory lead to simple linear second-order two-compo-
nent equations. By consulting Eq. (23) one sees that
the vector and axial vector interactions are represented
by "odd" Dirac operators and scalar, tensor, and
pseudoscalar by "even" Dirac operators. Thus only
the V and A interactions can be written simply in the
two-component form. This conclusion holds even for
the strong parity-conserving interactions. (In the next
section we show that the class of parity-conserving
interactions contains only those which are symmetrical
to exchange of P with Q.)

For example, the axial vector interaction with a
pseudoscalar meson field y gives (with q„=iraq/Bx„)

t'Q(x) q (Q(x) i
(p.—v v.( ))v. l

(P(x) ) hP(*)] (68)

7 There is, of course, the possibility X= —1 with Q=O. But this
is just the Klein-Gordon theory.

8 This has been remarked previously by R. P. I"eynman.

Thus p(x) and Q(x) satisfy the same equation only if
the commutator of II and de' vanishes (e.g. , for
constant fields), and we cannot in general identify
them. Similarly, we cannot identify x(x) with 1t (x).
However, if we examine the Hamiltonian density,
Eq. (25a), using only Eqs. (12) and (13) to eliminate
the time derivatives, it reads, for 20=0,

X=rl(yty+QtiP) ixte II/—i(rr IIQ—)tp (66).
There is essentially only the choice previously made:
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From Kq. (23) we get

(p —i3 (x))f(x)=~(x)
(P++iq+(x))Q (x) = 223|P (x),

or
(P++i3+) (P —i3 )4 (*)=~V(x)

(69)

(70)

(71)

On the other hand, the pseudoscalar interaction gives

and

(Q(x) ) (Q(x) )I=( +'".(x))l
&g (x)) (P(x))
P

—igx) = (123+i'(x))Q(x),

P+Q(x) = (223 iq—(x))|P(x),

P+(223+i@) 'P —
|P(X—)= (213—iq)f(X).

(72)

(73)

(74)

(75)

Similarly the true Pauli anomalous moment (or other
tensor interaction) will introduce the fields unpleasantly
in the denominator.

This suggests the postulate that only V and 2
interactions occur in quantum theory. At each vertex
either V (electromagnetic) or A (meson) interactions
occur. When V and A interactions can occur simul-
taneously with a given Geld, parity nonconservation
results.

VL INVARIANCE PROPERTIES

We have noted before LEq. (10)]that charge conjuga-
tion C consists of complex conjugation followed by
the unitary transformation S=02. Thus, under C,
Eqs. (8) and (9) become

(Ij.—D+) co 2&*(x)=212'024*(x).

(a+a ),~@*-(x)=m2~@*(x),

(76)

(77)

where c means that the sign of the charge is changed
(or A„~—A„).We can express this result by defming

po(x) =02Q*(x), Q~(x) =02/*(x). (78)

A theory will be invariant under C if its physical
consequences are independent of the exchange of
1P(x) and Q(x).

Similarly, under the parity operation P„

PII+=H, PII =II+. (79)

(Q„DE|Pl)*=(Ql,M|P2). (80)

Under |P1~Q1, |t2~Q2, the results will be unchanged
except that "plus" and "minus" superscripts are
exchanged, which has no physical consequences.
Under combined inversion CP, Eq. (8) becomes

That is, Pf(x) satisfies the Q equation and PQ(x)
satisfies the f equation. The theory is P-invariant if it
is invariant under f&+Q. Electrodynam-ics is C- and
P-invariant since

where loop(x)=o21P. (x), and we need not refer to Q;
f~~(x) describes the antiparticle. Of course we did not
really 23et,d to introduce Q(x) for discussing parity
conservation; it is merely a convenience. Instead we
could have referred to P(x) and its "derivative
function. "

The Feynman —Gell-Mann proposal can now be
briefly stated. It is that the parity-nonconserving weak
interactions are to involve only one of the pair P(x),
Q(x), and no derivatives. In the Dirac formulation, since

rQ& r»
iO) &0)'

we have

t Oq (Oy

Ey) &p)
' (82)

using 0 only, say, is equivalent to writing everywhere
for 23 the expression —,'(1+F3)21.

APPENDIX I. PROOF OF "BACKWARDS RULE"

Consider two of the diagrams for an eth order
process, as in Fig. 2. We can write the corresponding
part of the interaction matrix (omitting superscripts)
as

M = . - (p3e2+e2p2) K-'(p2el+elpl) —. e2el (A1)

with K=P22 —2232. Then, by Eq. (47), we have

M=2N LPl(elP2+Plel)K '(e2P3+P2e2) ' ' Pj
—plele2. . .pg]. (A2)

At the position of K ' in (A2) insert p2p2/p22 and
multiply one factor p2 to the left, one to the right
(and use P12= 2232):

L(PlelP2 +223 elP2) (KP2 )
X (p2e2p3+p2 e2) ' 'pf plele2' pf] (A3)'.

FIG. 2. Two diagrams
for higher order process.
The circle represents a
vertex interaction of
arbitrary complexity.
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(II+1I )cf~~(x) =213'lp~~(x), (81) (a)
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For m' in the first bracket insert P2' —K.

~=m '[-(p,e,+e,p2)K (p2e2p3+p2e2)' 'pf
el(e2p3+p2e2) ' pf plele2 pfj

Now in the first term of (A4) write K+m' for P22.

The term from ~ cancels the last term and part of the
second term of (A4) and we obtain

M=m DP181+eiP2)K (P282P3+m'82) ' Pf
—eie2P3 .Pfj. (A5)

FIG. 4. Diagrams for
the self-mass.

p-k

The second bracket of the first term of (A5) has now
a form similar to the erst bracket of the first term of
(A3) and the same procedure can be continued (includ-
ing now the term containing the double vertex e2e3, etc.).

To see what happens when the last fermion line

Pf is reached, let Pf ——P3. Then as Pf =m, we find

M= (p,e,+e,p2)K (p2e2+e2p3) ele2. (A6)

This completes the proof that M is M written in
reverse order.

APPENDIX II. CALCULATIONS IN QUANTUM
ELECTROD YNAMICS

Ke give here two short examples of calculations
with the methods described in the text. Naturally, the
advantages of the method are better exhibited in
longer examples, such as the bremsstrahlung problem. .

a. Comyton Scattering with Photon Polarization
Vectors Parallel (Fig. 3)

Assume ei ——e2 ——e=(0,e); initial electron at rest.
Then, as e ki=e. k2 ——e Pi ——0, by momentum conserva-
tion e P2

——0. Since (Pi+ki)' —m'=2euui, (Pi—k2)' —m'
= —2ns~~, the terms of Fig. 3 contribute

(I) (2nuoi) '(—k2e) (hie) = (2mcoi)-'( —k2ki),

(II) (2~2) '(hie) (k2e) = (2~2) 'kik2,

(III) —2e.e= 2.

The Klein-Gordon result is entirely contained in (III).
Adding, squaring, and taking the spin average Lthe

only nontrivial trace is Tr(kik2kik2)=4(ki k2)'j, we
obtain

pg
kg k)

(a)

As ki k2= m(coi —cv2), the result is

4+ (~1~2) (~1 ~2) &1/"2+~2/" 1+2. (Ag)

t'd4k (2p„—o „k)(2p„—ko.„)

(p-k)2-m2

f'd4k p2+k2 —p k —1»2 (p-k)2 —m2

=4 t (p k+m')(k' 2p k) —'d4k/k' (A9)

where in the last step we have put p'=m'. This result
is equivalent to the usual result and can be treated by
the usual convergence techniques. Note, however, that
no matrices are left in the result (A9).

APPENDIX III. STRONG V AND A INTERACTIONS

In view of the possibility that only V and A interac-
tions occur in nature, it is interesting to see how this
suggestion can be motivated starting with the free-
particle Dirac equation iVQ(x) =mP(x) which is
usually considered to have elementary solutions

b. Self-Mass

To illustrate the interaction with a virtual photon,
consider Fig. 4. The contribution of diagram (a) is
—cr„r„=—4, where the sum is taken over four directions
of polarization of the virtual photon of momentum k.
The single vertex operator at the upper vertex of (a)
is pe+e(p k), wh—ich is replaced by 2p„o.„k for-
summing over the polarizations; similarly at the
lower vertex. The mass correction d,m is then (e2/2m~i)
times

p)+ k)

P)

pl —kz k) kg

kg

P)

p(x) =me '&', with per, =me (A10)

However, this is not the most general solution which is
characterized by the four-vector p„, but rather

P(x) =me '" *+a73ue'& * (A11)

FIG. 3. Diagrams for the Compton eB'ect. with a arbitrary, since Py3N= mn Symm—etry . con-
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siderations' suggest a.=&1, and to be definite let us
choose u= i.

For a local interaction with any boson Geld p (of
any tensor rank, with indices suppressed) we have, say,

I= )~(gz(x)0$, (x)).q (x)dz. (A12)

and using (yozz) = —Nyo, we get

I={(0)—(yoOyo)) zo'8(pz —
pg —9)

+{(Oyo) —6 oO)) q '5(pz+ pq —q). (A13)

We have assumed q (x) = p'e '& '* and let (zzzOzz~) = (0),
etc. Evidently I=O unless 0 and y5 anticornmute.
Thus U and 2 are selected. Momentum conservation
insures that in any given interaction only one of the
brackets of (A13) will contribute. Therefore parity is
conserved. If, on the other hand, we could write

e appear only in rotational invariant forms, they are
subject to their usual transformation group without
disturbing the formalism. As this is necessary, we are
restricted to Dirac matrices P and n of the form

4=p u+zzo, += (y v+oo)e (A17)

where p~, p2, p3 are the 4&(4 anticommuting matrices
introduced by Dirac, having properties similar to
0-~, 0.~, a.3 and commuting with the latter; also No and
vo are real numbers and u and v are real numerical
vectors, their reality being demanded to make P and n
Hermitian. As P'=I, where I is the unit matrix, we
must have either F0=0 or u~ ——12=0, using the standard
representation of the p;. Similarly we show that either
vo=0 or v&=~2=0. However, the required anticommuta-
tion of P with a component of n eliminates three of
these four possibilities, leaving only no ——~0=0. We
have, therefore, that

P(x) = (1+go)ue '&.*, (A14)
0= g'u= pity Q= g' VIF= pvIJ (A18)

y=Pzz=zp we=zp„e.

The possibility of describing a Dirac particle by a
spinor having two components zero in all coordinate
frames connected by proper Lorentz transformations
rests on the fact that ys can be written in diagonal
form. We consider, therefore, the possible choices of
y and yo ——P under the assumption that Vo ——po. As

i~1l (x) =
zzzx (x) AzzzP(x),

iwy(x) = zzz11 (x).

(A15)

(A16)

For m =0, (A14) is a solution and this is the basis of
the two-component neutrino theory, since (1+go)N
has a two-component representation. However, (A14)
solves the relativistic Pauli equation even for finite
mass, which is the basis of the Feynma. n—Gell-Mann
theory.

p5 ~1&2&3 ~pvo 1&2&3 pvp (A20)

we have that v= (0,0, —1). Since u v=0, u= (l,nz, 0)
with P+zzz'=1; also w= (—zm, l,0).Thus, with K=l i , zzz—

with u and v orthogonal unit vectors. Define also
then we could have both U and A and maximum parity
nonconservation would follow. But (A14) does not (A19)
solve the Dirac equation with es/0, for

APPENDIX IV. UNIQUENESS OF TWO-
COMPONENT REPRESENTATION

t'0 «) ( 0 «o)

0) (—«e 0) (A21)

As it may appear that some of the foregoing conclu-
sions have been based upon a rather special representa-
tion, we shall study here the possible equivent two-
component representations.

It is hardly necessary to remark that as the matrices
' For example, we might require symmetry under mass reversal,

or that y&P be equivalent to P.

The Dirac operator II„y„applied to (Q,P) then yields

«~II+0 =nsP,

«II P=zzzQ,

(A22)

(A23)

which give, on substitution, precisely Eqs. (8) and (9)
of the text.


