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FIG. 6. Graphical represen-
tation of Eq. (9).

(the graphical equivalent of which is shown in Fig. 6),
they are a closed system, making it possible to express
I' and G in terms of I'0.

In conclusion the author wishes to acknowledge his
indebtedness to I. Y. Pomeranchuk for valuable dis-
cussions.
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Modifications of the Hulthen-Kohn variational principle are introduced with the hope of increasing the
usefulness of variational methods. Although no simple formulation of general utility is found, it is shown that
there exists a great variety of stationary expressions which make possible a greater freedom in the choice of
variational principles than has hitherto been demonstrated. Some criteria for the selection of special forms
are discussed.

I. INTRODUCTION

~CONSIDERABLE attention has been given in the~ past to the development of variational principles
for scattering problems. ' ' However, the utility of these
principles is limited by the difficulty of finding good
trial functions and evaluating the necessary integrals,
particularly so for the total scattering amplitude. In
Schwinger's variational principle, the impediment is the
evaluation of the double integral containing the Green's
function. Even for plane waves, which are the simplest
trial functions, this integral is not easy. On the other
hand, the Hulthen-Kohn variational principle, which
involves simpler integrations, is limited by the difFiculty
of finding adequate trial functions. 'She structure of this
variational principle is such that it requires better trial
functions than Schwinger's principle. For example, plane
wave trial functions, which give a result similar to the
second Born approximation in the Schwinger case, yield
merely the first Born approximation in the Hulthen-
Kohn case.

Our main purpose in the present paper is to discuss
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II. FORMS OF THE VARIATIONAL PRINCIPLE

Schrodinger's equation for a two-body interaction can
be written in the dimensionless form

where

and

t
|72+k'—V(x)]if (x) =0,

x = r/a, k' =2ma'E/h',

V (x) = (2ma'/h') Ve(ax).

Here m is the reduced mass, E is the energy in the
center-of-mass system, Vo is the potential energy of
interaction, and a is a characteristic length associated
with the range of the potential.

The well-known integral equation corresponding to
Eq. (1) is

Pa(x) =e'~'*—
~

~G(x,x') V(x') P~(x')dx', (2)

what might be done to overcome these difficulties. As
we shall show, the Hulthen-Kohn and Schwinger prin-
ciples are not the only stationary expressions for the
scattering amplitude. There is a limitless number of
other forms which may be obtained in a simple way.
However, we have been unable to exploit this freedom
sufficiently to construct variational principles entirely
free of the troubles mentioned above. In any case, the
existence of this great variety of forms is of independent
interest.
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where the Green's function is

~in) x—x'(

where

g((x,x') =ik jp(kx&)h&n& (kx&),

g ~(x)~e'~ *+f(k +k-') (3)

where k' is the propagation vector of the scattered
wave. The amplitude for scattering from the direction
along k to that along k' is given by

G(x,x') =
4n. (x—x'f

The subscript k on P~(x) means that the incident wave
is along the direction of k. At large distances from the
scattering center, we have tan6)

ei(kx ylw) —
(10)w((kx) sin(kx ——,'ln-)+

1—i tanbg

The relationship between the two radial functions is
thus seen to be

u, (kx) = (1—i tanS)) w((kx). (11)

and where hq&'&(kx) is the spherical Hankel function.
The function wg(kx) satisles Eq. (5) and the condition

wi(0) =0,

f(k~k') = —— e '"''*'V(x')Pq(x')dx'.
4~&

In either case, the scattering amplitude is given in
(4) terms of the phase shifts by

When the potential is spherically symmetric, expan-
sion of the wave function in spherical harmonics yields

00 tan5~
f(k-+k') =—P (2l+1) P((cos8), (12)

k &=0 1—i tansy)

- d2 l(l+1)
+k' —V(x) — u~(kx) =0,

dS x'

where 8 is the scattering angle; that is, the angle be-
tween k and k'.

The Hulthbn-Kohn principle is based directly on the

where the N~(kx) are the radial wave functions. The Schrodinger equation (1). In Kohn's form of the prin-

corresponding integral equation is ciple, it is required that the trial wave functions have
the correct asymptotic form; that is, that

N&(kx) =kxj((kx) — Gp(x, x') V(x')N&(kx')dx', (6)
0

where
and

P„(x)~e~~ x+f, (k~k".)e~~~/x

P ~ (x)~e '"'*+f2(
— k'~k")e—"*/x,

(13)

G&(x,x') = —kxx' j((kx&)e&(kx&).

Here x& is the smaller and x~ the larger of x and x' and
j& and e& are the spherical Bessel and Neumann func-
tions. The function u&(kx) must satisfy the usual
boundary condition

Ni(0) =0, where

4grf(k~k') =4n-f, (k—&k')+ I, (14)

where f~ and f2 are trial scattering amplitudes in the
indicated directions. Then Kohn's variational principle
states that the expression

and) for x~00 )

N((kx)~sin(kx —-', lm)+tanb( cos(kx ——',ls), (7)
I= P, (x)[0+k'—V(x)]fg(x)dx (15)

where 8~ is the phase shift of the 3th partial wave. The
usual expression for tan6& is found by letting x approach
infinity in Eq. (6),

tanb( ———)I xj((kx) V(x)N((kx)dx.
0

Instead of starting from the differential equation (5)
to form (6), one can start from the integral equation (2)
and, by expanding the wave function in spherical
harmonics, obtain an integral equation for a slightly
diferent radial function, zv&, namely,

w&(kx) =kx j&(kx) ——
k

X g( (x,x') V(x') w( (kx') x'dx', (9)

Pg(x) = e'" *+U(x),

P g. (x)=e '"' *+W(x),
(16)

where U(x) and W(x) are scattered waves which must
have the asymptotic forms given in Eq. (13). Notice
that U and H/' then become the trial quantities which
enter into Kohn's principle. To find a form which is
independent of the amplitudes of U and W, assign
amplitudes a and b, respectively, to them. The integral

is stationary for independent variations of P& and P &.

about their correct values as given by Eq. (1).
Observe that this variational principle depends on the

amplitudes of fz and f &. Evidently, it might be
advantageous to rewrite this result in such a way that
it is independent of the amplitudes of the unknown trial
fields. One way of accomplishing this is the following:
let the trial functions be expressed as
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(15) may then be expressed as

I=47r fii (k~k') 4—m afi(k &k—')+aA'+ bB' a—bC',

where fe is the Born approximation scattering ampli-
tude,

47rfii(k~k') = — e '~' *V(x)e'"'"dx, (17a)

4irf(k —+k') =A,B,/C„ (19)

(20)

venience we briefly describe the method. Recall that
Schwinger's principle is

and where

4—irfi(k +k—') = t e '"'*f'|72+%'jU(x)dx (17b)

B,= — t e"*V(x)y,.(x)dx,

A'= —jte '~' *U(x)U(x)dx, (17c)

(17d)

C,= — fg(x) V(x)P i, (x)dx

—Jr J~fk(x) U($)G(x)x )V(x )lp—k&(x')dxdx'.

O'= — I IV(x)P"+O' —V(x) jU(x)dx. (17e)

Then Eq. (14) becomes

4'f(k +k') =4irfe—(k &k')+a—A'+bB' abC'—

Making this stationary with respect to independent
variations of a and b, we obtain

Instead of choosing 1b& and g i, simply as plane waves,
one can construct more elaborate trial functions from
generalized sets of partial waves as follows: expand f~
and f i,. in a set of functions p„~ and p„"' which are
eigenfunctions of some symmetry operator which com-
mutes with the Hamiltonian'; for example, the spherical
harmonics or the eigenfunctions of the parity operator.
When it is required that Eq. (19) be stationary with
respect to variations of the coefFicients of the p's,
Schwinger's principle takes the form

4rf(k—&k') —4irfe (k—+k') =A'B'/C', (18)
~ A,„B,

47rf(k +k') =—p
n=~

(21)

which we shall call the amplitude independent form of
Kohn's principle. '

Now, as has been mentioned, the difhculty in using
the Hulthen-Kohn principle is that of constructing ade-
quate trial functions. The utility of amplitude-inde-
pendent forms in this connection is indicated for the
Schwinger principle by Gerjuoy and Saxon. ' For con-

where A,„,8,„, and C,„are the same as A„B„and C,
but with fz and P & replaced by p„"and g„"'.In case
the P's are the spherical harmonics, (21) becomes the
usual infinite sum (12) over the angular momentum
states in which the phase shifts, 8~, are to be evaluated
by Schwinger's principle for the phase shifts:

Ca

V(x)wp(kx)dg —
I w, (p~) U(~)g, (x x ) U(x )w, (kx )xx de~

Jo 0 0
k(cotb i —i) =

ji(&x) V(x)wi(kx)xdx
0

(22)

Now, if such generalized sets of partial waves are to be
utilized in Kohn's formulation, it is helpful to establish
the connection between the principles for the scattering
amplitude and phase shifts as was done in the Schwinger
case. ' The Kohn principle for the phase shifts requires
that the radial trial functions u~ have the correct
asymptotic form

Ni(kx) sin(kx —-,'hr)+tanbii cos(kx —i2hr), (23)

5 This form was found independently by H. E. Moses, New
York University Report CX-27, July, 1956 (unpublished).' E. Gerjuoy and D. S. Saxon, Phys. Rev. 94, 478 (1954).

where
k tan& i

——k tan&ii+I, (24)

l(l+1)I= I Ni(kg) +k' —U(x) — ~i(kx)dx
dx' S'

is stationary for variations of n& about its correct value.
The amplitude-independent form of this, corresponding

7 R. J. Finkelstein and M. Moe, Phys. Rev. 100, 1775 (1955).

where 6~~ is a trial phase shift. Then one obtains the
expression
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to Eq. (18) for the scattering amplitude, is

k tansy)=k tanb)g—
dp

kxj&(kx) V(x)N, &(kx)dh

d2 l(l+1)
N. ,(kx) +k2- V(h)—

0 .dh g'
N, &(kx)dh

(25)

where

k tanb&&= — (kxji(kx) j'V(x)dx, (26)

w&(kx)
Pg(x) = P n, Pi(cos8i),

ks

which is just the Bonn approximation, and where

e, &(kx) =I&(kx) —kxji(kx) (27)

is the scattered part of the radial wave function.
To find the relationship between Kohn's principles for

the amplitude and phase shifts consider erst Eq. (15).
Expand the trial functions in spherical harmonics; vis. ,

4 f(k~k') =ca/C, (31)

not conserved. How can we arrive at a more satisfactory
variational principle for the phase shifts' An obvious
procedure is to try the amplitude-independent form
(18), rather than Eq. (14), as the basis for the expansion
of the scattered fields in spherical harmonics. After
some manipulation, it can be seen, however, that there
again results a (different) complex approximation for
the phase shifts. To obtain a method which does work,
it is Grst necessary to construct a modified amplitude
independent form of Kohn's principle as follows: Iet us
choose trial functions f q (x) and U(x) and make Eq.
(14) stationary with respect to independent variations
of their amplitudes. We obtain then

(28) where

a=4~f, (k k'),

where

cos8, = (k x)/kx,
8= — P g. (x) V(x)e'".*dx,

(32)

cos82 ——(—k' x)/kx.

The condition that the wave functions must approach
the correct asymptotic form (13) means that the radial
wave function w& must satisfy (10) with 8& replaced by
8ii and that the constants ni and Pi must be F(21+1).
Equating coeKcients of the spherical harmonics in
Eq. (14), we obtain

k tanbgg
+

1—i t.an8~ 1—i tanb~&

C= — P ~ (x)LP+k' —V(x) jU(x)dx.

wi2(kx)
P-~ (x) = Q b Pi(cos82),

t~ pg
(33)

00 w, &&(kx)
U(x) = Q i'(21 +1)a i Pi(cos8i), (34)

lM kx

Now the expansions in spherical harmonics can be
written in the form

d' l(l+1) where the trial function zvi2 does not have to approach
~ ~

k' —V(x)— the correct asymptotic form, ' but w, n must asymp-
totically approach

In terms of Nq, this is

I~+ (1 i tant~i) k tan—b ii

iIg+k(1 —i tanbii)
(30)

where

gi(ka fir)
7

tan8gg
7/1

1—i tan8)g
(35)

This is a stationary form for tanb ~, but it is not the same
as Kohn's form (24). Thus, we have two different
variational principles for tanb~ in terms of the same
quantities, tan8ii and Ii. Note also that Eq. (30) has the
undesirable feature that it gives complex approxima-
tions to the phase shifts. This means that probability is

The requirement that Eq. (31) be stationary with re-
spect to arbitrary independent variations of a& and b&

It is easy to show that in the Kohn variational principle, only
the function appearing on the right of the differential operator,
namely P&, need satisfy the correct boundary condition at inanity.
Here we take advantage of this freedom in the choice of f
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leads to Eq. (12) in which the phase shifts are given by

tanbq
kpii xj((kx) V(x)w(p(kx)dx

p

or, in terms of the N~,

1—i tan8~ p d l(l+1)
wi2(kx) +k' —V(x)—

0 . dx x'
w, ii(kx)dx

(36)

k cori=

r d' l (1+1)

Nip�(kx)

+ks —V (x)——
0 dS g2

u, ii(kx) Jx

(37)

tansy), )" xjt(kx) V(x)N„(kx)dx
0

Lr(x) = —)t G(x,x') V(x'g g(x') dx',
(3g)

This gives real approximations to the phase shifts.
Furthermore, this variational principle for the phase
shifts may be obtained from Kohn's principle (24) by
making it independent of the amplitudes of I~~ and u, ~~.

Another interesting observation is that Schwinger's
principles for the total amplitude and phase shifts may
be obtained directly from Eqs. (31)and (36) by choosing
trial functions

(x) =4'- (x)

tion becomes

a(ktanSt, ) p aI& p

Since there are many functionals H which satisfy these
conditions, it is to be expected that different starting
points could well lead to different variational principles
for the phase shifts.

The preceding remarks apply equally well to the
scattering amplitude. To make them more general, let us
consider variational principles for a quantity Q which
we write

and Q=H(si, sp, .,s„). (43)
wip(kx) =wt(kx),

(39)
w, ti(kx) =—x gt (x,x') V(x') w )(kx') x'dx'.

III. MORE GENERAL VARIATIONAL PRINCIPLES

We have seen in the above discussion that there are
diferent stationary expressions for tan5& in terms of the
same quantities. For example, Eqs. (24) and (30) are
completely different variational principles for tanb& in
terms of the specific quantities k tanb&& and I&. To see
how this is possible, note first that the stationary
property of Kohn's principle (24) is a consequence of the
relation

The quantities s, are usually integrals which are linear
or bilinear in the trial functions. These might be the
k tanb~~ and II, which appear in Kohn's principle, or
they might be the A', 8', C', A, 8, or C which appear in
the amplitude independent forms for the scattering
amplitude. For variations of the trial functions about
their correct values, the s; will have corresponding
variations R;. Let H be chosen such that, for the correct
trial functions,

H(sip)s2py ' ' ' ysnp) Qpi (44)

where Qp is the correct value of Q. If, now, it is required
that

8(k tanlii) =—8Ii (40) (45)

BH BH
5(tanb (,)+

8(k tan8(i) p Ii 0

BIi
——0, (41)

where the subscript zero denotes evaluation at the
correct wave function. Upon. using Eq. (40), this condi-

for permissible variations of N~ about the correct wave
function, that is, variations such that u~ has the
correct asymptotic form. Now consider a functional
H (k tan5&i, I&) which satisfies the conditions that for the
correct u&, H reduces to k tan6&, and that H is stationary
for permissible variations of u~. Evidently, such a
functional provides a stationary expression for k tan8~.
The second condition means that

H becomes a stationary expression for Q. Of course, the
bs; are not all independent and it is just the relations
between them which provide conditions for the determi-
nation of H, as in Eq. (42), for example.

We now show how to construct some generalized
variational principles using these ideas. Consider 6rst
the total scattering amplitude, Q=4irf(k~k') One.
way of choosing the s; is to take

si ——g=4tr fi(k—+k'),

sp ——I= P ~ (x)LV'+k' —V(x) jg~(x)dx.



VARIATIONAL METHODS I N SCATTERI NG PROBLEMS

The variations of g and I are related by bg= —SI. It is
easy to verify that a general form for H, satisfying Eqs.
(44) and (45), is

H =g+I+P+~Fg(g, I)+Fo(I), (46)

A special case of Eq. (46) is

H=4p. f(k—+k') =g+I,

which is just Kohn's form (14).Equally possible forms,
however, are for example,

H=g'/(g —I),
or

H =geI«

and, of course, there is no a priori basis for choosing
among them.

Other variational principles for the scattering ampli-
tude may be found by taking the s, to be the quantities
A, B, and C of Eqs. (32). It is easy to show that, for the
correct wave functions, we have

Ap ——Bp ——Cp ——4orfp(k~k'),

and that for variations about these values, we have

(49)

Thus we seek functionals H such that

H(A p Bp,Cp) =krfp(k~k'),

where, from Eqs. (45) and (49),

BH BH BH

BA p 88 p BC p

provided that n)0, F~(g, I=O) is bounded, and that

lim PF,&I)/I =0j.
Imp

which is again Kohn's form, and

H =AB/C,

which is the amplitude independent form (31).
Still other principles can be constructed in the same

way from A', 8', and C' which have the properties

A o' =Bo' =Co' =4~fo(k~k') f~—(k—+k'), (52)
and

"oA'+8B' ="oC'.

The amplitude-independent form of Kohn's principle,

H =4rrff(k~k') f~(k~—k')$ =A'B'/C', (1l)

is an example.
Even more complicated variational principles can be

constructed by introducing additionally the trial scat-
tering amplitude f&(k~k'). A particularly interesting
example is the form

(4m fgB')'
H =4orf(k—+k') =—,(53)

C'(4nfgC'+ B.'(A' 87rfg)$—

which is stationary and independent of the amplitudes
of the trial scattered waves, U and 5'. The existence of
mere than one amplitude independent form is a new
feature; the amplitude-independent form of the
Schwinger principle is unique.

Variational principles for the phase shifts are com-
pletely analogous to those for the scattering amplitude.
For example, the form for the phase shifts corresponding
to Eq. (53) is

Lk tan8(gB('1'
k tanb) ———— (54)

C~'$Ci'k tan8~~+B~'(A ~'—2k tannin) j
where

A g' ——— kxjg(kx) U(x)N, (g(kx)dx,
0

B)' —" k——xjp(kx) V(x)m, (o(kx)dx,

A general form for H which satisfies these requirements
1S

H (A,B,C) =Gg(A, B,C)
+ (A —C)Go(B)+ (B C)Go(A), (50)—

where G& can be any function which reduces to 4m fo for
the correct fields, and where G2 and G& are given by

BGg BGg
Go(B)=

A=B; C=B ~C A~B; C B

Go(A) =
B A C A ~C B~A C=A

Some simple special cases are

H =A+B C, —

d' E(l+1)
Ci'= — N, io(kx) +k' —V(x) — — N, i&(kx) dx.

X

IV. CRITERIA FOR THE SELECTION OF
SPECIAL FORMULATIONS

It is clear from the preceding discussion that we are
free to choose among many variational expressions. We
now consider the possibility of exploiting this freedom.
Ideally, one would like to find forms which, in some
sense, give the best possible approximation for given
trial functions. An obvious measure of the accuracy of
an approximation is the size of the higher variations.
Can one control these 'quantities by choosing suitable
stationary expressions' As far as we can tell, the
answer is no. We have been unable to Q.nd any varia-
tional principles which decrease the higher variations
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for any physically reasonable class of trial functions. '
As an alternative, one might look at just the second
variation with the hope that it could be made positive
(or negative) definite. If so, a systematic approach to
the correct solution, which would be an extremum,
would be possible as in the Rayleigh-Ritz method.
Unfortunately, the quantities si which enter into the
construction of the variational principles are such that
the second variations cannot be made to take ori a
definite sign. '

A second approach to the problem of choosing ap-
propriate variational principles for the scattering ampli-
tude is the following: one can try to select them in such
a way that the general characteristics of scattering
processes are not violated. Specifically, it seems reason-
able to require that reciprocity and the unitarity of the
scattering be maintained. The former is automatically
built in to many of the variational expressions and in no
case does it cause a serious problem. As far as the latter
is concerned, the situation is more complicated. We have
already seen that unitarity is generally not satisfied.
Indeed, we found it difficult to construct variational
principles, for appropriate trial functions, which gave
real phase shifts and therefore conserved probability.
By appropriate, we mean trial functions which are ex-
panded in spherical harmonics, the coefIicients of which
are variationally determined —as in the derivation of
Eq. (37). Since such functions contain a set of parame-
ters, each of which is variationally determined, they
must be regarded as very special trial functions. We
shall call these trial functions "variationally best. "
Actually, it is possible to construct formal expressions
for the scattering amplitude which satisfy unitarity
regardless of the form of the trial functions, as discussed
by Lippmann and Schwinger. "This was accomplished
by introducing the so-called reactance matrix. However,
the relation between the reactance matrix and the
scattering amplitude is suKciently complicated that the
method cannot be easily used. "About the best we can
do is to choose a variational form, like that of Eq. (31),
which conserves probability at least for those trial
functions which are "variationally best. " Presumably
such a form is better than one which violates unitarity
under all conditions.

This seems to be about as far as one can go with
criteria based on the general properties of scattering.
Further criteria might, however, be based on more
practical considerations. The property of amplitude
independence is obviously useful in this respect, as has

already been discussed in connection with the Schwinger

principle. Incidently, we might remark on why the
Schwinger form is such a good one. Besides being

amplitude-independent, it preserves probability when

M. Moe, thesis, January, 1957, University of California at
Los Angeles (unpublished).' B.A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950)."See reference 9 for discussion of a high-energy approximation
to Q.e re@cd,nce matrig formulation,

the "variationally best" trial functions are used and it
automatically satisfies reciprocity. In addition, if re-
garded as a special case of Eq. (31), it uses the
Schrodinger equation itself to generate the trial fields.
From the practical standpoint, however, the Schwinger
form has a serious disadvantage, the difhculty of
evaluating the integral containing the Green's function.
Thus, only the simplest trial functions can be used. This
brings us to our final consideration in the choice of a
variational principle, the ease of evaluating the inte-
grals. A formulation which is theoretically inferior to
Schwinger's but which allows more complicated trial
functions might still give a more useful approximation
to the scattering amplitude. For example, if we wish to
calculate a correction to the Born approximation, the
form

4Irf=4m fr+A'8'/C'

is a good one because it is amplitude-independent. It
does not, however, preserve probability when the
"variationally best" trial functions are used. Equation
(31) which does preserve probability for such trial
functions might be a better form to use. Of course, we
must find trial functions which are simpler than those of
Eq. (38) which lead to Schwinger's form. For instance,
we might try choosing

and a trial scattered field U which behaves asymptoti-
cally like the Born scattered wave, namely,

eikx

U(x) fs(k-+k"), x—+~.

Then (31) becomes

f(k-+k') =
4n fg'(k +k')—

(55)

47rfg(k +k')+ —~e '"'*V(x)U(x)dx

U(x) = (1—e-~*)f(k—+k")

the numerical results' appear roughly comparable to
those obtained in the second Born.

We have also tried using other modifications of the
Kohn principle. The results of some systematic though

The advantage of this form is that, next to the first
Born approximation, it is one of the simplest formulas
for calculating the scattering amplitude. In general, it
gives a nonzero imaginary part in the forward direction
(unlike first Born) and so may be used with the cross-
section theorem to provide a simple estimate of the total
cross section. We have tested the utility of this form by
calculating scattering amplitudes for neutron-proton
scattering by the Yukawa potential at intermediate
energies. With a trial scattered wave of the form
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crude calculations show that it is dificult to obtain good
approximations from the formulations for the total
scattering amplitude. The formulations for the phase
shifts are much easier to use and, as noted by others,
give fairly good answers. Scattering amplitudes calcu-
lated from these phase shifts automatically conserve
probability. The only disadvantage in using the phase
shifts is that, at intermediate and high energies, one
must calculate large numbers of them to obtain the
scattering amplitude.

In closing, it might be worth mentioning a method
which removes some of this difhculty and gives good
results in an essentially closed form. It can be obtained
by combining the Born scattering amplitude with a few
variationally determined phase shifts. This is done by
re-writing the Born scattering amplitude, f~, given in
Eq. (17a), in the form

00

f~ (H) = P(2l—+1) tanH ~~8~ (cosH),
p t=o

where tanb && is given by Eq. (26). Subtracting Eq. (56)
from the usual phase shift expansion, Eq. (12), we have

1 ~ tanb)
f(H) fs—(H) = P-(21+1)

P t=o 1—~ tan5)
—tan8~~ Pg(COSH).

Since the Born phase shifts are not far from the correct
ones for the higher l values when the phase shifts be-
come small for most potentials, the right side converges
satisfactorily. Even if only one or two terms are retained
in the sum, the results are surprisingly good. ' Conse-
quently, only one or two phase shifts need be deter-
mined and for that purpose, variational methods are
quite satisfactory.
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The relativistic generalization of Pauli's equation for the electron has recently motivated Feynman and
Gell-Mann to propose a specific form of universal Fermi interaction. Particles satisfying this equation
are studied from the viewpoint of their electromagnetic interaction. It is found that an anomalous magnetic
moment similar to the Pauli moment violates the Hermiticity of the theory, and that only vector and
axial vector interactions lead to simp]e two-component equations, even with parity conservation. Rules
for calculation in quantum electrodynamics are developed which have definite advantages over the usual
Dirac formulation.

Y considering a description of the known fermions
in terms of two-component spinors satisfying the

relativistic generalization of the Pauli equation and
requiring that only direct (nonderivative) couplings
act in the weak interactions, Feynman and Gell-Mann'
have been led to a universal Fermi interaction which
is essentially unique' and which has a considerable
measure of agreement with experiment. While the
solutions of the Dirac equation even in the presence of
the electromagnetic field are exactly equivalent to
those of the relativistic Pauli equation, the latter
equation is more restrictive in several useful ways:
it is CP-invariant, but not separately C- and P-invariant
(though electromagnetic effects have the f'ull invariance);
it does not permit the simple addition of an anomalous

*Work supported in part by the National Science Foundation.
'R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193

(&958).
~R. E. Marshak and G. Sudarshan, as well as J. J. Sakurai,

and others, have also proposed this interaction.

intrinsic magnetic moment; it leads to a unique Fermi
interaction when derivative couplings are excluded.
It leads to simp/e interaction forms only of the vector
and axial vector types, even for parity-conserving
interactions (though this is not certain to be an
advantage) .

The present work is mainly concerned with a detailed
formulation of the electromagnetic interaction of the
two-component fermion and its relation to the Dirac
formalism. New physical results do not, and should not,
appear since the present predictions of quantum
electrodynamics are in substantial agreement with
experiment. However, one is led to calculational
methods which are simpler; also, well-known results
can be exhibited with a transparency which is sometimes
clouded in the Dirac formalism. For example, the
parity-conserving property of electromagnetic interac-
tions will be seen to follow from a symmetry between
the fermion spinor and a certain derivative spinor or,


