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A system of equations is deduced whereby the vertex operator for fermion-fermion scattering and the
Green's function are expressible in terms of the sum of contributions from a subset of all irreducible diagrams
for the process.

' "N the following we obtain the equations for the vertex
~ ~ part F(p4,ps, ps, pt) (represented by the diagram
to the left of the equal sign in Fig. 3) corresponding
to fermion-fermion scattering. Similar equations were
obtained earlier' for the vertex part corresponding to
boson-boson scattering; they somewhat resemble the
Bethe-Salpeter equation, ' but here we present the
method of the summation of the irreducible diagrams
in two dimensions instead of one as in the Bethe-
Salpeter equation.

We consider a case where the operator for the
fermion interaction has the form4

V= 22r'gs ($0itp) ($0itp)ds,

the simplest diagram [Fig. 1(a)]corresponding [within
a faCtOr (2 r) 2g22W0hiCh iS Omitted eVeryWhere in the
quantities corresponding to the vertex-part diagrams)
to the value

Q0= (0j)04f2 (Oj) 0 201 (Oj) 044 (Oj) 022=004(254) 5 )252) $1)y

where $; are the indices of the spin, the states of the
fermion energy, the charge, the strangeness, etc.
Analogously, to the second-order diagrams, [see the

upper parts of Figs. 2(a) and 2(b)j will correspond
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where l'=p1+p2 —l, l"=t p2+p—4, d l=dlsdltdlsdls/
(22r)2, and G„„(l) is the Green function of the fermion;
the repeated indices p, v, X, o- are to be summed over
always.

Among the infinite number of diagrams determining
I' there are some which consist of two parts connected
only by two lines: of the type shown in Fig. 2(a), the
two external lines coming up to one part of the diagram
and coming out of the other, and of the type in Figs.
2(b) and (c), where the fermion lines enter each part
and come out of the same one they enter. We shall
call these diagrams reducible and shall denote the
sum of the contributions of all the diagrams of the
Fig. 2(a) type by F (P4,Ps, P2,P1) ("horizontal brick"), '
and of the diagrams of the type of Fig. 2 (b) by rid(p4, ps,
P2,P1) ("vertical brick)'; we denote the sum of all

(c)

FIG. 1.Simplest irreduc-
ible diagrams.

F, 2 .

' For analysis of the role of diagrams corresponding to meson-
meson scattering in the question of vanishing of the renormalized
charge, see I. T. Diatlov and K. A. Ter-XIartirosyan, Zhur.
Exptl. i Teort. Fiz. 30, 416 (1956) Ltranslation: Soviet Phys.
JETP 3, 454 (1956)]. Pomeranchuk, Sudakov, and Ter-
Martirosyan, Phys. Rev. 103, 784 (1956); Diatlov, Sudakov,
and Ter-Martirosyan, Zhur. Eksptl. i Teoret. Fiz. 32, 767 (1957)
Ltranslation: Soviet Phys. JETP 5, 631 (1951)].

' E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
' As a result each irreducible diagram in the equation gives rise

to an inanite set of diagrams reducible in two directions.
4 If the interaction between the nucleons goes through mesons,

the operators 0; will depend on the Green's functions of the
mesons; the operator 0;&0; should possess the symmetry
properties indicated by Critchfield and Wigner LC. L. Critchfield
and E. P. Wigner, Phys. Rev. 60, 412 (1941); C. L. Critchf1eld,
Phys. Rev. 63, 417 (1943)g if the fermions are neutral.
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FIG. 2. Simplest irreducible diagrams.

5 The terms "horizontal" or "vertical" correspond to Fig. 2
in which (as elsewhere in the following) the incoming fermion
ends are arranged at the right-hand side and the outgoing at the
left-hand side.
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FIG. 3. Graphical rep-
resentation of Eq. (4).
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other irreducible diagrams (examples of such are
given in Fig. I) by I'0(P3,P3,' p2, pl). These three
quantities are represented by the second, third, and
«st diagrams, respectively, to the right of the equal
»g»n Fig. 3. Since any diagram is either reducible
or irreducible, then

(P4)P3 i P2)P1) r0(P4)P3 i P2)P1)++(P4)P3 i P2&P1)

+C'(P4,P3; P2,P1)—C'(P4, P3, Pl,P2), (4)

an equation whose diagrammatic equivalent is shown
in Fig. 3.

In analogy with the case of bosons, equations can
be obtained by which Ii and C (i.e., the whole sum I')
can be expressed in terms of I'o. For this purpose
consider an arbitrary reducible diagram and draw the
line dividing it into two parts as far as possible to the
left for horizontal diagrams [Figs. 2(a) and 4(a)]
and as far up as possible for vertical ones [Figs. 2(b)
and 4(b)j '

If all the diagrams of the type shown in Fig. 2(a)
and 4(a) are summed, then to the left of the dotted
line only diagrams of the type in Fig. I and Fig. 2(b)
or 4(b) will appear [and analogous ones of the type
in Fig. 2(c), in which the two incoming lines have
changed placesj, to which corresponds the value

R(P3)P3i P2)pt) =I 0(pbp3i P»pt)+@(P&)P3i P(2)Pl)

@(P4)P3 i Pl)P2) =F ~i (5)

Likewise, summing all the diagrams of Figs. 2(b)-4(b)
type, we get, in analogy with (3),

4 (P3$4)P3$3i P2$2)Pl(1) g0 +1(P4$4)4 i P2$2y ~)
i

x G„.(l")r(l"~,p,f, ; lv, p,k)G,„(&)d'&, (&)

+1(P4yp3i P2)pl) I 0(p4)P3& i P2)pl)+~(P4)P3i p2l pl)

@'(P4 P—3; Pl P2) —=I' —C'(P4 P3 P2 Pl) (g)

)c ~i

I'IG. 4. Arbitrary
diagrams showing
method of division.

These equations are represented graphically in the

upper and lower parts, respectively, of Fig. 5. Together

with the Dyson-Schwinger equation for the Green's

function,

go
while the aggregate I' of all the diagrams will again .t ( z&.p 223)&,& «(& ('. ), 0)G1,()—p)
be at the right. Therefore, in analogy to (2), ~ 2 ~

Sgo f
F(P3(4,P353 P2$2 pill) = &(P4$—4,P3b; 4,,~') )
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I'ro. 5. Graphical rep-
resentation of Eqs. (6)
(upper part) and P)
(lower part). 4= ~2 4 2

g+
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'Or, on the contrary, as far to the right and as close to the bottom as possible; the result will be the same.
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FIG. 6. Graphical represen-
tation of Eq. (9).

(the graphical equivalent of which is shown in Fig. 6),
they are a closed system, making it possible to express
I' and G in terms of I'0.

In conclusion the author wishes to acknowledge his
indebtedness to I. Y. Pomeranchuk for valuable dis-
cussions.
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Modifications of the Hulthen-Kohn variational principle are introduced with the hope of increasing the
usefulness of variational methods. Although no simple formulation of general utility is found, it is shown that
there exists a great variety of stationary expressions which make possible a greater freedom in the choice of
variational principles than has hitherto been demonstrated. Some criteria for the selection of special forms
are discussed.

I. INTRODUCTION

~CONSIDERABLE attention has been given in the~ past to the development of variational principles
for scattering problems. ' ' However, the utility of these
principles is limited by the difficulty of finding good
trial functions and evaluating the necessary integrals,
particularly so for the total scattering amplitude. In
Schwinger's variational principle, the impediment is the
evaluation of the double integral containing the Green's
function. Even for plane waves, which are the simplest
trial functions, this integral is not easy. On the other
hand, the Hulthen-Kohn variational principle, which
involves simpler integrations, is limited by the difFiculty
of finding adequate trial functions. 'She structure of this
variational principle is such that it requires better trial
functions than Schwinger's principle. For example, plane
wave trial functions, which give a result similar to the
second Born approximation in the Schwinger case, yield
merely the first Born approximation in the Hulthen-
Kohn case.

Our main purpose in the present paper is to discuss
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II. FORMS OF THE VARIATIONAL PRINCIPLE

Schrodinger's equation for a two-body interaction can
be written in the dimensionless form

where

and

t
|72+k'—V(x)]if (x) =0,

x = r/a, k' =2ma'E/h',

V (x) = (2ma'/h') Ve(ax).

Here m is the reduced mass, E is the energy in the
center-of-mass system, Vo is the potential energy of
interaction, and a is a characteristic length associated
with the range of the potential.

The well-known integral equation corresponding to
Eq. (1) is

Pa(x) =e'~'*—
~

~G(x,x') V(x') P~(x')dx', (2)

what might be done to overcome these difficulties. As
we shall show, the Hulthen-Kohn and Schwinger prin-
ciples are not the only stationary expressions for the
scattering amplitude. There is a limitless number of
other forms which may be obtained in a simple way.
However, we have been unable to exploit this freedom
sufficiently to construct variational principles entirely
free of the troubles mentioned above. In any case, the
existence of this great variety of forms is of independent
interest.


