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The dispersion theory formalism of Wigner and Eisenbud has been applied to the problem of interference
between resonances in the slow-neutron fission cross section. The development presented here assumes that
the process involves one neutron channel and a large number of channels for the capture process. Although
the treatment, for simplicity, assumes that only one 6ssion channel is open, the relevant expressions for the
fission cross section are presented in such a form that the generalization to any number of Gssion channels is
readily apparent. Although no restriction as to the number of levels is necessary, the results are of practical
use only when the number of assumed fission channels is small. Multilevel expressions for the radiative
capture and scattering cross sections are also presented for one fission channel. The radiative capture cross
section in the absence of fission is given and shown to di6er formally from a sum of single-level Breit-Wigner
terms.

I. INTRODUCTION
' 'N recent years numerous measurements of slow-
s ~ neutron resonances in the thermally 6ssile nuclides
have been made. ' As the experimental techniques, and
consequently the data, have improved, it has become
apparent that some of these resonances exhibit a
definite asymmetry in the 6ssion cross section'; their
shape is not describable by the usual single-level Breit-
Wigner formula. As an explanation of these observed
asymmetries, two possibilities have been suggested:
(1) they are due to the presence of small unresolved
levels near the more prominent ones; and (2) they are
due to interference between the resonance levels. While
it is quite likely that in some cases small unresolved
resonances are indeed responsible for this effect, there
is an increasing amount of experimental evidence which

points toward interference as being a more frequent
cause. Some of the evidence for this latter hypothesis
are the following:

(1) The analysis of the experiments of Shore and
Sailor' on U"' indicates that, although some of the
resonances in the U"' 6ssion cross section are asym-
metric, the corresponding resonances in the radiative
capture cross section show the expected symmetry of
a Breit-Wigner shape.

(2) The quantity g or v/(1+n) exhibits a net slope
in the region of an asymmetric resonance. This be-
havior may be interpreted as evidence for interference. 4

(3) For a given process, the size distribution of the
reduced widths of a large number of levels gives some

information about the number of channels open to the
process. ' For the fissile nuclei the distributions of fission
widths are consistent with a small number of fission
channels.

In the presence of interference between levels, one
should use a multilevel formula, since a single-level
Breit-Wigner formula is not expected to describe the
individual resonances. One such multilevel formula
which has been widely used is the approximate form
given in a paper by Feshbach, Porter, and Weisskopf. '
In this formula, the individual interfering resonance
amplitudes are additive, m's. ,

As Feshbach, Porter, and Weisskopf point out,
however, because of the approximations made in its
derivation, this formula may not yield an accurate
description of the cross section in regions where the
level widths are of the same order of magnitude as the
spacing. In the case of the 6ssion cross section of U"', ~

for example, it appears that the approximations in the
FPW formula may not be good ones. It is thus of
interest to develop a multilevel formula which contains
no assumptions concerning the relation of the level
widths to their separation.

The formalism developed in the following section is
presently being applied to the slow-neutron cross
sections of U"' '

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

'Neutron Cross Sections, compiled by D. J. Hughes and J. A.
Harvey, Brookhaven National Laboratory Report BNL-325
(Superintendent of Documents, U. S. Government Printing Ofhce,
Washington, D. C., 1955); D. J. Hughes and R. B. Schwartz,
Supplement No. 1 to BNL-325 (1957).

2 V. L. Sailor, International Conference on the Peaceful Uses o
Atomic Energy, Geneva, 1955 (United Nations, New York, 1956)
Vol. IV, p. 199.

3 F. J. Shore and V. L. Sailor, Bull. Am. Phys. Soc. Ser. II, 2,
70 (1957).

'L. M. Bollinger, in Atomic Fnergy Research Establishment
Harwell Report NP/R 2076 (revised), edited by N. J. Pattenden,
(195'I), p. 21.

I

II. DEVELOPMENT OF THE FORMULA

The basis of the development is the relation between
the derivative matrix (R) and collision matrix (S) as

f ' C. E. Porter and R. G. Thomas, Phys. Rev. 104, 483 (1956).' Feshbach, Porter, and Weisskopf, Phys. Rev. 96, 448 (1954).
7 Moore, Miller, and Reich, Bull. Am. Phys. Soc. Ser. II, 1, 327

(1956).
J. E. Evans and R. G. Fluharty, Proceedings of the Inter-

national Conference on Neutron Interaction with Nuclei, Columbia
University, 1957 (to be published). Also, M. S. Moore and C. W.
Reich (to be published).
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given by Wigner and Eisenbud'.

1+i(BRB+C)
S= 6) 6).

1—i(BRB+C)

The cross sections are then related to the elements,
S;;, of the collision matrix by relations of the form

~„=~X,'g! ~,;—S,, !
s. (2)

These cross sections are those due only to resonance
levels of the same total angular momentum and parity.
In order to arrive at the experimentally measured cross
sections, one must add to this the contributions from
the other spin state. The elements of the diagonal
matrices es, B, and C contain the properties of the ex-
ternal regions in the various channels. The R, or de-
rivative, matrix contains the specifically nuclear terms,
and has the following form:

(3)

where y),xy~ is the direct product of the vectors y)."
The elements of y), are reduced width parameters, and
are usually treated as adjustable parameters in the
application of the theory to a given set of data. The
sum is over levels in the compound nucleus with the
same total angular momentum and parity. Since the
contributions of interfering levels are additive in the
derivative matrix, it is a convenient quantity with
which to work.

For one level, the expression for the elements of
the collision matrix has the form Sg yi;yz;/
(Ei,—E—siI'i], the usual Breit-Wigner amplitude.
One sees that the FPW approximation is equivalent to
assuming that the contributions from interfering levels
in the compound nucleus are additive in the collision
matrix.

The relationship (1) is quite general, containing as
it does an infinite number of parameters (the yi and
Ei). It is of practical use only when the number of
parameters is reasonably small. For the present situ-
ation, it must describe a nuclear reaction in which three
processes —scattering, fission, and radiative capture—
occur.

It is assumed that there is only one neutron channel,
since, in the range of neutron energy under considera-
tion, only neutrons with l =0 are expected to contribute.
For the reasons previously mentioned, it is quite likely
that there is a small number of fission channels open;
and, for simplicity, this number is taken to be one. The
result for one fission channel is quite easily generalized
to include any number of such channels. For the emis-
sion of capture radiation, however, it is assumed that
there is a large number of exit channels available. The

' E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947).
' E. P. %igner, Phys. Rev. 70, 606 (1946).

relative constancy of the radiation widths for levels of
the same spin and parity within a given nucleus would
tend to support this. ' The effects of the closed channels"
are neglected in the following development. Implicit in
this treatment, of course, is the assumption that the
dispersion theory is a valid representation of the fission
resonances.

Subject to these assumptions, the derivative matrix
may be written in the form

R11
R21
R81

n

Rn+2 1

R12

R82

R-+2 2

R13
R23
R88

R~2 8

R1 n+2

R8 ~2

R~2 ~2.

The subscripts 1 and 2 refer to the neutron and fission
channels, respectively. The subscripts 3, . n+2 refer
to the e radiative capture channels.

The diagonal matrices es, B, C, and 1 are also
(n+2)X(ran+2). One may make the formal manipu-
lation of the matrix products somewhat more simple
by partitioning the matrices in the following manner:

Rll R12 R13

. R28 . . R2 ~2
R=

R81 R32

R-+2 2

R33

R~2 8

R8 %+2

where

a=—
l,anx2 anxnj

asx2 B2x2R2x2B2x2+ Csxs

a2xn B2x2R2xnBnxn7

anx2 BnxnRnxsB2x2$
a nxn =BnxnRnxnB nxn+ C nxn, .

Equation (1) may be written

el 8&

=1+2i[1—i (BRB+C)]—'LBRB+C]

2X2 ~2X ' 2X2 ~2p&

ianxs 1 ianxn j l, anxs anxn j '

In this instance, the problem of inverting 1—i(BRB+C)
is formally quite simple. The inverse of a 2)&2 matrix,

"T.Teichrnann and E. P. signer, Phys. Rev. 87, 123 (1952}.

2X2 2Xn

E Rnxs R x jn'n

One may then treat the matrices as 2)&2 matrices
whose elements are themselves matrices and may form
the product (BRB+C) in the usual manner. Let sub-
matrices of the matrix a=(BRB+C) be defined as
follows:
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each element of which is itself a matrix, is"

t'A B) —i f' LA —BD—iC]—i LBD
—iC —A$

—iBD—i )
C D&l =l, [CA—'B—D]—'CA—' LD —CA—'B]—'

With this identification, the expression for ~ 'S~ ' follows from (4).

aa 'S~—'=

1+'i ao x+2' a~ x~(l &a~xn) &a~x2

1—ia2x2 —ia2x (1—ia x ) 'ia x2

2ia„x~(1 ia—2x2) '

.1—ia x ~a x2(1 'ia2x2) '~»x

2~»x-(1—~a-x-) '

1—ia&x2 ~a2x (1—ia x ) 'ia x~

1+~a„x„+ia„x,(1—ia,x,)-'ia,x„
1—ia x ~a x2(1 ~a2x2) 'ia2x .

With this identification, one obtains

In order to obtain the various partial cross sections, expected to vanish, or at least to be small compared
it is necessary to calculate the elements of the first row . to I'y~. One then defines
of S. Before this can be done, however, one must
evaluate the matrix (1—ia„x„)'. Neglecting the effects v' X gI 'Ay~hv.

of the elements of the matrix C„x,one has

where

1—~amxn 1 ~Bax@nxBnxn

giX g~=1—z

pi=—By),

Api 8@i/(Ei 8 pe gy))

(6) and the expression for the inverse becomes

Ii
(1—ia x ) '=1+&E

It is important to note that the components of both 8
and y&, in (6) refer to the capture channels only.

Following Wigner, " one assumes an expansion of
the form

giX $).)

=1+iP a„„(y„Xy„),

where the subscripts p, and v refer to the interfering
levels in the compound nucleus. In order that the
inverse have the form indicated, the 3„,must satisfy
the following equation":

8„g=d„y(E),—E)—i Q„A„„(g„gg),
where b„qis the usual Kronecker delta, and

(5. 5&) —=2 P.~P&~= 2 &Pv~~a'. ~.

The sum goes over all the exit channels for gamma
radiation. For X=v, this sum can be thought of as a
sum of partial radiation widths since, on the single
level definition, ~F)„=8,'y)„'.' For AN v, .if it is assumed
that the yq, have random signs and exhibit random
size variations for the various channels j, this sum,
when taken over a large number of channels, would be

'~A. C. Aitken, Determinants and Matrices (Oliver and Boyd,
London, 1951},p. 139.

The matrix multiplications indicated in the expressions
for the 2X2 and 2Xe components of ~ 'Srs ' in Eq.
(5) may now be carried out.

The matrix a2x2+ia2x„(1—ia»&„) 'anx2 appearing
in the 2X2 portion of ~ 'S~ ' has the simple form
(BR'B+C)2x2, where the subscript 2X2 indicates that
all matrices are the 2&(2 portions of their respective
unpartitioned matrices, and where R' is defined by the
equation

R'= + (y~Xy&)/(@, —&—-', iT&,,).

The 2X2 portion of S may be written in the form

lyi(BR'B+ C)S=~ 6)q
1—i(BR'B+C)

all matrices being understood to be 2/2. The formal
e6'ect of a large number of capture channels on the
2X2 portion of S is to modify the definition of the
derivative matrix, leaving the form of the relationship
between it and the collision matrix unchanged. One
may easily generalize this result to include any number
of fission channels. In general, if one has m —j. fission
channels, then the relation (7) holds, if all matrices are
considered to be the mmmm portions of their respective
unpartitioned matrices. It might be pointed out, in
addition, that the above development is not limited to
the fission process, but is valid for any nuclear reaction
which proceeds primarily through a few channels,
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For a single fission channel,

Fission Cross Section

0»=4zrkpg p
& 8),—8—~il ),~

P»' i ( ) ( PadsI1 zC, —zP . - II1—'Cz zZ —

. I+I Z - I, (g)
~ Z, Z ,'z—F„)—E—~Z, —Z ——,'zF,„)E ~ Z, —Z—',zF„,)-

where the subscript 1 refers to the neutron channel,
and the subscript 2 to the fission channel. The quantity
g is the statistical weight factor, and A, ~ is the neutron
wavelength divided by 2~.

do essentially upon a knowledge of (I—ia &,„)'. For
all j then, one knows the elements, S», of the collision
matrix. The capture cross section, o-», may be written
as

Other Partial Cross Sections

One may obtain a multilevel, multichannel expression
for the radiative capture process. The elements of the
2&&zz portion of S may be calculated, depending as they

~„=~ltpg2 I sill .

This sum may be carried out with the following result,
for one fission channel:

b»[(1+bzz)'+azz'j+bzzaiz' —biz[2aizazz+b» (2+b»)]
o-g„=4mAg'g

~ ~ ~ )

I [1—z(aii+zbii) j[1—z(azz+zbzz) g+ (a»+zb»)'
I

' (9)

a'ip~zrkpg Q
& (&~—~)'+-'FP

where a;; and b,; are the real and imaginary parts b» are much less than 1; and
of C,&;,++&[8&,P&;/(E&, —E——',iF&,~)j, respectively. If
one assumes no fission, (9) becomes

bll
o-g~ —4~Kg'g

(1+bii)'+aiP
(9a)

This expression is not formally the sum of single-
level Breit-Wigner terms. In the analysis of slow
neutron resonance data in the medium and heavy
elements, the assumption is commonly made" that the
capture cross section is the sum of such terms. Ac-
cording to (9a), this assumption is quite good, providing
that the neutron widths are much smaller than the
radiation widths, since under these conditions a~~ and

where Fqi=2pi, p is the neutron width of the level g,
and F&=F&„+F&,& Fq is the total width. In such
cases typical calculations show that the numerical
differences between (9a) and a sum of Breit-Wigner
terms are quite small.

In terms of the element, S~~, of the collision matrix,
the expression for the S-wave neutron scattering cross
section is

0'» =zr~Pg
I
1—~»

I
~

Written in terms of the quantities a;,. and b;, defined
above, the expression becomes

2z j (all+zbll) z (all+zbll) (a22+zb22) +z(a12+zb12) }
o ii = zrXpg 1—e "~'"' 1+

[1—z(ai +zb»)3[1—z(a»+zb»)3+ (a»+zb»)'
(10)

where k~ is the neutron wave number, and ri is the
neutron channel radius. f I

The elements of the matrix C appear in the for-
malism. Assuming the boundary condition of Wigner
and Eisenbud, ' one may show that

C,, &= —&P'i'+GiGi'+ (~P+GP)—
Ps =~s+sy

where a, is the radius in the channel (s,l), Fi and G&

'3 See, for example, Fluharty, Simpson, and Simpson, Phys.
Rev. 103, 1778 (1956).

are related to the regular and irregular wave functions
respectively, in the external region corresponding to
the channel (s,l), and primes denote differentiation
with respect to p, =k,r, . For 1=0 neutrons, this ex-
pression vanishes; and we thus take Ci=0. In the
analysis of slow neutron resonances, where the neutron
energies are varied by less than some tens of electron
volts, C, & in the fission channels is essentially constant.
As such, it may, with the proper choice of boundary
condition parameters, " be taken to be zero. However,
it may be of interest to note the results of the calcu-
lation of C,, ~. In the fission channels, the Ft and G~
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become the usual Coulomb wave functions'4 and are
completely specified by the parameters p„g„andI,,
where l specifies the relative orbital angular momentum,
p, =k,a„and si, =Z,Z, 'e'/(Sw, ). In order to obtain
values for p, and g, and thus C,, ~ in the fission channel,
it is necessary to make some assumptions about the
fission process. If one assumes that the kinetic energy
of the fission fragments at large separations is equal to
the potential energy at contact, then the boundary of
the external region is defined by the condition p, =2g, ."
On the basis of this crude model and for reasonable
kinetic energies and charge splits between the two
fragments, g 190, and C,, ~ —,

' for l=0.
For simplicity, the elements of the matrix C„&&„have

been omitted. Krotkov" has shown that, to a first
approximation, their inclusion leads to a redefinition
of the I'q~ in terms of the y~, in the scalar product
(gx g„).Since both the I'&,~ and the yx, are adjustable
parameters, in practice this distinction is unimportant.

The elements of the matrix B may also be calculated.
For neutrons, 8~=k~', where k~ is the wave number
of the relative motion in the neutron channel. This gives
the usual E' energy dependence of the neutron width.
For the fission channels, the elements of B are essen-

'4 Carl-Erik Froberg, Revs. Modern Phys. 27, 399 (1955).
"See, for example, K. A. Petrzhak, Physics of Fission(Sup-,

plement to Soviet Journal of Atomic Energy, translated by Con-
sultant's Bureau, Inc. , New York, 1957)."R.Krotkov, Can. J. Phys. 33, 622 (1955).

tially constant over the range of neutron energy of
interest. It is then convenient to consider the product
82&» for the various fission channels as the adjustable
parameter. The elements of matrix ~ are pure phases
and thus do not enter the reaction cross sections. How-
ever, co~ does appear in the expression for the scattering
cross section. For /=0 neutrons, co~=e '~'"', where r~

is the radius in the neutron channel.

III. DISCUSSION

The parameters which occur naturally in this for-
malism are the characteristic energies, Eq, and the
various partial reduced width parameters, y)„.For one
fission channel, for instance, there would be four
parameters (Zx, yxt, Px2, and I'x~) per level. In addition
to these, the reduced width parameters are signed
quantities. This choice of sign, relative to that of other
levels, of course, is not completely arbitrary, since it
must yield the proper type of interference.

The development presented here may be extended
to include many fission channels. However, because of
the rapidly increasing complexity as the assumed
number of such channels increases, it is of practical use
only when this number is small. In such cases, the
inversion of the matrix [I—i(BR B+C)j in (7) is not.
dificult. The inclusion of a large number of levels,
however, may be treated very simply; it merely involves
working with more terms in the various sums.


