PHASE TRANSITION

decide whether or not they are observing the 8 phase in
their experiments.

CONCLUSIONS

The transition in solid mercury has not previously
been observed at low pressures because of the rapid
decrease in the transition rate as the transition pres-
sures decrease. The overpressure needed to initiate the
transition increases until at 93°K it is of the order of
the transition pressure itself, and the transition can
only be made to proceed irreversibly. The transition
cannot be made to take place at constant pressure
below 93°K because of the increased hindering effect of
the potential barrier which more than offsets the in-
creased thermal driving force furnished by under-
cooling. The transition can be observed in an isothermal
experiment upon the increase of pressure because the
large difference in molar volume between the two
phases allows a great deal of effective undercooling to
aid the thermal driving force. The mechanism for the
phase change which was observed at 4°K must be quite
different, and may be due to the shearing deformation
experienced by the sample.

IN SOLID Hg 91

Certain discrepancies were observed in the density of
solid mercury at zero pressure, and these led to incon-
sistencies in the calculated thermodynamic properties
of the two phases. These discrepancies should be
investigated in some detail. The structure of the new
phase, as well as its other physical properties, would be
of interest, also, although the temperature region in
which it is stable (below 93°K), and the conditions
needed to produce it make these experiments quite
difficult.}
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It is postulated that for low-energy sputtering the interatomic
energy and distance relation can be represented by a Morse curve,
and that the energy transfer in the lattice proceeds essentially by
two-particle (i.e., binary) collisions.

Based on these assumptions, a two-collision sputtering me-

chanism near the threshold is described. Under optimum energy -

transfer conditions, the analysis of this process gives the ion energy
for a sputtering threshold of a surface particle tied by N bonds.
It is shown further that under a prolonged ion bombardment a
surface contains particles with a number of bonds N, ranging from
a maximum determined by a complete surface to a minimum
determined by inaccessible bonds to underlying surface layers.

1. INTRODUCTION

URRENT experimental work in low-energy sput-
tering! provides strong evidence that a classical
collision mechanism may explain satisfactorily the
observed phenomena. Two such collision theories

* Based on a dissertation presented to the Department of
Electrical Engineering at Princeton University in partial fulfill-
ment of the requirement for the Ph.D. degree.

" {Now at Avco Manufacturing Corporation, Research and
Advanced Development Division, Lawrence, Massachusetts.

1 An excellent review and a list of references of the theoretical
and experimental work to 1955 are given by G. K. Wehner,
Advances in Electronics and Electron Physics, edited by L. Marton
(Academic Press, Inc., New York, 1955), Vol. 7, p. 239.

Based on this information, the form of the sputtering yield-
energy function is derived, consisting of a parabolic and a linear
part. Predicted and experimental Pt-Hg" curves are compared,
and the agreement is excellent.

Two thresholds are defined: the lower threshold is the actual
intercept of the yield curve, whereas the upper threshold corre-
sponds to the intercept of the linear part of the yield curve. The
two thresholds are computed for 20 metals bombarded by the
Hg* ion. The agreement with experimental values and the
empirical threshold formula of Wehner is satisfactory.

recently have been proposed: one by Henschke,? and
the other by the author.?* Both theories rely basically
on the description of low-energy sputtering as a series
of two-particle collisions.

There are, however, important differences : Henschke?
assumes that the ejecting collision is always between
the deflected ion and an atom; the analysis presented
here postulates a final collision between two lattice
atoms. The former work? uses a rigid collision radius

2 E. B. Henschke, Phys. Rev. 106, 737 (1957).

3 Edwin Langberg, Ph.D. thesis, Princeton University, April
25, 1956 (unpublished).

4 Edwin Langberg, Bull. Am. Phys. Soc. Ser. II, 2, 83 (1957).
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and the theory of collisions with restitution; here, a
Morse curve collision interaction is presumed, and from
it, both energy transfer and loss to the lattice are found.

In both cases, there appears to be a satisfactory
agreement with the limited experimental data available;
however, this analysis arrives at the experimental
threshold values without the wuse of adjustable
constants.

2. BASIC ASSUMPTIONS

This paper describes a particle collision model for
sputtering applicable when the energy of the bom-
barding ion is at most a few times higher than the
threshold energy. Based on this model, the sputtering
yield and the sputtering threshold are evaluated.

A basic element in the investigation of transport of
energy resulting from the ion impact is the coupling
between lattice particles of the bombarded solid. Since
the bulk of experimental work on sputtering involves
metal targets, the characteristic of the metallic lattice
bond is of special interest.

The simplest model of a bond is the rigid sphere. It
has the disadvantages of somewhat arbitrary choice of
the sphere radius and lack of provision for changes of
radius with energy. The linear ‘“‘spring” model is
applicable only at considerably lower energies than
those encountered in even low-energy sputtering

Next to the rigid sphere and linear “spring’” models,
one of the simplest bond models is the Morse curve. Its
use for the metallic bond has been suggested by Slater.?

When the equilibrium energy U(d)=0, the curve is
defined as:

U(r)= o{expla(d—r)]—1}? €))

where U(r) is the potential energy as a function of
distance 7, ¢ is the energy required to break the bond,
d is the equilibrium spacing, and e is a lattice parameter
related to compressibility. Fortunately, the analysis
presented here does not depend critically on the bond
energy functions, and hence, it is believed that the
description of the metallic bond energy by the Morse
potential is sufficiently accurate.

Motion in a medium of many particles is generally
a collective phenomenon, involving continuous and
simultaneous interaction of many particles. In some
special cases, motion in a many-particle system can be
approximated by a series of consecutive two-particle
(i.e., binary) collisions. Then in each collision, the
energy and momentum of the colliding particles are
conserved. Their trajectories can be computed from the
initial conditions independently of the motion of the
rest of the system. The condition of applicability of the
consecutive binary-collision approximation is that the
collision be completed before the two colliding particles
interact with other particles.

5 J. C. Slater, I'niroduction to Chemical Physics (McGraw-Hill
Book Company, Inc., New York, 1939), Chap. 27.

To test the applicability of this approximation to the
motion of the lattice atoms in the case of low-energy
sputtering, an equation of motion for a one-dimensional
lattice coupled by Morse curve bonds was set up.® This
problem reduces to a system of nonlinear differential
equations which was solved for the initial conditions,
corresponding to a typical situation in low-energy
sputtering. From the outcome, the binary-collision
approximation between free particles is considered
reasonable, provided that the correction is included for
the binding energy which has to be dissipated to “free”
the particles.

3. MODEL OF SPUTTERING AT NORMAL
ION INCIDENCE

A single collision by an ion® incident normal to the
surface cannot account for sputtering because the
recoiling atom cannot clear the surface. Hence, at least
two collisions are required to case sputtering: one
collision is between the neutralized ion and the first
surface particle; and the second collision is between the
struck first surface particle and its surface neighbor, or
between the recoiling ion and another surface particle.?
Clearly, processes which involve more than two col-
lisions cannot be excluded; e.g., a three-collision process
is described by Henschke.? The processes with higher
collision number involve longer paths and higher dis-
sipation, and hence, require higher energies. For this
reason, in the study of thresholds at normal ion impact,
the analysis is limited to a two-collision process.

The model evaluated here, and shown in Fig. 1,
consists of the ion of mass M colliding with a surface
particle m;, followed by a collision of particle #; with
another surface particle m,. The two collisions between
the three particles are considered at first as consecutive
binary collisions between free particles.

The evaluation of the energy transfer in the first
collision is straightforward since it is assumed that the

‘recoil angle of the originally stationary particle is

known. The collision geometry, as shown in Fig. 1, and
the energy and momentum conservation laws determine
the maximum potential energy stored in the second

collision :

M2 d? cos’a

U(R)= —mE cosza(l— ), 2)
m1+m2 R2

where E is the initial ion kinetic energy, ni=4Mm,/
(mi+M)? and R is the distance of closest approach
between lattice particles 7; and m..

To optimize the energy transfer conditions with
respect to the recoil angle, set

AU (R)/d cos’a=0, . (3)
which gives the required angle a;
cos’ay= R%/2d2. 4

6 The ion very likely becomes neutralized before reaching the
surface. The term ion, as used here, implies the impinging particle.
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F16. 1. Collision model for sputtering at normal ion incidence;
(a) shows a (110) cut in full (001) surface in an fcc metal. The
details of the sputtering collision are shown in (b). .

Hence, under optimum conditions of recoil,

mam 1ER2

U —_—
4(my+my)d?

It

UR)|a=ar= ©)

It should be pointed out that in the differentiation
used above, R is considered independent of «. This is
not rigorously true; however, most interatomic po-
tential models show on compression a rapid increase of
potential energy with distance R. For a given metal
and energies corresponding to a sputtering threshold,
the approximation dR/da~0 is justified. It can be
shown® that the kinetic energy K, acquired by the
second surface particle under optimum conditions is
related to the peak potential energy by

The value of v depends on the function U(r). It is
shown? that, under typical low-energy sputtering con-
ditions, v is approximately constant: y=0.63.

So far the computation has been carried out on the
assumption of two collisions between three free particles;
it remains now to include the effects of binding.

To sputter the second surface particle, tied by N
bonds of energy ¢, requires an escape energy somewhat
higher than the binding energy N ¢. This increase, by
a factor which we call ¢, is due to some transfer of
kinetic energy to the neighboring atoms during the
second collision. The evaluation of ¢ by the perturbation
method? gives, for the conditions of interest, o~1.1.

Another correction which has to be included is the
result of the binding of the first particle. To “free” the
first particle, its binding energy, on the average equal
to the sublimation energy H, has to be supplied by the
ion. Based on conservation laws and known recoil angle
a, the additional ion energy required to “free” the first
particle is

E’'=H/q, cos’a. (7
Upon using the condition of optimum recoil in Eq. (4),
E'=2Hd/n.R>. ®)

This process implies only motion of the first particle
my within the lattice; direction of momentum imparted
to m; is such that it cannot sputter.

Hence, the ion energy at the threshold of sputtering
consists of a component E’ required to “free” the first
particle, added to the component necessary to sputter
the second particle E”. The latter is obtained by setting
the right-hand side of Eq. (6) equal to ¢N¢, using
Eq. (5), and noting that H=n¢/2:

E"=16HNd*yo /nnmR2, )

where no=4mms/ (mi+m2)?, and » is the number of
nearest neighbors.

The ratio R/d can be determined now from the known
peak potential energy [Ks=Ngo in Eq. (6)] and the
Morse potential function, Eq. (1):

oL lnl 1+[£V—6——————7(m1+m2)];}.

(10)
d ad 2my

Equations (8) and (9) together with (10) specify the
threshold energy Ex for a lattice atom tied by V bonds.
For a lattice consisting only of one element, we have
m1=ms, ne=1; using the numerical values for ¥ and o,
we obtain

10H N 1 —2
Ex= (1.1——+0.2)[1——1n(1+0.83N§)] . (11) -
m " ad

The lattice parameters for various elements are given
in Table I.

The derivation of the sputtering threshold in Eq.
(11) is based on the optimum energy transfer conditions.
From the known transfer of kinetic energy, the angles
a and B can be evaluated. It can be shown? that, under
these circumstances, the recoil direction is above the
plane of the surface (Fig. 1, §>0), and so, the particle
can escape without further collisions.

It should be emphasized that the angle é refers to the
hypothetical situation after the particle reaches its
full kinetic energy, but before the kinetic energy is
dissipated in breaking of the bonds. Hence, the final
escape direction depends not only on the angle 6 but
also the number and position of the neighboring
particles.
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TaBLE I. Atomic constants for metals.

Metal Ha mb de ke ad ad (ad)™2
Face-centered cubic, n=12
Al 3.252 2696 2.858 22.14 1.129 3.227 0.09603
Ni 4413 58.69 2.487 489 1440 3.582 0.07794
Cu 3.557 63.54 2.551 369 1394 3.556 0.07908
Rh  5.986 10291 2.684 7743 1.556 4.177 0.05732
Pd 4,034 106.7 2.745 541 1585 4.350 0.05285
Ag 3.036 1079 2883 30.4 1369 3.948 0.06416
Pt 5856 195.2 2.769 80.0 1.600 4.429 0.05098
Au 3925 1972 2878 519 1.574 4.529 0.04875
Pb 2016 207.2 3.492 1531 1.193 4.164 0.05767
Hexagonal close-packed, n=12
Ti 4919 4790 2934 383 1.208 3.543 0.07966
Co  4.554 5894 2503 484 1.411 3.531 0.08021
Zr 5422 9122 3.195 303 1.023 3.269 0.09358
Hf 7.374 178.6 3.170 36.6 0.964 3.056 0.10708
Body-centered cubic, =8
A% 5.205 50.95 2.627 73.3 1.326 3.483 0.08243
Cr 3.667 5201 2493 81.6 1.667 4.155 0.05792
Fe 4193 55.85 2478 7226 1.467 3.645 0.07572
Cb 7.617 9291 2.853 850 1.180 3.368 0.08816
Mo 6.765 9595 2.720 128 1.537 4.181 0.05721
Ta  8.675 1809 2.854 101 1.206 3.441 0.08446
w 8.745 1839 2.735 146 1.444 3.948 0.06416
Diamond, n=4

Si 3910 28.06 2.346 142 1.507 3.535 0.0804
Ge 3.398 72,60 2445 117.7 1470 3.594 0.0776

a H =heat of sublimation at 298°K, in ev. Computed from L. L. Quill,
The Chemistry and Metallurgy of Miscellaneous Materials; Thermodynamics
(McGraw-Hill Book Company, Inc., New York, 1950), first edition, p. 13.

b Atomic weights, Handbook of Chemistry and Physics (Chemical Rubber
Publishing Company, Cleveland, 1950-1), thirty-second edition, p. 301.

¢ J. Wasser and L. Pauling, J. Chem. Phys. 18, 747 (1950); d =closest
neighbor spacing in A, and 2 =atomic spring constant in kilodynes/cm.

d Morse potential constant in A~1, computed by Langberg.3

4. NUMBER OF BONDS OF A
SURFACE PARTICLE

Information about the number of particle bonds & is
required to use the threshold equations derived in Sec.
3. The evaluation of number of bonds N is relatively
simple when an ideal low-index crystal plane is con-
sidered, but under actual environmental conditions, it
is considerably more involved:

Firstly, most sputtering experiments are done with
polycrystalline materials, and thus, the orientation of
the crystallites varies over the surface.

Secondly, even in a case of a single-crystal surface
after prolonged ion bombardment, many surface
particles are removed or knocked into interstitial
positions.

Thus, the probability of finding surface atoms with
adjacent surface vacancies or with distorted bonds is
high. It will be noted that the probability of breaking

particle bonds in the primary collision is much higher,
and the energy threshold lower, than that corresponding
to sputtering in the secondary collision. Hence, bom-
bardment with ions of energy even less than the sput-
tering threshold energy may lead to formation of
surface imperfections.

It appears from these considerations that the dis-
tribution of the number of surface bonds N is not
specified uniquely by the target material, but depends
to a large extent on the treatment of the surface.
Specifically, the same distribution is not expected at
the beginning of the sputtering process and after
sputtering has continued for some time. The breaking
up of the surface must be especially thorough when the
surface is “cleaned off”’ by high-energy ion bombard-
ment before the measurement.

The discussion here will be limited to the case of a
clean surface after sputtering has been continued for a
sufficiently long time, so that the distribution of NV
reaches an equilibrium value. In the discussion of such
a surface stabilized by prolonged ion bombardment, it
is convenient to distinguish between bonds to other
surface particles (accessible bonds No) and bonds to
particles in the underlying first or second surface layer
(inaccessible bonds Ny, N2).

When as a result of sputtering of a region, a fresh
surface is exposed, the number of bonds in that region
is equal to the full number of bonds N,

N,=No+N1+Ns. (12)
When the region is bombarded further, the accessible
surface particles are removed one by one until finally,
the last particle of this particular surface layer is
sputtered by a collision with its remaining surface
neighbor. The number of bonds holding the latter

_particle is equal to the number of inaccessible bonds

plus one bond belonging to its colliding surface
neighbor:

Ny=N1+Not1. (13)
Hence, under prolonged ion bombardment, the largest
number of bonds holding a surface particle corresponds
to the full surface (V,), and the smallest number is V,.

The number of bonds to different surface layers is
given in Table II. In experiments performed with
polycrystalline samples, where no information is
available on the orientation of the crystallites, the
numbers N, and N, will be chosen from the surface
orientation in Table II which gives the largest and

TaBLE II. Number of bonds to different surface layers.

Fce Hcep Bee Diamond
(100) (110) (111) (112) 0001 (100) (110) (111) (100) (110) (111)
N, 4 2 6 2 6 0 4 0 0 2 00
N, 4 4 3 3 3 4 2 3 2 1 3 1

N, 1 2

1
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smallest number, respectively. The results are given in
Table III.

5. SPUTTERING YIELD CURVE AT LOW
ION ENERGIES

To compare theoretical predictions with experimental
results, an expression for the sputtering yield as a
function of ion energy is derived. Sputtering yield S is
defined as the average number of sputtered particles
per incident ion. More specifically, sputtering yield
from particles tied by NV bonds is defined as S.

It is shown? that based on probability considerations,
S is a linear function of the excess of ion energy over
the threshold energy Ey.

SN=PN(E—EN) for E>EN,
Sxy=0 for E<ZEjy,

where under the given conditions Py is a constant.

It was pointed out in Sec. 4 that a surface stabilized
by prolonged ion bombardment contains particles with
a number of bonds ranging from N=N; to N=N,.

The yield from such a composite surface is a sum over
N of individual Sy’s from N=N, to N=N,:

N=Np

S= > Pn(E—Ey).

N=Ng

(14.1)
(14.2)

(15)

The highest and the lowest threshold energies corre-
sponding to NV, and N, are defined as E, and E,.
Within the general accuracy of this analysis, it makes
little difference if the summation over the discrete
variable in Eq. (15) is replaced by integration over a
continuous variable Ey.

Eq o
Eb

(16)

It is assumed that, because of randomness of the surface,
the probability P(Ex) of finding a particle with a
sputtering threshold Ey is constant in the range

Eyv<Exy<E,:
P(Ex)=b for E,<Ey<E, (17.1)
P(Ex)=0 elsewhere. (17.2)

Combining Egs. (16) and (17) gives the required
sputtering yield function:

=0 for E<E,  (18.1)
S=%b(E"—Eb)2 for EbSESan (182)
S=b(Ea— Ey)[E—}(EsAr-Ey)] for E>E,  (183)

The result obtained in Egs. (18) is compared with
experimental values of sputtering yield from Pt in Hg
discharge obtained by Wehner.!

It will be noted that Pt has a fcc lattice, so that
n=12, N,=9, and N,=4. Using the values of H and
(ad) from Table I gives: Ey,=E4=54.7 ev, E,= Ey=116
ev. The yield under these conditions is plotted in Fig. 2.
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F16. 2. Sputtering yield curve for Pt-Hg™.

The experimental points are plotted on the same graph;
the constant b in Egs. (18) has been chosen for best fit.

It will be noted that both the curvature and the
threshold of the sputtering yield curve are independent
of the choice of b. Hence, the satisfactory agreement
between the experimental and the theoretical points in
Fig. 2 is significant even though Egs. (18) contain an
adjustable parameter b.

6. COMPARISON OF PREDICTED AND MEASURED
SPUTTERING THRESHOLDS

Figure 2 shows a certain ambiguity in the definition
of the experimental sputtering threshold. There are
two possibilities for correcting this ambiguious situ-
ation: one possibility is to define the threshold Er as
the intercept of the extrapolated linear part of the
sputtering curve. From Eq. (18.3),

Er=1(E,+Ey). (19)

The other possibility is to define the threshold at the
actual start of the yield curve, in which case the
threshold energy is equal to E,.

Wehner” has performed sputtering threshold meas-
urements for many metals in a Hg arc discharge. In

TaBLE III. Number of lattice bonds.

Lattice n Na Ny
fce 12 9 4
hep 12 9 4
bec 8 6 3
diamond 4 3 2

7 G. K. Wehner, Phys. Rev. 93, 633 (1954).
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TaBLE IV. Sputtering thresholds for Hg ion.

Metal 1/m H/m Ea Es Er Experimentala

fee

Al 2.393 7.782 213 90.8 152 115-135
Ni 1.428 6.302 152 67.6 110 65-85
Cu 1.368 4866 118 52.5 85.5 45-65
Rh 1.116 6.680 139 64.5 102 65-75
Pd 1.103 4.449 89.8 42.0 65.9 45-75
Ag 1.099 3.337 73.2 334 53.3 35-45
Pt 1.000 5.856 116 54.7 85.6 65-85
Au 1.000 3.925 76.6  36.2 56.5 35-45
Pb 1.000 2.016 422  19.5 30.9 15-35
hep

Ti 1.607 7.904 193 85.5 139 105-125
Co 1.424 6.485 159 70.3 115 75-95
Zr 1.163 6.306 169 728 121 115-125
Hf 1.003 7.396 217 90.7 153 145-175
bce

\' 1.548 8.057 178 89.0 134 115-125
Cr 1.529 5.607 107 55.7 81.4 55-75
Fe 1.468 6.156 131 66.2 98.6 55-65
Cb 1.156 8.805 201 99.8 150 115-125
Mo 1.142 7.725 147 76.5 112 75-95
Ta 1.003 8.700 194 97.1 146 115-135
w 1.002 8.763 174 89.5 132 75-95

a See Wehner.?

private communication,® he explained that the values
quoted in his paper lie somewhere between E; and Er
as defined above.? Using Eq. (11) and the values of E,
and E, defined in Sec. 5, the thresholds for 20 metals
have been computed and compared with Wehner’s
experimental results. The results are presented in
Table IV.

It can be seen that the agreement is satisfactory:
out of 20 metals examined, only 1 metal (Fe) falls fully
outside the predicted threshold range. Considering the
experimental accuracy and the accuracy of the analysis
used, the agreement for the 19 metals is as close as can
be expected.

TaBLE V. Values of 4; and B,.

Lattice Aa As Ar B, By Br
fccand hep  11.58 6.92 9.25 162 48.0 105
bec 11.6 7.3 9.45 128 46 87

8 G. K. Wehner (private communication).

9 Wehner’s result includes a correction equal to the difference
between the ionization energy and the work function. Since the
need for the correction is doubtful,2? it will be subtracted again
from his threshold values. The correction amounts to about 5 volts,
so that experimental threshold ion energy will be obtained from
results quoted? by subtracting 5 ev. In case of Pt, the quoted
values for threshold are from 70 to 90 ev, the corrected values are
65-85 ev, and the computed values 55-86 ev.

Tt will be noted that even though the experimental results
for Si and Ge are available, no attempt has been made to compute
the threshold for these semiconductors. A fundamental assumption
in this analysis is that the interatomic forces are central; i.e., that
the force is a function of interatomic distance only. It is well
known that the Ge and Si bonds are strongly directive, so the
central force approximation is much worse than in metals.

It remains now to compare the empirical sputtering
threshold law due to Wehner” with the threshold law
predicted in this analysis.

It can be shown? that, if the velocity of sound used
by Wehner” is replaced by the lattice parameter (ad),
Wehner’s empirical formula becomes

E=CH/ma'd, (20)

where C=187 for fcc and hcp lattices, and C=167 for
bec lattice.

For comparison, it is convenient to plot the three
thresholds defined before as a function of the lattice
parameter (ad)~2 In the range of interest, the thresholds
are given very closely by an approximate equation

H B;
|
Uit (ad)?

where the subscript ¢ denotes the required threshold,
and the constants 4; and B; are listed in Table V.

Equations (20) and (21) are plotted in Figs. 3 and 4.
Figures 3 and 4 show very good agreement between the
threshold values computed in this analysis and both
the Wehner empirical formula and his experimental
results. The main difference between the empirical
formula and the derived law is that the first specifies
some kind of an average between the two thresholds,
whereas the second actually specifies E, and Er.
Considering this conceptual difference, the two formu-
lations agree as closely as can be expected. As for agree-
ment with the experimental values, it will be noted that
out of the twenty metals examined, seventeen metals
fall mainly within the computed interval, two (Hf and
W) fall partially within this interval, and only one (Fe)
lies outside. ‘

21

7. DISCUSSION

The reliable experimental data on low-energy sput-
tering are at present very limited. The agreement
between theoretical and experimental results alone
can be considered hardly sufficient evidence for validity
of the model proposed here.
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and bcc structure.

Therefore, it may be appropriate to discuss in some
detail the basic assumption of the model: the key
question is the “effective mass” of a lattice atom in
collision with an ion. If the effect of lattice binding is
small, the collision will be expected to be essentially
as between free particles and the “‘effective mass” of
the lattice particle will be equal to its actual mass. On
the other hand, if the binding with the neighbors is
tight, an ion colliding with a lattice will behave as
though colliding with a particle of large “effective
mass.”’? These two are the asymptotic solutions to the
motion of a periodic coupled structure represented by
the lattice.

The actual solution of the general three-dimensional
nonlinear lattice is quite involved. However, a problem
of one-dimensional lattice of particles coupled by Morse
curve-type ‘“‘springs” is manageable. It has been solved?
for typical low-energy sputtering conditions: a copper
ion approaching with kinetic energy of about 30 ev
and colliding with copper lattice.

The results are shown in Fig. 5; there is no evidence
of large “effective mass” as assumed by Henschke.? On
the contrary, a free-particle-collision model appears a
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Fic. 5. Motion in a one-dimensional lattice coupled by Morse-
curve-type forces; distance is normalized with respect to the
Morse-curve constant ¢;=ax; and the normalized time is
r=ta(p/m)}.

more suitable approximation. Accordingly, it seems
reasonable to presume that the same approximation
will be valid in a three-dimensional lattice for conditions
typical of low-energy sputtering.
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