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0+ second excited sublevel with a logft value from 6.5
to 7 and a gamma transition of intensity at most 10%%

of that of the 0.445-Mev gamma ray, its corresponding
energy would lie between 0.230 and 0.440 Mev. On
the other hand, if we suppose that the gamma transition
has an intensity of 1%%uo or less of that of the 0.445-Mev
gamma ray, its corresponding energy would lie between
0.530 and 0.740 Mev. These rough calculations are not
in contradiction with our experimental results, since
these relative intensities at the corresponding energy
ranges cannot be observed.

We shall attempt to perform the external conversion
of the gamma rays from I"' and observe the corre-
sponding electron lines in our orange-type beta-ray
spectrometer.
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It is shown that in the case of a medium which is an exoergic nuclear mixture (a mixture of nuclei which
can lead to an exoenergetic reaction) and which possesses a high temperature ( 10i 'K) or a relatively
high density ( 10' g/cc), a fusion chain reaction can talre place. This is due to the decrease in the stopping
power of the medium under the conditions given above. Equations for determining the multiplication factor
for a binary mixture under various physical conditions are derived. The multiplication factor is calculated for
a DT mixture. It is concluded that for an exoergic nuclear mixture there exists a critical temperature or a
critical density which limits the slow release of fusion nuclear energy. For an infinite medium of 50% DT
mixture the critical temperature and the critical density are ~10' 'K and ~10' g/cc, respectively. In a Rnite
medium the values are higher and there exists a critical mass which limits the possibility for the development
of a fusion chain reaction. This critical mass was estimated and in Grst approximation is ~n„(i gnrams)
= 1/(density of the medium in g/cc)s.

I. INTRODUCTION

IMULTANEOUSLY with discovery of the fission
chain reaction with neutrons, the possibility of

obtaining a chain reaction with charged praticles was

abandoned, because of the small eKciency of charged
particles in nuclear reactions. In the most advantageous
case, D+T—+He'+e, the efFiciency attained is only
~5X10 ' reaction per 14-Mev deuteron. But no note
was taken of the fact that the efficiency depends on the
physical conditions and in some cases it may be greatly
increased. This is especially true for nuclei of small

charge, where the Coulomb barrier penetration factor is
not too high. The development of a chain reaction with
charged particles is, therefore, possible only for light
nuclei, where the release of nuclear energy is due to the
process of fusion. Only highly exoenergetic reactions of
large cross sections may lead to the fusion chain reac-
tion; these are the same reactions which are involved
in thermonuclear reaction. '

II. FORMULATION OF THE PROBLEM

The mechanism of a fusion chain reaction, which is
due to im state nasceedi reactions, is as follows. In an

'W. B. Thompson, Proc. Phys. Soc. (London) $70, 1 (1957).

exoergic reaction A+8 in which weakly bound groups
of nucleons of nuclei A and 8 form strongly bound
groups of reaction products, we obtain particles of
high kinetic energy. Part of their kinetic energy is
transferred in elastic collisions directly to the A and 8
nuclei of the medium. The recoiling A and 8 nuclei,
in the process of slowing down to thermal energy, have
some probability of leading again to the reaction A+8.
Under normal physical conditions, the dissipation of
energy of charged particles in collisions with electrons
is so large that their range (L) in the medium is much
smaller than the mean free path P.) with respect to
nuclear processes. Therefore, only a small fraction of
the recoil nuclei lead again to the A+8 reaction.
The development of the avalanche is possible when the
sum of the ranges of the recoil nuclei P;I, is com-
parabletok. since+, L, Eo/((dE/dx))A, andX 1/Xo,
where Eo=the kinetic energy released in the A+8
reaction, ((dE/dx))s„=the average energy losses of
recoiling nuclei per unit path, S= the density of react-
ing nuclei of the medium, and 0- = the mean cross
section for the A+8 reaction, we can write

Eo~/L(1/&)((dE/d&))A 3
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If we assume 0 10 " cm', Eq~10 Mev, we 6nd
that the atomic stopping cross section Lr7 (dE/dx)
= (1/E)((dE/dx))s„) would be 10 "ev atom ' cm'.
Under normal physical conditions it is about a thousand
times higher, '' and we are far from satisfying the
criterion (1).

The main idea of the problem involves the dependence
of the atomic stopping cross section on the physical
conditions.

Under normal physical conditions, in the moderate
energy range, the most important losses of energy of
heavy charged particles are due to scattering from elec-
trons. They are about four thousand times higher than
the energy losses in other processes. ' The atomic
stopping cross section due to scattering from electrons
was discussed in detail by the author, 4 and according
to Kq. (6) of reference 4, for a particle g having a
velocity v~ and a charge Z~e, it is

DN

PRD~DN FNERGI' iN &pe

(dE) - 4sre'

f(')GLd("); l (')jd' (2)
(dx, i mvP ~p

o (dE/dx) isa~1/v ' (3)

Hence we see that the energy losses connected with the
scattering from electrons decrease very strongly with
their velocity. The electron momentum distribution
can be shifted to higher velocities by a considerable rise
of temperature or by increasing the density up to the
strong degeneration of the electron gas. In this way we
can decrease the atomic stopping cross section so that
the condition (1) is fulfilled.

III. ATOMIC STOPPING CROSS SECTION AT HIGH
TEMPERATURES OR HIGH DENSITY

As was mentioned above, the main energy losses of
charged particles are due to scattering from electrons
and thus depend on the state of the medium.

To evaluate the stopping cross section of plasma
electrons, ' we have to use in Fq. (2) the Maxwellian
momentum distribution. We obtain an approximate
dependence on the temperature of the plasma if we make
the substitution f(v, ) =ll(v, —v,), where v, =(SkT/srm)s
is the mean thermal velocity of electrons. In the case

~ P. K. Weyl, Phys. Rev. 91, 289 (1953).' S. K. Allison and S. D. Warshaw, Revs. Modern Phys. 25, 779
(1953).

4 M. Gryzinski, Phys. Rev. 107, 1471 (1957}.' K. N. Parker, Phys. Rev. 107, 830 (1957}.

where f(v,) is the momentum distribution of electrons
in the medium and G is the universal stopping power
function given in reference 4 by Eq. (S). In the above
paper it was shown that these losses depend mainly on
the velocity distribution of the electrons, especially in
the case v~& v, . In the limiting case v~((v„ the asyrnp-
totic value of G becomes s(v~/v, )s, whereuPon we have

FIG. 1. Stopping cross sections of electrons in various media for
protons, as functions of proton energy.

interesting us, v~(&v. , we have

(dE~ac 1 (4 ~ t'2e'm'y
= ——

I

—
II IZt'vt

0 dx) Fermi elect 2V. s E31r) ( h

(vmax& )
Xlnl I, (5)

e' )
where v,„=(3m.')l(A/m)E, '*, and 1V,=the number of
electrons per cc.

The results of exact computations, where for the
maximum impact parameter we have put D, =¹&
(see Appendix), are plotted in Fig. 1 for various tem-
peratures and densities.

A decrease in the electron scattering losses increases
the role of energy losses connected with the interaction
with the nuclei of a medium.

The contribution to the atomic stopping cross section
due to elastic scattering from nuclei of mass m~ and
charge Z~e is

~ dE ~
sc. elas.

L dx) nac

4vre4

(ZtZg)'
szgv~

t'
xlnl I szwE, ~—„-(E,), (6)

EZ,Z e2X»

K. Fermi and E. Teller, Phys. Rev. 72, 399 (1947).

Sir e't'srmy '
(4)( dx ) plasma elect. 3 m ESkT)

Similarly, taking into account the momentum dis-
tribution of a Fermi gas, we obtain the stopping cross
section of Fermi-gas electrons (Gryzinski, 4 Eq. (1S);
see also Fermi and Teller' ):
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~ dE q
sc. incl.

sc. inci. (E )(dx) ... (7)

The sum is taken over all channels with the exciting
energy AE, and the cross section o tz"' '""(Et).

The energy losses connected with the bremsstrahlung'
of heavy charged particles are very low in comparison
with the losses given above, and therefore can be safely
neglected.

Finally, the stopping cross section of nucleus A and its
Z~ electrons is

~ dEq sc )rfE~ sc. else.

+~I
(dx) (dx), i„r, &dxi

f dE ~
sc. incl.

+-I I (g)
Ldxi „

The total atomic stopping cross sections of hydrogen
plasma' for protons and the relative contribution of
their components in various conditions are plotted in

Flg. 2.

IV. EVALUATION OF THE MULTIPLICATION
FACTOR

where iut~ is the reduced mass, Et~ =4mttn~/(mt+no~)',
o-~~"=the elastic nuclear scattering cross section of
particle $ from the nucleus A, and N =the number of
nuclei per cc. The first term in Eq. (6) represents the
Coulomb scattering, and the second the nuclear scatter-
ing, which we have assumed isotropic in the center-of-
mass system.

The stopping cross section due to inelastic collisions
with nuclei is

If ff(Etc) is the energy distribution of the $ particles
obtained from each reaction A+8, then the number of
p particles in the energy interval Et' to Et'+dEf' is
ft(Etc)dEts. Since the major part of the reaction A+8
in the avalanche occurs in the moderate energy range
(100—500 kev), and since the reaction A+8 is strongly
exoenergetic, we have assumed that this distribution is
independent of the energy of the entrance channel. If
in the result of reaction A+8 we obtain two particles,
the function ff(Efs) is the o(Etc Ef) fu—nction. Owing
to the destruction of particles $ on interaction with
the A and 8 nuclei, the initial number ff(Et')dEf'
of particles along the path x drops to the value
g(Efs, x)ft(Etc)dEts, where

q(Efs, x) =exp— (Nxrrtx+Narrtii)dx, (9)

and o $A (rr)B) is the total reaction cross section of the
p»ticle $ with the nucleus A (8). Taking into account
that the energy of particle g on the path x drops, due
to energy losses, from Eg' to Ep, we can write the last
expression in terms of E~.

f f Ngotg+Nirotii
q(Etc,Ef) =exp- dx, (10)

(dEf/dx)

where (dEt/dx) is the loss of energy of particle P on the
unit path. Upon introducing rrf~-(Et, E~)dE~, the cross
section for the production of recoil nuclei A of energy E~
to E~+dE~ by the particle $ with energy Ef, the
number of the recoil nuclei 3 with energy interval
E& to E&+dE& produced by the particles ] from the

To determine the exact conditions for the develop-
ment of an avalanche, we shall examine an infinite
homogeneous medium formed by a mixture of two kinds
of nuclei A and 8 which can initiate the exoergic reac-
tion. Ke denote by E& and E& the densities of the
reacting particles, and by o.»& the laboratory cross
section for the reaction A+8 (the bombarding particle
is denoted by the first lower index) with the emission
of the particle P. The particles of high kinetic energy,
obtained from this reaction, produce a certain number

of recoil nuclei.

]04

gHd

total stoppiofI poser of hyCk open atom

of plasma'

7 L. Landau and L. Lifshitz, The Theory of Fields (Moscow and
Leningrad, 1948), second edition, pp. 208, 219 [translation:
The Classical Theory of Fields (Addison-Wesley Press, Inc. ,
Cambridge, 1951), Chap. 9j.

g As shown above, the stopping power of hydrogen plasma
under the conditions existing in the sun, 2)&10' 'K, is about one
hundred times lower than the stopping power of hydrogen under
normal physical conditions. Therefore, Bethe's calculations [H.
Bethe, Phys. Rev. 55, 434 {1938)jof the efficiency of reactions
in state nascendi in the sun (with the assumption that the energy
losses are approximately the same in the both cases) are not valid.

PROTON ENER6Y IN Her

100

FIG. 2. Total stopping cross section of hydrogen plasma for
protons, as a function of proton energy. The contributions of the
various relevant processes are shown separately, as well as the
total.
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reaction A+8 along their paths is

P&A/&PAf
g»A(EA)dEA= f»(E»')dE»'

J @]o
-VA0'»A (E»yEA)

dE~
Xq(E»O, E») dEA, (11)

(dE»/dx)

o»A-(E», EA) is given by the differential scattering cross
section 0»A-(E», 0) and the relation between the angle
of scattering and loss of energy in the collision. '

Summing over all the products of the A+8 reac-
tion, we obtain

If the reaction A+8 has only one exoergic channel,
the number k is the multiplication factor for the given
medium. The condition for the development of the
avalanche, therefore, is k) 1.

In the numerical calculations, as long as the slowing-
down process of products of the reaction A+8 and
recoil nuclei is due to scattering from electrons, we can
take into consideration only the first generation of recoil
nuclei. Then from Eqs. (4), (5), and (15), we have:
(a) In the case of charged products of the reaction A+8,

ss -2

Edx).i,.

gA"'(EA) =E» g»A(EA) (12)

gA (EA) gA (EA )dEA +A&AA (EA )EA)

We can write a similar expression for the energy dis-
tribution of recoiling nuclei B. As a result of the elastic
scattering of the 6rst generation of A and 8 nuclei,
we obtain the second generation of recoil nuclei of the
medium. With the help of the above considerations we
can write the energy distribution for the eth generation
of recoil nuclei A:

T' for plasma

S,' for degenerate medium.

(b) In the case of neutrons,

dE) ss

Edx&.,..
T"' for plasma

E, for degenerate medium.

V. CRITICAL MASS

(17)

X (q(EA', EA")
(dEA "/dx)

& @A/&Aa

+ ga'" "(EA')dEa'
aJ

+BABA (EB pEA)

dEgg
xq(EB',Ea") . (13)

(dEB "/dx)

GA(EA)dEA 1VBOAB(EA')
~ZA

dEg'
Xq(EA, EA') + ~

Ga(Ea)dEB
(dEA'/dx)

dEg'po

X ' &A~BA(EB')q(EB)EB ) (15)
kgb (dEB'/dx)

'E. Segre, Experimental nuclear Physics (John Wiley and
Sons, Inc., New York, 1953), first edition, Vol. II, pp. 9, 14.

If we add the energy distributions of all generations,
we obtain the energy distribution of the whole cascade
initiated by the particles from the reaction A+8:

GA (EA) =g. gA'"'(EA).

Having obtained the distributions GA(EA) and, in a
similar way, Ga(EB), we can give the number of A+8
reactions in the slowing-down process of the cascade
initiated by the particles from the one reaction A+ j3:

2N„104'/E2. (18)

We see that the critical mass is very strongly dependent
on the density of the medium. For densities X=10",
10",and 10"nuclei/cc the critical masses are 10 ', 10',
and 10' grams, respectively.

VI. NUMERICAL CALCULATIONS

Now, to illustrate the theory given above we shall
determine the conditions for the development of a
fusion chain reaction in a DT mixture.

As a result of the reaction D+T, we obtain alphas
and neutrons with energies ~3.5 Mev and ~14.1 Mev,
respectively. Because of the much greater initial energy
and much lower energy losses, most of the recoil

All our present considerations concern the conditions
for the development of fusion chain reactions in infinite
media. In a finite medium the conditions are different,
and then a critical mass exists as in a fission chain
reaction.

In first approximation, the critical mass can be
estimated very easily if we consider that the mean free
path (X) with respect to the elastic scattering of the
particles taking part in the reaction has to be com-
parable with the dimension (L) of the system. If we
denote by E the number of nuclei of the medium in a
unit volume, m the mass of a nucleus in grams, and
0- the cross section for elasting scattering, we obtain
222,~m4EV =222~/(a")2E2. Taking into account that
0-"~10—"cm' and mI~10 "

g, the critical mass in
grams is
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+D
k~ —~g„n(En) dEz&

case of degenerate medium, are due to scattering from
electrons, we can write

cs'.
ypH ~

P
ODT

X
~E o.(dEn'/dx). )„,,-

+ g.T(ET)dET
Sn+NT

1' $0~ yp6

TEHPEPATURf PE' DT PLAShf4 I/V

&TZ&

X
~ sr o-(dET'/dx), )„,

dET', (22)

Fro. 3. Multiplication factor k for a 50% deuterium-tritium
mixture as a function of temperature, for three values of the
electron N, .

nuclei D and T result from the scattering of neutrons;
therefore, according to Eq. (12), g&"'(ED)—g~D(ED)
and gT "&(ET)—g~T(ET). Taking into account the fact
that the absorption of fast and intermediate neutrons
in the DT medium is negligibly small, we have q„~1.
Assuming the scattering of neutrons from D and T
nuclei to be isotropic in the center-of-mass system, we
obtain

o n-(E„).
o. o-( E„, En)

E-nDE?i

where o.( dEn/dx), ~„ t.
- and o (dET/dx)e~«~ "are giv. en

by Eq. (2).
The value of the multiplication factor obtained by

the numerical calculations for a 50% DT mixture under
various conditions are plotted in Fig. 3 and Fig. 4.

-..-(E.)
o „T-(E„,ET) E..E. '

(19)

the energy distributions of the first generation of recoil-
ing nuclei are, respectively,

(E„nE„)'

(21a)X )
1+o„T-E„T1VT/o„D"E„z)1Vn.

t

I' T/&eT

Because, in the first approximation, the slowing down
of neutrons is due to elastic scattering from D and T
nuclei,

(dE„/dx)~ ,'EnnE„o„n EQ-+sEnTEarrtaT 1VT) (20)

I

I
I

I

pe

a I

I

I
f o

10

OENSITY DE ELFCTRONS lhf 50/ OT NEDllJM

Fro. 4. Multiplication factor k for a 50% deuterium-tritium
mixture at O'K, as a function of electron density N, .

We have put the cross sections 0. D- and 0-„T- equal to
the geometrical cross section, and 0-DT is taken from

arne and Perry '0

VII. CONCLUSIONS

The role of in state nascendi reactions in the release of
nuclear energy depends on the physical conditions, and
in the case of high temperature or high density they
are decisive. If we denote by E&h the energy released in
a unit volume in the thermonuclear process, then the
energy released in a unit volume with inclusion of
in stutn nuscendi reactions is

X (21b)
1+o „z&"E„os/OT "E„TXT'' Eg.g =ah/L1 —k(T,N)j

where k is the multiplication factor for the given

"S. J. Same and J. Perry, Phys. Rev. 10?, 1616 (195?).

Since the energy losses of deuterons and tritons up to
10r 'K in the case of plasma, and up to 10' g/cc in the
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medium; the factor k depends on the temperature of the
medium or, more accurately, on the temperature of its
electrons, and on its density. As the multiplication factor
approaches unity the process of energy release has an
avalanche character, and the entire nuclear energy of
an exoergic mixture is released instantaneously. The
stationary state for a slow release of energy does not
exist above the critical temperature or above the critical
density; even at a temperature of absolute zero the
exoergic mixture is explosive.

A plot of E~h" and E~,~ as functions of temperature
for 50% DT mixture is given on Fig. 5.

5
thermonuclear process tpk1n9

into account in sfatu I

~g~ ~ nascendi reactions
I

F07

TE'MPERATURE OF OT PLASMA Ih/ 'K

gee

FIG. $. Energy release per unit volume from a thermonuclear
process in a 50% deuterium-tritium mixture with and without
inclusion of ie statN nuscendi processes, as functions of plasma
temperature.

APPENDIX

As was pointed out previously, ' in general, the maxi-
mum impact parameter is a function of the velocities
of interacting particles, their masses, and their charges,
as well as of the external 6elds. In each problem this
parameter must be determined separately.

» R. F. Post, Revs. Modern Phys. 28, 338 (1956).

In the case of electrons bound in atoms or Fermi-gas
electrons the determination of the maximum impact
parameter does not present any difFiculty, but in the
case of plasma electrons it is the subject of many dis-
cussions. According to Cowling, "Chandrasekhar, "and
others, it is suitable to put the maximum impact param-
eter equal to the mean distance between the ions, but
according to Landau, " Cohen, Spitzer, and Routly, "
and others it must equal the Debye radius.

From Eq. (2) it follows at once that in the limiting
case, v~(&e„ the atomic stopping cross section is inde-
pendent of the assumed value of D, .

In the second limiting case, to determine the maxi-
mum impact parameter we must take into account the
fact that the charged particles of the plasma are inter-
acting with each other. Consider two particles with
charges +Ze and —Ze separated by a distance r.
The Coulomb force between them is (Ze/r)'. The
transfer of momentum to such a binary system from
particle $ is neglegibly small when the force of inter-
action between the particle P and each particle of the
system is less than the force of internal interaction, or
ZtZ/D'&ZZ/r'. Taking into account the mean value
of the distance between charged particles in the plasma,
we finally obtain D, ~i7 &.

The assumption that the maximum impact parameter
is equal to the Debye radius will change the numerical
results only slightly owing to the logarithmic de-
pendence on D,„of o (dE/dx) ~~«~«t«~ in the vt&&e,

region.
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