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Starting from the general equation for the distribution matrix, magnetic resonance absorption in crystals
is treated by introducing the Fourier transform of the resonance line which is shown to have the convenient
form of a simple trace. The method is first applied to rederive some eatlier results of Van Vleck, concerning
the moments of the line. It is then extended to include the case of the following experimental paper, where
resonance absorption of one magnetic ingredient is observed while another magnetic ingredient is at the
same time subjected to a strong resonant rf field. It is shown that the absorption line exhibits a center line
and faint sidebands, and formulas for the intensity and shape of these lines are developed. In particular,
it is shown that the total second moment of the absorption is unaltered by irradiation of the other ingredient.
A quantitative measure for the observed narrowing of the center line is found through the reduction of its
second moment, which is compensated by the contribution of the sidebands to the total second moment.

1. INTRODUCTION

HE rigorous analysis of the dipolar broadening of
nuclear magnetic resonance lines in crystals
represents a formidable mathematical problem. Even
in external magnetic fields, strong enough to permit
treatment of the dipolar energy as a small perturbation
in comparison to the Zeeman energy, one deals with a
secular problem where the matrices have a rank de-
termined by the extremely high degeneracy of the un-
perturbed system. The greatly simplifying restriction
to the lowest energy levels, which permits a treatment
of the somewhat analogous problem of ferromagnetism
near saturation,!? is here not applicable under normal
experimental conditions since they are so far from those
of complete saturation that all the greatly numerous
energy levels of the system are of practically equal
importance. Van Vleck® has made a significant contri-
bution to the problem by showing that one can never-
theless obtain quantitative information if one foregoes
the attempt to calculate the detailed shape of resonance
lines, but, instead, restricts oneself to compute their
various moments. The very lowest moments are of the
greatest practical importance since the complexity of
the computation, as well as the difficulties of an experi-
mental determination, increases very rapidly for the
higher moments.

It is shown in the following paper, by Sarles and
Cotts, that the dipolar broadening of a resonance line
can be modified by choosing the applied alternating
field to cause rapid changes in the orientation of the
nuclear moments pertaining to another magnetic in-
gredient in the crystal. The following analysis of this
effect will be carried out by a suitable adaptation of Van
Vleck’s method. In order to clarify the various simpli-
fying assumptions of the method, the theory of relaxa-
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tion, recently presented by the author,* will be used as
a starting point. It will first be applied to the single
resonances, considered by Van Vleck, before generaliz-
ing the treatment to include the discussion of experi-
ments with double resonance, reported in the following

paper.
2. GENERAL EQUATIONS AND NOTATIONS

It has been shown that the behavior of a general
spin system can be derived from the distribution matrix
o, satisfying the equation®

do/dit+-i[E,c ]=T (o). (1)

E represents the total energy of the spin system, di-
vided by %, and can be written here as

E=B+C+D, ()

where the first part represents the Zeeman energy,
determined by the external constant magnetic field H,;
the second, the dipolar energy; and the third, the con-
tribution due to external alternating magnetic fields.®
The term on the right side of Eq. (1) originates from
the -coupling of the spin system to the lattice, which
acts as a heat reservoir at a given temperature. The
presence of such a term is evidently required to account
both for thermal relaxation and for a finite absorption
of the spin system, but for the purposes of this paper
it is sufficient to note that, besides being linear in o, it
should be regarded as being exceedingly small. Indeed,
its order of magnitude is given by the inverse of the
thermal relaxation time 7, which may be assumed to
be of the order of several seconds or even considerably

4F. Bloch, Phys. Rev. 102, 104 (1956); 105, 1206 (1957).
These two papers will be referred to as “II” and “IIL” respec-
tively.

& Equation (2.56) in III; the small corrections A and T appear-
ing in this equation are here omitted since they are negligible with
respect to the principal part E, used in Eq. (2) of this paper.

¢ This notation is the same as of Eq. (4.1) in II; the coupling
term C, however, does not have the form, given by Eq. (4.7) in
IT which is appropriate for liquids, but is to be replaced by that
arising from the interaction of dipoles in fixed positions.

841



842 F.

longer.” On the other hand, the width of the observed
absorption lines is of the order of 10 kilocycles and is a
measure for the magnitude of the dipolar term C in
Eq. (2). Compared to this term, that of the right side
of Eq. (1) should thus be considered to have a relative
order of magnitude of 10~ or less.

Considering first a single magnetic ingredient of
nuclei with spin 7 and gyromagnetic ratio v, the spin
vector operator for a given nucleus j will be denoted
by I;. Choosing the z component in the direction of the
constant field, the components of I; will be replaced by
three operators I(A=—1,0,1) which are related to
the components of the vector I; by the equations,

If=(I,)z; I#=(1;)s31(I5)y ©)
and which satisfy the commutation rule®
AL ]= (=DM (N=n) L7050 (\r=—1,0,1). (4)

Following the notation of Van Vleck® in the case of a
second ingredient with nuclei of spin I’ and gyromag-
netic ratio v/, the spin vector operator of a given nucleus
4 of this ingredient will be denoted by I.. The defini-
tion and commutation rules of the corresponding opera-
tors I; are obtained by replacing, in Egs. (3) and (4),
7 by j" and k by &’; any two operators, of which one
has a primed, the other an unprimed lower index,
commute of course with each other. It is finally useful,
for further purposes, to introduce the total spin
operators

I)\=ZJ'IJ)\ <}\=_1’0)1)) (5)

for one ingredient and I" in case of a second ingredient,
obtained by replacing j by ;' in Eq. (5). With these
notations, the Zeeman part B of Eq. (2) can then be
written in the form

B=—wl", (6a)
in the presence of one ingredient and
B=—wol"—wi'I", (6b)

in the presence of two ingredients with
wo' = ’YIH 0. (7)

The dipolar part C of Eq. (2) will, for a single in-
gredient, be written in the form,

C= Z Cjk,

i<k

wo="H,,

(7a)

7 For the NaF crystal of the following paper [L. R. Sarles and
R. M. Cotts, Phys. Rev. 111, 853 (1958)7], T:=21 sec; since the
thermal relaxation is here primarily due to the presence of para-
magnetic impurities one can expect to find increasingly larger
values of T for higher purity of the crystal. In the case of rela-
tively pure single crystals of LiF, one observes in fact thermal
relaxation times which are of the order of several minutes and
which would probably be even longer if the amount of para-
magnetic impurities could be further reduced.

8 Apart from expressing the fact that the spin operators of
different nuclei j and 2 commute, this form of the commutation
rule for =k can be readily verified, in virtue of Eq. (3), to be
equivalent to the customary form [I,,I,]=4I, and its cyclical
permutations.
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where
1C =2y r 2 (- Ti) = 3755 (20 1) (r - 1) ] (8)

represents the well-known interaction energy of two
magnetic dipoles j and k with moments y;=%yI; and
wir="7vI;, respectively, separated from each other by
the radius vector rj, with magnitude ;. Using the
operators defined in Eq. (3), one has

Cin=2 ciMI 7, 9)
AT

where the summation extends over the values —1,0, 1
of X and 7 and where the coefficients c;;*" are readily
obtained by introducing in Eq. (8) the operators I
for the nucleus j defined by Eq. (3), and the correspond-
ing operators [;” for the nucleus £.% Since Cjz is a
Hermitian operator, the coefficient ¢;z 7" is conjugate
complex to ¢z,

In the presence of a second ingredient, one has,
instead of (7a),

C=3% Cu+ 2 Ciw+2 Cirr,

<k i<k’ ik’

(7b)

with the same significance of Egs. (8) and (9) for primed
as for unprimed indices and with the replacement of «?
in Eq. (8) for the second term of Eq. (7b) by +',? for
the third by yv'.

To obtain the part D of Eq. (2) it will be assumed,
in the case of a single ingredient, that the applied
alternating field contains only a single frequency w; in
the vicinity of the resonance frequency wo. Its effect
upon the nuclei can be described, in the customary
manner, by that of a rotating field of magnitude H,
with an x- and y-component, given by H; cosw;t and
— H, sinw;t, respectively. With the notations (3) and
(5) one then has

D= —hy(Iteiori4-I-lg—iont) (10a)
with

h=vH./2. (11a)

In order to treat the case of double-resonance in the
case of two ingredients, the alternating field will be
assumed to contain, besides the frequency ws, a second
frequency ws in the vicinity of the resonance frequency
wo’ of the second ingredient. Because of the presence of
an additional rotating field of magnitude H, and fre-
quency ws, one has therefore in this case

— _hl(Ileiwu_l_I—le—-iwu)
___hll (I'leiwl‘—}-I'_le"i““)
_h2(peiwzt_|_[—-le~iw2t)

_hzf(I'lgiwzt_l_l’—le—imzt), (lob)

where the first and second terms on the right side con-

9 These coefficients appear explicitly in Van Vleck’s Eq. (2),
reference 3, where instead of the above notation 19, I, I%, spin
operators are denoted by S, S*, S, respectively.
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tain the action upon the primed and unprimed ingre-
dient, respectively, of the field with frequency wi, the
third and fourth term that of the field with frequency
ws, and where

=vH,/2, h'=~"H,/2,

h2=’yH2/2, h2’='y,H2/2. (llb)

Either in the case of a single ingredient or of two
ingredients, it will be assumed that one observes
signals of frequency w; so that the direct experimental
information concerns-the resonance characteristics of
the contribution M = M ,+iM , to the complex polariza-
tion which is due to the unprimed ingredient.!® Referring
to a unit volume of the crystal, it is given by

M=ny ("), (12)

where (I') stands for the expectation value of the
operator I', defined by Eq. (5). In view of the general
manner in which the distribution matrix determines the
expectation value of a spin function,' one obtains from
a solution ¢ of Eq. (1)

(IN="Tr(I's). (13)

As a function of time, M varies under stationary condi-
tions with the frequency w:; besides, it will be assumed
that the magnitude H; of the corresponding rf field is
sufficiently small, so that only linear terms in this
quantity have to be retained. The resonance of the
unprimed ingredient is then characterized by measuring
the complex susceptibility

x=M/(He ) =x"+ix",

in its dependence upon w; and, particularly, by the
imaginary part x”/ of this expression, which corresponds
to absorption.

(14)

3. SINGLE RESONANCE WITH A SINGLE
MAGNETIC INGREDIENT

The formalism, outlined in the preceding section,
will be applied in this section to the simplest case,
where the crystal contains a single magnetic ingredient
and where the alternating field is assumed to contain
only one frequency wy, so that the three parts B, C, and
D, on the right side of Eq. (2) are given by the Egs.
(6a), (7a), and (10a), respectively. While it will yield
no results beyond those already derived by Van Vleck,?
the treatment of this case is presented in a manner
which leads up to that of double resonance to be con-
sidered in the following section.

Starting with Eq. (1), a unitary transformation will
first be applied to the distribution matrix ¢ whereby

10 Tn applying the results, obtained below, to those of the follow-
ing paper, the unprimed and primed ingredient will consist of the
nuclei of Na?, and F9, respectively, contained in a crystal of NaF.

11 See Eq. (2.6) of II. '

12 Sections IT and III, reference 3.
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the transformed matrix »
or=TeT,

is defined by means of the transformation operator

(15)

T=exp(—iwitl?), (16)

and its inverse 71,
It can be seen!® that the result of this transformation
upon the operator I is given by

TI]')‘]‘_I= e‘““"”lj)‘. (17)

Indicating from now on the result of the transformation
throughout by the subscript 7', one obtains from Egs.
(5) and (17)

(I)\) = e—i)\aut])\ (18)

and, with the trace invariant against the transforma-
tion, from Eq. (13)

{IY=Tr(Ir'or)=e""1t Tr(I'or). 19)

The time dependence of this quantity, just as that
of the complex polarization M of Eq. (12), is contained
in the exponential, multiplying the trace, so that the
latter has to be independent of time. To meet this
requirement, it is necessary to exclude transient effects
and it is further sufficient to find the stationary part of
the matrix or since the operator I' is independent of
the time. This suggests finding a form of ¢7 which is
altogether stationary. On the other hand, it follows
from Egs. (1), (2), and (15) that o7 has to satisfy the
differential equation

dUT/dt+i[ET,UT]=PT(UT). (20)

By dividing the operator Er into three parts in analogy
to Eq. (2), so that

Er=Br+Cr+Dr,

(21)
one can verify from Egs. (6a), (15), and (18) that
Br=wil"+TBT'=A,I", (22)
with
A1=w1—-wo, (23)

It is further seen from Egs. (7a), (9), and (17) that

Cr=TCT =3} 3% (;jk)\rjj)\[kre—i()\+r)w1t, (24)
A<k
and from Egs. (10a) and (18) that
Dyp=TDT = —(I'+I7). (25)

A rigorously stationary solution of Eq. (20) is pre-
cluded by the time dependence of Cr, contained in the
terms with A+770 of Eq. (24). On the other hand,

13 The simplest proof of Eq. (17) is obtained by noting that it
holds at the time =0 and by verifying that, in virtue of Eqgs. (4)
and (5) and, hence, of the commutation rule of I° with 7;*, the
equality holds for the time-derivative.
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the omission! of these terms involves a negligible error,
provided that the conditions

(1Ad], [e], || )<Keor (26)

are satisfied. This is indeed the case under normal
experimental conditions where the constant field H, is
so strong that the Larmor frequency wo=vH, is very
large compared to the frequencies on the left side of the
relation (26) which represent a measure for the effective
magnitude of the operator Er of Eq. (20). The same
holds in the vicinity of resonance for the frequency w;
so that the rapid alternation of the terms with A-7520
justifies their omission.!® It is therefore permissible to
substitute for the expression (24) its time average

A=Y [cp® P04 cid =T A e U Y

<k

@7

Another simplification arises from the fact that 4
may be considered sufficiently small so that quadratic
and higher terms in this quantity may be neglected.
Let
(28)

where oy is the stationary solution of Eq. (20) obtained
for #;=0 and where ¢, is proportional to %;. Since Dy,
given by Eq. (25), is itself linear in 4, it follows to this
order from Egs. (20) and (22) with the substitution (27)
for Cr that a stationary solution for o; has to satisfy
the equation

[AL4 A, o 40 r(o) =k [I'4+T7, 60, (29)

To obtain the quantity oo which appears on the right
side of this equation, it is to be noted that, for H,=0,
the spin system is in thermal equilibrium with the
lattice, so that the stationary solution of Eq. (1) can
be written in the form?¢ {¢—#%0 where 3=7/kT and where
E, represents the principal part of the energy of the
spin system, divided by #%. In the presence of a suffi-
ciently strong constant field Hy, this part is given by
the Zeeman energy B of Eq. (6a) and one may there-
fore write

ocr=0ootoy,

ogo={ exp(x[9), (30)

with
k= PBuwo="nwo/kT, (31)

and
¢=[Tr exp(xI%) 1. (32)

Although this result for ;=0 refers to the stationary
solution of Eq. (1), it applies also to that of Eq. (20)
and hence to the quantity oo of Eqgs. (28) and (29).
Indeed, this quantity is seen to remain unchanged
under the transformation (15) since the operator T of
Eq. (16) commutes with exp(xI°).

14 This omission is equivalent to that of the heavy-bracketed
part of the Hamiltonian in Van Vleck’s Eq. (2), reference 3.

15 Treated as a perturbation, the omitted terms yield in first
approximation contributions of small amplitude to or which
vary with frequencies w; and 2w; and correspond to the existence
of faint subsidiary absorption lines, pointed out by Van Vleck.

16 Equation (2.35) of II and (1.1) of III.
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In order to solve Eq. (29) for g1, it is most convenient
to choose a representation in which the quantity A4,
given by Eq. (27), is diagonal with eigenvalues w.,.
This quantity can be seen to commute with the opera-
tor I% in view of the definition (5) and the relations (4),
so that it is possible to assign a definite eigenvalue m of
I° to each of the states . It follows that the quantity
AJ%44 is, in this representation, likewise diagonal
with eigenvalues

(n] AO+A | n) =mA+wn, (33)

as well as the quantity oo of Eq. (30) with eigenvalues

(n]ao| n)=germ. 34

As a consequence of the commutation relations between
I° and I, one has the selection rule that (n|I%!|n’)
vanishes unless the eigenvalues 7 and m’ of I° for the
states # and #/, respectively, satisfy the relation
m’'=m7F1. Disregarding, for the time being, the imagi-
nary relaxation term on the left side of Eq. (29), one
obtains therefore from this equation, together with
Eqgs. (33) and (34),

(nlo1]n)=hi(1—e %) (| I exp (1) [n")/
(Wn—wn—Ay),

(35)

for m’=m-+1and an analogous expression for m'=m—1,
while all other matrix elements of ¢; vanish. Since the
matrix, representing the contribution ¢ to o7 in Eq.
(28), is diagonal, it follows further from the selection
rule for I, that one can write Eq. (19) in the form,

(M=t 3 (nfos|n) ([ I'] ), (36)

and that the expression (35) may be inserted on the
right side of this equation.

The relaxation term, which was temporarily neg-
lected, can be considered to be very small and thus to
have an appreciable effect upon the result (35) only if
wa,—w, 1s in the immediate vicinity of the value Ay,
given by Eq. (23). This effect can be described by
adding to the denominator on the right side of (35) a
term —iI',, with a real and positive coefficient T,
which is of the order of magnitude of the inverse thermal
relaxation T and thus according to Sec. 2, very small
compared to the width of the absorption line.l” With
this correction in Eq. (35) and with Egs. (11a), (12),
(13), and (36), one obtains from Eq. (14) the complex
susceptibility

x(A)=3tm(1=e) T (n] I exp(el?) ')

X (0 | I 1)/ (@0n—wn —A1—iT0nr), (37)

17 The origin of this coefficient and the proof that it must be real
and positive is analogous to that of the quantity T'g of Eq. (3.8)
in IT.
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with the imaginary part
X" (A) =357y’ (1—e) X (n|I7 exp(xI)|n')

X (| I' ) fanr(A1).  (38)
The function

fnn' (AI) =Pnn'/[(‘*’n“wn’*A1)2+ (an’)2:| (39)

attains appreciable values only if A, differs from w,—w,’
by an amount comparable or small compared to T'p,.

In view of the smallness of this coefficient, mentioned
above, it is therefore permissible to replace the function
Sfanw(Ay) in (38) by a é function, multiplied by = for
reasons of normalization, and to write!®

X" (A)= (/2§ (1—e™) 2 ([T exp(xI%) |n')

X (7' /1| 1)6 (Ar—wntwn).

This quantity determines the absorption of weak rf
fields in its dependence on the applied frequency
w1=wo+A; and contains thus the complete information,
both with regard to magnitude and detailed shape of
the resonance absorption line. It is, however, more con-
venient to write it as a Fourier integral in the form

(40)

+00
X (A)=K f o()eidids, (a1)
where w
K=Yt (1—e). 42)

The moments of the absorption line, defined by

(A= f A" (ADdA; / [ f x”(Al)dAl] (43)

are then directly obtained from the Fourier transform

+o
K o(t) = f it (A)dA, (44)

18 This procedure was used from the start by Van Vleck and
its significance is intuitively clear. Nevertheless, it may be well
to add some remarks in regard to the calculation of moments.
According to Egs. (38) and (39), the observed absorption line
is actually to be understood as the conglomerate of very many,
very narrow lines of Lorentzian shape with a negligible contribu-
tion to the absorption as soon as A; is outside of the range of the
frequencies w, —wy, i.€., outside of the width of the observed line.
However, since for large values of A; this contribution decreases
merely as 1/(A,)?, it contributes an ever-increasing amount to the
second and higher even moments, the larger the range of values of
A; is chosen. On the other hand, this range is, in practice, re-
stricted to a few times the observed width w of the line so that the
Lorentzian wings of the actual line are immaterial, provided only
that the width I'»n of the individual lines is small compared to w.
In fact, choosing a range aw with «>>1 on both sides of the ob-
served line, it is readily shown that the contribution from this
origin to the sth moment (s even) is of the relative order of
magnitude a*1|T'| /w where |T'| represents a weighted average of
the various values of T'nnr and may be estimated from the ob-
served values of T to be in our case no more than 10~%w. Thus
even the choice of quite large values of « is permissible without
noticeably affecting the values of the lower moments.
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in the form
<A1">Av=7:s¢(a)(0)/¢(0)s

where ¢©® () represents the sth derivative of the
generating function ¢(f). A simple expression for this
function is obtained by inserting the result (40) for
x/(A;) in the right side of Eq. (44) and using the value
(42) of K, so that one has

o(t)= 2 (1| I exp(xI°) | n') (n' | I' | m) giComr—am)t

=3 (| I exp(kI%) |n') (n' | ei4tTle—iAt| ).

(45)

The last equality is based upon the fact that the matrix,
representing the operator 4 of Eq. (27), is diagonal
and has the eigenvalues w, and w, in the states #
and #/, respectively. Through the rules of matrix
multiplication and the definition of the trace, one
obtains thus!?

() =Tr(e4te~4t[1 exp(xI)). (46)

As a further simplification it is permissible, under nor-
mal experimental conditions, to assume x=7w,/ (kT)<K1
and, hence, to replace the operator exp(xI°) by unity?
so that

() =Tr(ei4t e 4 1), 47

The principal problem of evaluating ¢(f) and, hence,
through Eq. (41) the function x’'(A;), resides with the
time development

I1(f) = ei4¢1g—idt (48)

19 While the author introduced the Fourier transform merely as
a formal device, he is grateful to Dr. K. Halbach for having
pointed out to him that it has a simple physical significance which
permits a more direct derivation of the expression for ¢(f), given
in Eq. (46). Restricting oneself to effects, linear in the applied
rf field, one may in fact consider the effect of a & pulse of the
rf field at the time =0 as the result of the superposition of mono-
chromatic fields with a uniform spectrum over the frequency w;.
The quantity, given by Eq. (44), can then be interpreted as
representing the signal observed at a time :>0. Conversely, one
can integrate Eq. (1), assuming that for <0 one has o=ay,
keeping for ¢>0 only terms linear in the applied rf pulse and
neglecting damping effects which arise from the term I'(¢). With
the use of the Egs. (12) and (13) one is thus led to an expression
for M which vanishes for ¢ <0 and which is proportional to ¢(%).
The expression (46) for this function is obtained by the same
approximation as that which leads to the replacement of C by its
average value 4 and the neglected part can likewise be seen to
correspond to faint subsidiary absorption lines (see reference 15).
The fact that the signal, following an rf pulse, can be expressed
in terms of traces of operator products, was pointed out before
by I. J. Lowe and R. E. Norberg, Phys. Rev. 107, 46 (1957), who
applied it to the calculation of free induction decays in crystals.

2 The presence of this operator in Eq. (46) indicates a tempera-
ture dependence of the line shape which, however, is normally too
slight to be observable. It might seem that it could be neglected
only under the far-too-stringent condition Nx<1 since the range
of eigenvalues of the operation I° is of the order of magnitude N
of the number of nuclei present in the sample. Upon writing
exp(xI°) as a product of operators, pertaining to the various
nuclei, it can be seen, however, that the overwhelming majority
of the factors cancel out in the expression (45) for the moments
so that the condition x<1 is indeed sufficient to replace the re-
maining ones by unity. The effect of a finite temperature upon the
line shape has also been pointed out by M. H. L. Pryce and K. W.
H. Stevens, Proc. Roy. Soc. (London) A63, 36 (1950).



846

of the operator I' under the influence of the dipolar
Hamiltonian #4.

To find this development is equivalent to solving the
differential equation

ari(y)/dt=4[ 4,1 (¢)], (49)
with the initial condition
I0)=1. (50)

Although no simple solution can be expected for arbi-
trary values of the time ¢, it is easy to give a power
series expansion, valid for a sufficiently short time 2.2
Indeed, the coefficients of this expansion are directly
obtained from Eq. (49), and from successive differentia-
tions of this equation which yield the derivatives of
I'(t) at the time /=0 in terms of the corresponding suc-
cessive commutators of 4 with I,

From the expressions (46) and (47) it is seen, for the
same reason, that the derivatives of ¢(f) at the time
t=0 and, therefore, in view of Eq. (45), the moments
of the absorption line, are simply obtained in the form
of traces, involving these commutators. In particular,
using ¢(¢) in the form given by Eq. (47) and noting
the fact that the trace of an operator product does not
change by a cyclical permutation of the factors, one
finds, for the second moment,

APw=Tr(LINAA ] /Te(I'T),  (S1)

and, for the fourth moment,
<A14>AV= TI’{ [[II’A:LA:IEA >[A )I-ljj}/Tr(III_l): (52)

in agreement with the corresponding expressions de-
rived by Van Vleck.”? While the numerator of these
expressions contains the trace of even products of spin
operators I, it can be seen, since the quantity 4 of
Eq. (27) is bilinear in these operators, that all odd
moments are determined by odd products and, hence,
vanish identically. The absorption line is therefore
symmetrical around the value A;=0 or, according to
Eq. (23), around the point at which the frequency
w; of the applied rf field is equal to the Larmor fre-
quency wo in the constant field.

4. DOUBLE RESONANCE WITH TWO
MAGNETIC INGREDIENTS

While the results for the second and fourth moment,
derived in the previous section, merely confirmed those
of Van Vleck in the simplest case of a single ingredient,

21 The required shortness of the time # can be stated to demand
that 1/¢ be large compared to the effective magnitude of 4, meas-
sured by that of the coefficients ¢;x of Eq. (27) which pertain to
the dipolar interaction of neighboring nuclei j and %. Physically,
this magnitude is of the order of the frequency width of the reso-
nance absorption line.

22 See reference 3, Eqs. (4) and (7). The fact that these equa-
tions contain the x-component S of the total spin, rather than the
complex combinations /' and I7! of the x- and y-component
represents a merely formal difference between the results of Van
Vleck and those given above.
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the method of their derivation permits a considerable
generalization. In the first place, it can be readily
extended to include the case of two ingredients in the
presence of an alternating field with a single frequency,
thus leading to the corresponding results of Van Vleck.?
The further extension to the case of an rf field with two
frequencies will be seen, under special conditions, to
lead likewise to these results. More generally, however,
there appear here new featured which will be particu-
larly discussed in this section.

Before entering into a more rigorous discussion, it
seems worth while to present some qualitative consider-
ations, based upon purely classical arguments. Since
only the dipole interaction between nuclei of different
ingredients is relevant for these arguments, that be-
tween nuclei of the same ingredient will be neglected
for purposes of simplicity. In the absence of any rf
field the nuclei of one ingredient are thus considered to
be acted upon by the external constant field and by a
relatively weak internal field, arising from the dipoles
of those neighboring nuclei which belong to the other
ingredient. Because of the Larmor precession of these
dipoles, the internal field alternates around an average
value determined by their constant component parallel
to the external field. The alternating part may be neg-
lected because of its high frequency so that one deals
with an effective constant field which deviates from
the external strong field by an amount determined by
the average value of the internal field. This amount
is different at different sites in the crystal and leads
thus to a broadening of the observed absorption line
of the nuclei of one, the “unprimed,’” ingredient by the
interaction with the dipoles of the other, the “primed,”
ingredient.

It will now be assumed that the latter are subjected
to an additional external field of strength H, per-
pendicular to the constant field and rotating with a
frequency ws in the vicinity of their Larmor frequency
wo'. Referring to a rotating coordinate system, it can
readily be seen that, as an effect of magnetic resonance,
the component of the dipoles, parallel to the constant
field, is no longer constant, but alternates with a
circular frequency

f=L('H2)* - (w2—wd)2 ], (53)

around a static value which is smaller than that in the
absence of the rf field and obtained from the latter by
multiplication with the factor

r=(w2—wd)/f. (54)

This behavior of the dipoles is reflected upon the effec-
tive field to which the nuclei of the unprimed ingredient
are exposed insofar as its previously-mentioned devia-
tion from the external field is concerned. This deviation
thus contains a static part, modified from its previous
value by the factor 7, and it provides in addition a

2 See reference 3, Sec. IV.
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partial modulation of the effective field with the fre-
quency f. In the reaction of the unprimed nuclei upon
the applied rf field, this modulation of the effective
field can be replaced by an equivalent modulation of
the frequency wi. As a consequence, there appear side-
bands of the absorption of the unprimed ingredient,
separated from the center line by integer multiples of
the modulation frequency f. For sufficiently high values
of the modulation frequency, the intensity of the other
sidebands is small compared to that of the sidebands
with the separation f and —f and the intensity of
these two sidebands is, in turn, small compared to
that of the center line. The width of the center line,
which is then the only one of appreciable intensity, is
determined by the static part of the deviation of the
effective from the external field and will thus exhibit a
reduction, measured by the factor r of Eq. (54).
Under conditions of exact resonance for the primed
ingredient, i.e., for ws=w¢’, the requirement of a high
modulation frequency f is, according to Eq. (53),
equivalent to that of high values H, of the rf field.
With this requirement fulfilled, the result r=0 for
we=w,’ indicates that the width of the resonance line
of the unprimed ingredient is here totally unaffected
by the presence of the primed ingredient, and this fact
is indeed born out by the observations, reported in the
following paper.

It is gratifying that the simple considerations,
presented above, permit an intuitive understanding of
the effects, which may be expected under conditions
of double resonance and they formed indeed the basis
for the original suggestion of an experimental investiga-
tion.2* Nevertheless, they are only qualitatively correct
and a quantitative derivation calls for a more rigorous
treatment, analogous to that of the preceding section.

For this purpose, one has to introduce two essential
changes. In the first place, the discussion of the Boltz-
mann equation (1) will be based upon the parts (6b),
(7b), and (10b) of the spin energy, divided by #%. In
the second place, the transformation operator 7' of
Eq. (16) is here to be replaced by

T=exp(—twit]°—iwqtl ). (55)

While Egs. (19), (20), and (21) remain still valid, one
obtains instead of the expressions (22), (23), and (24)

Br=AJo44,1", (56)
CT —_ Z [Z cjk)"lj"lk’e*"("*’)“’"
A i<k
+ Z Cj,k,)\"[j,)\[k,‘re-i()\+‘r)wzt
i<k’
+ Z cjk,)\rlj)\lk,re—i()\w1+no2)t]’ (57)

ik’

2 The earlier observations by J. T. Arnold [Phys. Rev. 102,
136 (1956)] of the influence of the resonance of one group of
nuclei upon that of another group in the same molecule and the
underlying theory of this effect by the author (reference 4, II)
were likewise suggestive although they refer to a somewhat differ-
ent situation.
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Dp= —h1(I1+I—") - hl’[I’Ie‘i(wl—wz) t_I..I’—le—i(wl—wz) t]
—_ hZEIle—i(wx—wz) tf [leilor—w2) t]

—h/[I"+1"1],  (58)

respectively, where

A2=w2—w0'.

(59)

In contrast to the treatment of Sec. 3, there appear
here time-dependent terms not only in Cr but also in
Dy. Through an analogous consideration these opera-
tors can, however, be replaced by their time averages
if both frequences w;, ws as well as their difference
w1—we are large, compared to the frequencies Aj, A,
h1, he!, and those given by the various coefficients ¢ in
Eq. (57). Barring the accident that the gyromagnetic
ratio of the primed ingredient is either very close to zero
or to that of the unprimed ingredient, these conditions
are no more stringent than those, expressed by the
relations (26) and are satisfied in external constant
fields of comparable magnitude. As in Sec. 3, the term
with A475£0 in the first and second sum on the right
side of Eq. (57) can thus be omitted. All terms in the
third sum of Eq. (57) except those with both A=0 and
7=0 are likewise to be omitted as well as the second and
third term on the right side of Eq. (58). Assuming
again /; to be small and keeping only terms linear in
this quantity, the further considerations are the same
as those of the preceding sections. In particular, the
basic equation (29) for o, retains its validity and one
may therefore still make use of the results (41), (45),
and (47) for the imaginary part of the complex sus-
ceptibility, the moments of the absorption line due to
the unprimed ingredient and the generating function
¢(#) for kK1, respectively.?® The only essential differ-
ence between the treatment of the cases, considered in
this and the preceding section, originates from the
presence of additional terms in the time averages of the
operators Cr and Dr so that the definition (27) of the
time average A has to be modified.

In order to distinguish the origin of the various parts
which enter in this new definition, let

A=A¢ta.

Ar1=wi1—wo;

(60)
The part

A0=A21,0'“h2'(lll+[’_l) (61)

arises from the operator Br and from the operator,
obtained by the time average of Dr according to the

26 The explicit form (30) of the distribution matrix ¢ for #;=0
has to be replaced by an expression which depends also upon the
spin operators of the primed ingredient in a manner determined
by the magnitude of the rf field with frequency ws. For large
magnitudes, this dependency expresses, in particular, the satura-
tion of the primed ingredient which may cause an ‘“‘Overhauser
effect” (see II, Sec. 3) upon the intensity of the absorption due
to the unprimed ingredient. It would, in this case, result in a
change of the constant K in Eq. (41), leaving, nevertheless,
Eqs. (45) and (47) unaltered. Since the relaxation of the two
ingredients is primarily due to impurities, rather than to their
mutual interaction, the presence of such an effect is, however, not
to be expected and has actually not been observed.
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Egs. (56) and (58), respectively, and consists, in
fact, only of the contributions to these operators which
are due to the primed ingredient, since the correspond-
ing contributions, due to the unprimed ingredient, are
separately contained in Eq. (29). The other part repre-
sents the time average of the operator Cr of Eq. (57)
and may thus be written in the form

a=b+b"+c. (62)

The first term,

b= z [ cj kOOIJ.OI k0+ cj kl—-leII Ir.—1+ cj k—lle—lI kl:],
i<k

(63)

on the right side of this equation arises from the dipole
coupling between nuclei of the unprimed ingredient and
is identical with the form (27) of 4, used in the preced-
ing section. The second term b* represents the corre-
sponding contribution from the primed ingredient and
is obtained by replacing the indices j and % in Eq. (63)
by j’ and %, respectively. The third term,

c=2 oI 1",
ik’

(64)

arises from the dipole coupling between nuclei of the
primed and unprimed ingredient; for the purposes of
this paper, it is the most important one, since it trans-
mits the effect of the rf field upon the former to the
observed resonance of the latter.

The results of Van Vleck, derived in the absence of a
second 1f field H» with frequency w. refer to a special
case of the more general situation, considered here.
Indeed, one has in this case ky’=0 and A,=A,I" ac-
cording to Eq. (61). The operator I’° can be readily
seen to commute with the operator a of Eq. (62), since
the specific form of 4" and ¢ results from the process of
taking the time average and thus from the very omission
of those terms which do not commute with I’°, Since
I also commutes with I, it follows that the operator
I'(t) of Eq. (48) and, hence, the generating function
(47) are here totally unaffected by the additional term
Ao in Eq. (60) so that 4 may be replaced by ¢. In
particular, this substitution in the expression (51) for
the second moment will be indicated by writing

(A )w=(Ar")(a), (65)

and Van Vleck’s result?® can then be verified and re-
stated in the form

(A2)(@)={A2)(B)+ (A2 (e), (66)

with the corresponding significance of the symbols (b)
and (¢), i.e., that the first and second term on the right
side of this equation are obtained by substituting in
Eq. (51) for A4 the operators b and ¢, given by Egs. (63)
and (64), respectively.

Contrary to the case, considered by Van Vleck, the
presence of an rf field with frequency ws requires that
one uses for the calculation of the moments the full

26 See reference 3, Eq. (28).
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operator 4 of Eq. (60), including the part 4. Applying
the same symbolism as in Eq. (65) this leads to the
expression

(Af)n=(Ar")(4) (67)

for the second moment. However, it is seen from Eq.
(61) that 4, contains only spin operators of the primed
ingredient so that it commutes with the operators I!
and I7! of the unprimed ingredient and does not,
therefore, contribute to the expression (51) for the
second moment. One obtains thus

(A% (4)=(A)(a),

i.e., the effect of the rf field with frequency ws upon the
primed ingredient does not alter the second moment of
the absorption line due to the unprimed ingredient.

This conclusion appears, at first sight, to be in con-
tradiction with the observed narrowing reported in the
following paper and qualitatively explained at the be-
ginning of this section. It has to be remembered, how-
ever, that the expression (51) or (67) refers to the second
moment of the total absorption line, including the side-
bands which have to be expected. The observed
narrowing, on the other hand, refers only to the center
line and one is thus led to the conclusion that the
amount by which the second moment of this line is
reduced, must be exactly compensated by the contribu-
tion from the sidebands. This conclusion is not in-
validated but, on the contrary, supported by the fact
that the intensity of the sidebands becomes very small
for very large values of the modulation frequency f of
Eq. (53). Indeed, since this frequency measures also
the separation of the sidebands from the center line,
it is necessary that their intensity is inversely propor-
tional to f? in order to obtain a finite compensation
even in the limit of very large values of f. Accepting
the existence of sidebands, it is evidently possible, in
this limit, to obtain their intensity, relative to the
center line, from the decrease of the second moment
of the latter or vice versa. Separate information about
either of the two would then require the consideration
of the fourth moment which is indeed affected by the
presence of the rf field with frequency ws.

It appears preferable, instead, to discuss the absorp-
tion in its complete dependence upon the frequency w,
and thus not only to demonstrate more rigorously the
existence of a center line and two sidebands for large
values of fbut also to derive formulas for the shape and
the relative intensities of these individual lines. The
discussion will be based upon the expression (47) of
the generating function ¢(f); for the present purposes,
it is advantageous to rewrite it by means of the Eq. (48)
in the form,

() =Tr(I'OI™), (68)
where I'(¢) satisfies the differential equation (49) with

the initial condition (50), and with 4 now being defined
by Eq. (60). In order to examine the modifications due
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to the presence of the term 4, in Eq. (60), a new
quantity
161 (t) = ST ()1 (69)

will be introduced through the transformation operator
S'=Spet4ot, (70)

So shall have the property, in common with 4, to be
independent of the time and to operate only upon the
spin vectors of the primed ingredient, so that both
commute with I'. As a consequence, Eq. (68) is there-
fore equivalent to

o()=Tr(Is' (I, (71)

where, in view of the Egs. (49), (50), and (60), the
operator Ig'(#) has to satisfy the differential equation

dI,sl(t)/dt=’i[:as, Isl(t)], (72)
with the initial condition,
Ig'(0)=1* (73)
and with
as=SaSL (74)

While the transformation by means of the operator S,
leaves the spin vectors of the unprimed ingredient
unaltered, it shall be further demanded to represent a
rotation of the spin vectors of the primed ingredient
by a suitable angle § around the v axis. The trans-
formed components of the spin vector I are then
given by
SolwSet=1I}, cosd— Iy, sing,
Sol S =TI}, sinf+ Iy, cosh,
SOIk’ySO‘—l:Ik’y,
and the same relations hold for the components of the

total spin vector of the primed ingredient.?” The angle 6
will be determined so as to satisfy the equations

sinf=+"H,/f, cosf=—As/f,

(75)

(76)
with
f=L(Hy)*+ALT0 (77)

In view of the significance of A, from the second equal-
ity (59), the value of cosf is identical with that of the
reduction factor 7 of Eq. (54) and the Eq. (77) agrees
with the Eq. (53) for the modulation frequency, intro-
duced in the qualitative discussion at the beginning of
this section.

With the particular choice of the angle 6, expressed
by the Eq. (76) and with the identity

he! (I 1Y) =v'Hol,

it follows from the application of the relations (75) to
the total spin vector of the primed ingredient, that

SodoSgi=— fI".

27 Explicitly, the choice of the operators So can be expressed
in the form So=exp (:01,’), with the notation chosen in accordance
with the analogous operator, given by Eq. (2.30) of II.

(78)
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In order to evaluate the operator as of Eq. (74), the
relation (78) will first be used to rewrite Eq. (70) in
the form

S=exp(ifI"°)S,. (79)

As a next step, let
SeaSii=2, an, (80)

with the significance that ¢” contains all those linear
and biquadratic terms Ip* and I;* Ip" for which
A=n and A7=wn, respectively, and for »=0 also
those terms which contain only spin vectors of the un-
primed ingredient. Since the original time averaging,
which led to the operator @ of Eq. (62), results in the
very omission of all terms with 7320, it is seen that the
appearance of such terms in the sum of Eq. (80)
requires a finite value of sind and thus, according to
Eq. (76), the presence of the field H, of frequency ws.
Because of the relation

exp(ifI%) I exp(—ifI’%) = e A,

derived in the same manner as the relation (17) for the
unprimed ingredient, one has then

exp (if %) a» exp (—if %) =einftan,

and hence, with the form (79) for S from Egs. (74)
and (80),
(81)

The explicit form of the operators ¢ is obtained by
applying the transformation formulas (75) to the spin
operators of the primed ingredient. They occur in the
terms &’ and ¢ on the right side of Eq. (62) while the
term b is unaffected by this transformation. With the
same significance of the upper index # for these terms
as that used in Eq. (80), one has thus

ar= bn_l,_b/n_l__cn,

as=2 ne™tqn,

with
a®=b-+0""4¢",
atl=pEp L

2=,

(82)

and with all operators a” vanishing for which |n]>2.
Going from the component notation of the transforma-
tion (75) back to that with upper indices, it is seen from
Eq. (64) that

"= (22 ¢jp®I°I %) cosf=c cosf,
i*’

(83)

and

ctl=— (Z Cjk,OOIJ.O[k,:I:I) sxn0/2 (84)
ik’

The evaluation of the contributions, due to ', in the
formulas (82) is likewise straightforward but their
explicit form is not needed for the purposes of this paper.

When inserted into the differential equation (72), the
alternating terms in the expression (81) for ags can be
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expected to average out the more effectively, the higher
the frequency f, so that the constant term o° will be-
come of dominant importance. It is therefore advisable
to perform a further transformation by writing

I () =exp(1a®%) U () exp(—ia%%). (85)

The transformed operator U(f) is then seen, from Egs.
(72), (73), and (81), to satisfy the equation

——U—=i 2 [a»(®),Ude, (86)
at w0
with the initial condition
U0)=1, (87)
and with the notation
a"(¢)=exp(—ia")a exp(ia™). (88)

The insertion of the form (85) for the operator Ig'(z)
leads further from the Eq. (71) for the generating
function to

o(@)=Tr(exp(2a®) U (¢) exp(—ia®)I1).  (89)
Just as I'(#) and Is'(#), U(¢) is function of the spin
operators, pertaining to the primed as well as to the
unprimed ingredient. To characterize its dependence
upon the former, one may write

U=X.0m (90)

where the significance of the upper index # is analogous
to that of the index #, introduced in Eq. (80). Thus,
expanding U into a sum of terms which contain products
of the spin operators I;*, the part U™ contains all those
products for which the sum of the upper indices M\ is
equal to m and U°, in particular, contains also all the
terms in the expansion which are independent of the
spin operators of the primed ingredient. It can be veri-
fied that this property is maintained in the operator
exp(1a’%) U™ exp(—ia®) which appears in the trace of
Eq. (89) upon insertion of the expression (90) for U
and that only the term arising from U° gives a non-
vanishing contribution to the trace?® so that

o()=Tr(exp(Ga®%) U() exp(—ia®%)I1).  (91)

While it is prohibitively difficult to find an explicit
solution of the Eq. (86) the problem is very greatly
simplified if the frequency f is assumed to be large
compared to the effective magnitude |a| of the oper-

28 The foregoing statements are most easily verified by consider--

ing the operator U in a representation in which 7" is diagonal
with eigenvalues m’. As an equivalent definition of U™, it can
then be stated that its matrix elements (1|U™|2) between two
states 1 and 2 of the spin system are different from zero only if
me’—my=m; it suffices then to note that the matrix elements
of a° satisfy in this representation the selection rule my’'—m,'=0
and that the trace of an operator contains only the diagonal
elements which likewise satisfy this selection rule.
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ators e Physically, this assumption implies that the
expected sidebands of the absorption are displaced from
the center line by an amount which is large compared
to the width of either, i.e., that they are well separated
from each other.

The discussion of this case is facilitated by restating
the Eqgs. (86) and (87) as a set of coupled differential
equations for the operators U™ in the form

aum )
—=1 Z [an (t) ’ Um—n]emft’ (92)
dt n5%0
with the initial condition®
U™(0) =18 0. (93)

Starting with the approximate solution U™=I'§,,,
one obtains further successive approximations in inverse
powers of f by substituting the result of the previous
approximation on the right side of Eq. (92) and in-
tegrating. The operators U™ appear in this manner as a
series of the form

Um —_ z " U”meinft’

where the coefficients U, are slowly varying operators
in the sense that their relative rate of variation is of
the order of a magnitude |e| and thus small compared
to the frequency f. Retaining only the contribution of
lowest order in |a|/ f to those coefficients, one finds from
the first approximation for m#0

1
Um(t) =_{ [am (t) ,Iljeime_ [am’llj}, (94')
mf
and from the second approximation for m=0,%

1
La"(®),La " ]]e/".
(nf)?

Inserting the expression Eq. (95) for U°(f) in (91) one
finds

(95)

() =T+ %
n7=0

§0(t) = Z n Pn (t) ein/t’

¢o(8) =Tr(exp(ia%)I' exp(—ia%) 1),

(96)
with
97

29 The fact that the sum of the upper indices on the right side of
Eq. (92) must be equal to the upper index on the left side is again
most easily shown by means of the selection rules, mentioned in
reference 28. The initial condition (93) follows from the fact that
n ,comnglutes with I’ and satisfies therefore the selection rule
my —my =0.

3 The operator U™(¢) of Eq. (94) satisfies the initial condi-
tion (93) by vanishing for t=0 but the additional requirement
U°(0)=1I' is not rigorously satisfied for the operator U°(#) of
Eq. (95). This is die to the fact that the operator I! represents
the coefficient U¢® only in zero-order with omission of second-
order terms of relative order of magnitude |a|2/f? which, if
retained, would merely lead to minor corrections in the center
line. Although the remaining coefficients U,? in the sum on the
right side of Eq. (95) are likewise of this order of magnitude,
they have been retained, since their presence accounts for the
very existence of the sidebands.
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and, using further Eq. (88) together with the fact that
the trace of a product of operators does not change by a
cyclical permutation of their order

On= —]:— Tr(exp(za®%)[I',a=" ] exp(—ia%)[a™,I71]) (98)
(nf)?

for #7£0. Of the four values 41, 42 of %40 for which
the operators a™ are not identically zero, there remain
nonvanishing values of the functions (98) only for
n==1. Indeed, the operators b'#* of Eq. (82) commute
with I#1 since &’ contains only spin operators of the
primed ingredient, and one has therefore ¢ .=0. For
the same reason, only the operators ¢! contribute to
¢+1 and one may therefore rewrite Eq. (96) in the form

o) = o)+ o1 (D)€t p_1 (e,
with go(f) given by Eq. (97) and with

(99)

ea1(f) =—12 Tr(exp(ia%)[1%,c™] exp(—ia®) [, I71]).
/ (100)

The existence of a center line and two sidebands,
displaced by the frequency -Lf, is a direct consequence
of the expression (99) for ¢ (). Indeed, inserting it into
the formula (41) for the susceptibility, one obtains

X' (AD)=xo" (A)+x1" (At f)+x-1"(A:1— f), (101)

where the three functions x,’'(n=—1,0,1) are obtained
from the Fourier transform of the corresponding func-
tions ¢, in the same manner in which x” in Eq. (41)
is obtained from ¢. Each of the functions on the right
side of Eq. (101) assumes therefore appreciable values
only within an interval of its argument of the order of
the dipolar energy, divided by #%. This means that xo”,
x1"" and x—1" represent a line located in the vicinity of
the value 0, — f, and f of Ay, respectively, and that one
deals thus, indeed, with a center line and two sidebands.

In order to investigate the effect of the rf field H,
upon the center line, it is best to examine the behavior
of the part x¢'’ of the susceptibility through that of its
Fourier transform, determined by the function () of
Eq. (97). This function can also be characterized as the
result of replacing 4 in Eq. (47) by the operator a°.
The same replacement by the operator ¢ was pointed
out before to lead to the case of the absorption line in
the absence of the field H, so that the center line differs
from this case merely by the fact that the role of the
operator ¢ is taken over by a’.

Conversely, one can verify that the equality a’=a
results as a special case of the preceding treatment and
represents the situation, considered by Van Vleck in the
sense that the sidebands disappear and that the center
line becomes identical with the absorption line for
H,=0. Indeed, this situation corresponds to the choice
6=0 of the angle § which appears in the transformation
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equations (75). The operators 5" and ¢° are then equal
to b’ and ¢, respectively, and ¢*! vanishes according to
Eq. (84); therefore, the generating functions ¢.1(f),
given by Eq. (100), vanish likewise so that the side-
bands are absent. Although the condition H,=0 is,
rigorously, sufficient for the special case, considered
here, it is formally necessary to impose an additional
condition on A, because of the approximations, made
in the preceding treatment. Since this treatment is
valid only if f>>|a|, it requires for H,=0, according
to Eq. (77), that |As|>>|a]. In order that one indeed
obtains the case §=0 for vanishing values of H», Eqs.
(76) demand therefore as a formal condition that
—Az>>|e|. On the other hand, this case can also be
obtained for finite values of H,, provided that one has
not only [A;]>>|a| but also |Az|>>|y'H,|. Physically,
this means that even a finite rf field H, becomes in-
effective if its frequency w, is sufficiently removed from
the resonance frequency wq’ of the primed ingredient.®

Another special case of interest is that where the
resonance condition we=wq’ is exactly fulfilled so that
Ap,=0. In order to ensure the validity of the preceding
treatment it is necessary, in this case, that the field H,
is sufficiently strong to satisfy the condition y'H23>|a|.
According to the defining Eq. (76), the angle 6 has here
the value w/2; the operator ¢® of Eq. (83) vanishes
therefore and one obtains from Eq. (82) a°=b4-0".
Since the operator 4, just as b’, acts only upon the
spin vectors of the primed ingredients, it commutes
both with & and with I* and can therefore be omitted
upon insertion of the above expression for a° in Eq.
(97). The generating function ¢(Z) is therefore obtained
by replacing 4 in Eq. (47) by the operator & which
originates from the unprimed ingredient alone. One
thus confirms the conclusion, reached in the qualitative
discussion at the beginning of this section, that under
these conditions of optimal line narrowing the center
line is totally unaffected by the presence of the primed
ingredient and identical with the absorption line which
would have to be expected if the nuclei of the primed
ingredients had a vanishing magnetic moment. The
circumstance that this is actually not so is in this case
manifested by the existence of the sidebands. For
sinf=1, they reach, in fact, their maximum intensity
and are displaced from the center line by the amount
f= ++'H,.

With yH.">>|a|, the condition of validity of the
preceding treatment is satisfied for all values of A,.

3t Strictly speaking, the conditions |As|>>|v'H| leads, accord-
ing to Eq. (76) either to the choice 6=0 or 8=, depending upon
whether A, is negative or positive. The difference between the
two choices is, however, only of formal nature since the rotation
of all the spin vectors of the primed ingredient by 180 degrees
does not alter the physical situation. In fact, the preceding treat-
ment could have been equally well carried out by taking the
square root in Eq. (77) with the negative sign. Together with the
sign of f, that of sinf and cosf in Eq. (76) would thus have been
inverted with a resulting change in the definition of ¢ by 180
degrees. The only other consequence of the opposite sign of f
would have consisted in an interchange of the sidebands.
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By letting this quantity vary from large negative to
large positive values, one covers the whole range of the
angle 6 from O to 7 and all the corresponding interme-
diate modifications of the center line by the rf field Ho.
Except for the two special cases which were discussed
above, the effect of these modifications upon the de-
tailed line shape cannot be described in simple terms.
On the other hand, it requires only a minor change in
Eq. (66), restating the result of Van Vleck, to arrive
at a simple expression for the second moment of the
center line. Since 5 commutes with I' and I, it is
seen that the only change upon replacing in Eq. (51)
A by the operator a° of Eq. (82) consists in the fact that
¢ has to be replaced by the operator ¢° of Eq. (83), i.e.,
that ¢ has to be multiplied with cosf. This factor ap-
pears quadratically in the replacement of the part
(A)(c) of Eq. (66) by {(A1*)(c®) so that the second
moment of the center line is given by

(A7) (@) =(Ar%) (8)+(Ar*) (c) cos™,

COS20=A22/[(’Y,H2)2+A22:], (103)

according to Egs. (76) and (77). The expression (102)
for the second moment represents the simplest quanti-
tative measure for the narrowing of the center line by
the rf field H, and has, indeed, been used in the follow-
ing paper [Eq. (1)] to experimentally verify the con-
clusions of the theory, presented here.*

Turning now to the sidebands, it is possible by the
arguments, presented above, to obtain the sum of their
intensities, relative to the center line, from the expres-
sion (102) for the second moment of this line and from
that of the total absorption, given in Eq. (66). In view
of their definition

ii1=( f Xil”(Al)dAl) / ( f xo”(AI)dAl),

and the significance of the generating functions (97)
and (100), the relative intensities of the two sidebands
can also be derived from the values of these functions
for t=0 in the form

Tp1= ¢¢1(0)/¢0(O)~

eo(0)=Tr(I'[7),

(102)
with

(104)
Since

and

1
e21(0)= e Tr(Lc™ M T, ]),

they are seen to be closely related to the expression

32 Instead of the notation of Eq. (102), characterizing the vari-
ous parts by the operators from which they are obtained, that of
Eq. (1) of the following paper points to their physical origin.
Thus, the second moment of the center line is written as ((A12)ay)o,
and instead of {(A:2)(d) and {A:2)(c) the symbols (A:?)Na—Na and
(A?)Na—r are used. Further, since the primed ingredient consists
here of the nuclei of fluorine, the deviation from resonance of these
nuclei is denoted by Ar instead of A; and their gyromagnetic
ration by vr instead of v/, )
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(A%)(c), obtained by replacing 4 by ¢ in Eq. (51).
In fact, comparing the Egs. (64) and (84), it is seen
that, besides the factor —sing/2, ¢! differs from ¢
merely by the replacement of the spin operator I;° by
I+, Noting further that the definition of these spin
operators leads to the equalities

Tr(IkIIIkr'_l) =Tr (Ik,-—ll’k,l) =2Tr (Ik,OIk,O),

one obtains therefore
1
1 0= ¢—1(0) = '272 Sin20 TI‘ (EC:II:'[I_I)C])ﬁ

and from Eq. (104), in view of the significance of
(A2)(¢), for the relative intensities of the sidebands

’l:1= i_l“—‘ (1/2f2)<A12>(C) sin%. (105)

In calculating the contribution of the sidebands to
the second moment of the total absorption by the
unprimed ingredient, one has to consider that they
extend only over a relatively small region in the
vicinity of the value A;==f. One commits, therefore,
an error of higher order in |a|/f by computing this
contribution of each sideband as the product of % with
its relative intensity. Adding the expression {A;?)(a?)
for the second moment of the center line, one thus ob-
tains the second moment of the total absorption in the
form

(A= (AP () + f2(irtiy), (106)

and with the Egs. (102), (105), and (66) one has
therefore

{(A2)a={A2)(b)+(A:2)(c) cosd
+{A:2)(c) sin®=(A?)(a),

as a check on the fact that the second moment of the
total absorption is unaffected by the presence of the
rf field with frequency ws.

In analogy to the discussion in the preceding section,
it is also possible to show that the sidebands are sym-
metrically distributed around the values =4=f of A,
and to obtain their even moments around this frequency
from the corresponding derivatives at the time /=0 of
the generating functions (100). In particular, for the
second moment of the sideband centered around A;=f
one obtains in analogy to Eq. (45) for s=2

<(A1”‘f)2>Av= — 1@ (O)/¢—1(0)
or, from Eq. (100),

<(A1~f)2>‘“’ = Tr([[Il)cl:]:ao][a’o:[C—lal.—]']])/
Tr([14eJLe 1),

(107)

(108)

and a similar expression, obtained by replacing ¢ by
¢! and vice versa, for the sideband, centered around
A= — f. The computational effort, required for their
evaluation, is comparable to that of the fourth moment,
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given by Van Vleck®; in fact, there exists a similar,
although not nearly so simple relationship between the
two as that between the intensity of the sidebands and
Van Vleck’s form of the second moment.

It would be of interest to verify experimentally not
only the narrowing of the center line but also the exist-
ence of the sidebands. The fact that this has not been
possible so far is due to the relatively small intensity
of the sidebands. In order to permit their individual

3 See reference 3, Eq. (29).
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observation, it is necessary that the sidebands are well
separated from the center line and the condition of
validity | f|>>|a| of the theory, presented here, ex-
presses this very circumstance. With (A?)(¢) of the
order of magnitude |a|? it follows from Eq. (105) that
the intensity of well separated sidebands is necessarily
small, compared to that of the center line, even in the
most favorable case where sin?d=1. Nevertheless, the
observation may become possible if larger signal-to-
noise ratios can be achieved.
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The nuclear magnetic dipole interactions in a polycrystalline sample of sodium fluoride have been in-
vestigated using an extension of the magnetic resonance technique. The resonance absorption of Na? was
observed with a variable-frequency spectrometer in a fixed external magnetic field, and the mean square
width of the line shape computed.

This width has two main sources: (a) the interaction of Na® nuclei with other Na2 nuclei through the
dipole fields of the magnetic moments, and (b) the interaction of Na% nuclei with neighboring ¥ nuclei by
the same mechanism. The application of a strong rf field satisfying the resonance condition for F¥ nuclei
in the same external field caused rapid transitions between the fluorine Zeeman energy levels, and thus
altered the average field produced at the position of sodium nuclei by the nuclear magnetic moments of
fluorine. By varying the strength of this rf field and also by varying the deviation from precise resonance
of the F¥ spins, one could selectively alter the contributions of this source of line broadening.

The available rf field was not sufficiently intense to eliminate entirely the broadening caused by source
(b). However, the detailed behavior of this contribution to the width as a function of the deviation from
resonance agrees well with a theory of Bloch for the case of the rf field strong compared to the line widths

involved.

I. INTRODUCTION

HE line widths characteristic of nuclear magnetic
resonance absorption in solids are commonly of

the order of kilocycles/second, owing to the magnetic
dipole interaction between nuclei localized in the
crystal lattice. In general, the rigorous calculation of
the line shape itself is prohibitively difficult because of
the extremely large number of spins to be considered
in a crystal of practical size. Recently Lowe and
Norberg have made some progress in developing such
a theory.! Van Vleck, however, has given a procedure?
for calculating the moments of the line shape, and the
second moment, in particular, is a measure of the mean

* This work was supported in part by the joint program of the
Office of Naval Research and the U. S. Atomic Energy Commis-
sion. The paper is based on a thesis submitted by L. R. Sarles in
partial fulfillment of the requirements for the degree of Doctor of
Philosophy in Physics at Stanford University.
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11. J. Lowe and R. E. Norberg, Phys. Rev. 107, 46 (1957).

2 J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).

square line width. In a crystal containing two magnetic
ingredients, 4 and B, the second moment of the
resonance line of 4 will have contributions from both
the A-4 and the 4-B magnetic dipole interactions.

The present work concerns itself with a method of
altering this natural line shape by applying a perturba-
tion which affects the A4-B dipolar coupling. The
accompanying paper by Bloch?® presents a theoretical
treatment of the experiment.

The concept of ‘“‘averaging out” local fields in
nuclear resonance experiments is not new. An early
example is the explanation by Bloembergen, Purcell,
and Pound* of the narrow lines observed in liquid
samples. By virtue of the rapid molecular tumbling
motions, nuclei are caused to sample many different
local fields in a time short compared to that in which
they would otherwise have lost phase coherence. As a
result their instantaneous precession frequencies differ
less from the mean than would be the case with no
motion, and narrowing of the resonance line is observed.

3 F. Bloch, preceding paper, Phys. Rev. 111, 841 (1958).
4 Bloembergen, Purcell, and Pound, Phys. Rev. 73, 679 (1948).



