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Meissner ESect and Gauge Invariance*
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It is shown from a manifestly gauge-invariant Hamiltonian that the Meissner eGect can follow from an
energy-gap model of superconductivity. The superconductor is described by Frohlich s Hamiltonian and the
superconducting properties at the absolute zero are determined by a method due to Bogoliubov. In the
weak-coupling limit (T,«On) there is an energy gap which leads to a Meissner effect. The method of
Bogoliubov is extended to apply at general temperatures and the current is calculated in the weak-coupling
limit. The results are in essential agreement with those of Bardeen, Cooper, and SchrieGer.

1. INTRODUCTION

~~QUESTIONS have been raised' concerning the gauge
invariance of the theory of superconductivity of

Hardeen, Cooper, and SchrieBer. ' The idealized Hamil-
tonian which they used is not gauge invariant because
of the momentum dependent cutoG on the effective
interaction between electrons. While, as shown by
Anderson, ' errors arising from this cutoff are small in
the weak coupling limit (T,«OD), it is more convincing
to start from a Hamiltonian which is manifestly gauge
invariant.

The Hamiltonian used by HCS is based on one de-
rived by Hardeen and Pines4 with use of a canonical
transformation which replaces the electron-phonon
interaction by an effective interaction between elec-
trons. Since the canonical transformation introduces
extra terms in the expression for the magnetic inter-
action and current density (which again are small in
the weak-coupling limit), it is desirable to start from
the original Hamiltonian which includes the electron-
phonon interactions and which is gauge invariant.

Since Coulomb interactions do not play an essential
role in the explanation of the Meissner eGect, we have
simplified the problem by starting with Frolich s Ham-
iltonian' from which Coulomb interactions are omitted.
For further simplicity we have calculated the current
in the gauge for which divA=O. However, because the
original Hamiltonian is gauge invariant it is clear that
this simplification does not aGect the existence of the
Meissner effect. Indeed, Anderson' has shown by intro-
ducing the collective excitations of the system how the
calculation is to be performed in another gauge.

The approach is that used by Hogoliubov' to obtain
the ground-state energy and excitation energies of the
superconducting state at the absolute zero. In Sec. 2
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Pko U kckt ~kc—k4

v~t= U~C-w+ &~C~t*,

where Uk, Vk are real constants that satisfy

Ug'+ Vg'= 1.

(2)

It is easily verihed that yko*, yk~* satisfy the commuta-
tion relations for Fermi operators. They are operators
which create quasi-particle excitations from the ground
state, ~0), defmed by

p~o~0)=0, y~t~0)=0 for all k.

the method is outlined and in Sec. 3 the Meissner
effect and an expression for the current at the absolute
zero similar to that of HCS are obtained. In Sec. 4 the
results are extended to higher temperatures.

Because the phonons have not been eliminated from
the Hamiltonian, the calculations are complicated by
the existence of the electron self-energies. HCS have
assumed in comparing their results with experiment
that the electron energies include the self-energy arising
from the interaction of the normal electrons with the
phonons. It is in principle possible to prove this assump-
tion from the approach of this paper. This is carried
out to some extent incidentally, but a complete proof
requires that the calculation be taken to higher order,
a program which is outside the scope of this paper.

2. OUTLINE OF BOGOLIUBOV'S METHOD

The aim of this section is to obtain the lowest eigen-
states and eigenfunctions of Frohlich's Hamiltonian,

H= Q egCg„*Cg, .+Q Puo, b,*b,

f'ko&o'l &

+ P g~ ~
(C&„*C&,.bo*+comp. conj.), (1)

k~ , 0 2Q)

where ~k is the Hloch energy of an. electron, Ace, is the
energy of a phonon of wave number q, g is the inter-
action constant, and 0 is the volume. b~* is the operator
which creates a phonon of wave vector q and Ck, , is
the operator which creates an electron of wave vector
k and spin. o. Throughout this paper it will be assumed
that eu is a constant. To solve this problem Hogoliubov'
has introduced the canonical transformation
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With the choice of U~, Vg given below, Bogoliubov has
shown that this state, which corresponds with the
superconducting ground-state wave function of BCS,
has a lower energy than the normal state. The operators,
p&, have been introduced independently by Valatin to
simplify the formalism of BCS. It is convenient, as
BCS found, to allow the number of particles to vary in
the wave function so that the expectation value of

/V =Q k, gCk, r +k, ///

in the eigenstates is Sp, the number of electrons present.
This is achieved by adding a term —PX to the Hamil-
tonian and choosing the Fermi level, ), so that

N=Np. (3)

In terms of the new operators the total Hamiltonian is
given by the system of equations

&=&0+% +&2'+&2 +U,

&o=pkEk(Vko*V op+Vol*Vol)+20 0&p*bp/

(Acp, ) &

E 2n)
q =k'-k

XL(UkVk +Ok Vk) (Vko*Vk I*+VklV k 0)&,

+ (UkUk' VkVk') (Pk0 Yk'0

+7k~1 'i/kl)50 +COIIlp. Con].),
+I E//2(ok X)UkVk(Vkp Vkl +VklVko)/

H2 =pkL(ek —) ) (Uk' —Vk') —Ek](yko*yko+ykl*vkl),

U=2 Qk(ek —X) Vk'.

The term H2 has been introduced to take account of the
renormalization of the energies of the excited particles.
For the discussion of the Meissner e6ect it is useful to
introduce this renormalization explicitly into the
Hamiltonian.

The problem is complicated by the fact that even in
the normal state an electron is surrounded by a cloud
of phonons which gives rise to a self-energy. The energy,
ek, of the electron in the normal state is therefore dif-
ferent from ej„ the energy of a "bare" electron. Since
we wish to compare the superconducting state with the
normal state, we replace ek by ek in Eqs. (4) and com-
pensate for this by adding the terms H&& and II2 given
below to the Hamiltonian.

H2 =+k(ek ek) (U V ) ('Ykp 'rko+'l/kl 7kl),
(3)

~~2 —Qk2(ek ok) OV(| ko
—'7kl +'rk17kp) ~

The difference (ek —ek) is found below [Eq. (9)$. We
could take into account the renormalization of co but
this will not enter the following discussion.

The constants U~ and Vk are determined from the
following considerations. In the weak-coupling limit of

2 J. G. Valatin, Nnovo cinlento 7, 843 (1958).

g small we can try to solve the problem by perturbation
theory with Ho as the zero-order Hamiltonian. We shall
refer to the various terms of the expansion by referring
to the corresponding Feynrnan graphs. In these graphs
(see Fig. 1) the dashed line indicates a phonon, a line
with an arrow to the left a particle "0"and a line with
an arrow to the right a particle "1."Now there will be
some terms of the perturbation expansion, for instance,
those illustrated by the graphs of Fig. 1, in which two
excited particles are created from the vacuum. The
corresponding integrals will contain denominators
(2Ek). If the unrenormalized energies appeared, the
integrals would diverge and for this reason they are
called "dangerous" by Bogoliubov. Even when the
renormalized energies are used the integrals will be
large. Therefore, we choose U~, V~ to make these
contributions vanish. To second order in g, the con-
tributions of Fig. 1 must cancel. (H2 will give a con-
tribution of higher order. ) Therefore

2(ek —X)UkVk

g2Ao/ (O'U —V' V)
(O'V+V'U) =0, (6)

k' 0 Ao/+ E+E
E'= E(k'), etc.

This is an integral equation for U, V which has been
solved by Bogoliubov for small g. The solution is given
by the following equations when g and po are constants:

1( $k ) 1(
O"=-I 1+

2 4 (Pkp+Ckp)ll 2 4 (Pk'+Ck')'*)

g

'IEGER

4=ok —&——2 ( O/2 V/2)

20 k' App+E+E'

g Aco

Ck= —P
20 k' Ao/+E+E' (P+c")'*

ckp=cp=2Ao& exPL —1/Pj, P=N(0)g'/Q. (7)

Here kp is the momentum at the Fermi surface, N(0)
is the density of states at the Fermi surface, cp is the
same as ep of BCS, and p is the same as N(0) V of BCS.
X is determined according to (3) so that $ is zero at the
Fermi surface. $ is then the single particle energy in the
normal state as measured from the normal Fermi sur-
face, ) p, i.e.,

$= ek —Xp.

The renormalized energy in the superconducting
state, E~, is determined from the fact that since it is

FIG. 1. Graphs vrhich give rise to small energy denominators
at the absolute zero.
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the exact energy of the state yk~~0) (relative to the
energy of ~0)) the corrections to the energy of this
state must vanish. To order g', we 6nd from second-order
perturbation theory

(p —X) (U' —V') Ek—

g'Apo (U'U V'V)—' (U'V+ UV')'
=0

20 k' (Acu+E' E) —(Apo+E'+E)

Neglecting terms of order (cp/Api)', we have

Ek= (p+cp') i (g%o—/20)E p DApi+E")' E'] '—

+(p.—p )5(P+ek') ' (g)

In the sum the energy, E~, can be replaced by the zero-
order approximation, p(p+ck') &. Using the fact that
when cp -+ 0, E~

~ $ ~, one obtains

g2AO)

Z L(A~+5")'—P] '
2Q ~"

e2

Pg"= "d'r A'(r) P e'ik-"'i'
2mc2Q~

X{(Vk'p Vkp+Vkl |k'i)(UU VV )

+ (7k'p Vkl +7k'17ko) (U'V+ UV')+2Vk'bkk }. (10)

In order to calculate the current, j(r), we shall first
calculate the energy, E$A], to second order in A(r)
and then use the result

j(r) = —c{bE(A]/bA(r)).

We choose the gauge so that divA is zero. This means
that the perturbation does not introduce the collective
excitations of the system. ' To zero order in g, one easily
finds that

f eAq ' (2s) &

j(r) =
~

—
( P (k+k')L(k+k') a(k —k')]

&nz) 2cQ2 ~, ~

3. MElSSNER EFFECT AT THE ABSOLUTE ZERO

In terms of the creation and annihilation operators
for "bare" electrons the interaction between the elec-
trons and the electromagnetic field is, to first order in
the vector potential A(r)

( eA ) (2s.)&
Hg=

~ ~ Q Ck.*Ck.a(k' —k) (k'+k)
&2mc& 0

where

e'
d'r A'(r) P e'&k-k'i 'Ck .*Ck.,

2mc2Q~

a(q)=(2s) & d'r A(r)e '&'.

In terms of the operators for the creation of the new
quasi-particle excitations the interaction becomes

&~=&~'+&~",

( eA q (2m)l
2 (k+k') '(k'-k)

& 2mc& 0

X{('Yk'0 Yko Ykl~Vk'1) (U U+ V V)

+(yk o*Vki*—Vk iVko)(U'V —UV')),

Ek= (P+eo')'.

Terms of order pep(@+co')' have been neglected in
obtaining this result. For most superconductors p has
values ~0.2 to 0.4 so that these terms are not negli-
gible. For a complete justification of the formula of
BCS it would be necessary to carry the perturbation
expansion to terms of the fourth order in g.

(U'V —UV')' 1Ve'
Xe'&k-'&' — A(r). (11)

E+E' me

This expression is of the same form as that of BCS
Lsee Eqs. (5.14) and (5.15) of reference 2] and implies
a Meissner effect. However, since important terms of
order g' are implicitly included in Eq. (11) we must
calculate the current to this higher order to ensure
that they are not canceled.

Many of the graphs of order g' give contributions to
the energy that are zero or of order (A&a/EF) which can
be neglected. Those graphs which contain an inter-
mediate state in which only two particles of equal
momenta are present cancel because of the condition
imposed on U and V. The remaining graphs which
contain B~" involve only the diagonal part of this
operator. The corresponding contributions to the
energy are convergent sums of the form

Zk(U' —V')f(E)

where f(E) is a function of E but not of $. This sum is of
order Apo/Er. The graphs, in which the two vertices at
which II& acts are joined only by lines containing other
vertices, give zero contributions because of the choice
of gauge. The proof of this result is the same for all
these terms so we shall prove it only for the particular
term corresponding to the following sequence of
processes.

Particles of momenta, k, k+q, are created from the
vacuum by Hz' —the particle of momentum, k+q, is
scattered to 1+q with the emission of a phonon. —the
particle of momentuin k is scattered to 1 with absorp-
tion of a phonon —the particles are destroyed by H&',



820 G. RI CKAYZEN

The corresponding contribution to the energy is sums by integrals we have an expression of the form

—(eA/2mc)'(2v/Q)'g'Ace P L21 a(q)7
1, k, g

X(U Vp, —U,V)(U U —V V )

d'g d'& a(q) k a(q) &~'~f(&A Ik+ql, I &+ql),

XL2k a(q)7I E(1)+E(l+q)7—'I E(k)+E(k+q)7—'

where f is a scalar function. In the integration over I
the only direction defined is that of q. Hence the in-
tegral is proportional to (a q) which is zero. This
proof depends on the simplifying assumption that or is
a constant.

XPuo+E(k)+E(1+q)7—'. There are four graphs in which II~' scatters one of
the particles just once and these contribute to the cur-

When we proceed to the limit 0 —+ ~ and replace the rent an amount

(Aoo+ E"+E)(Aco+ E"+E') (E+E')
X (k+k')L(k+k') a(k —k')7e'&" ~'&'.

(eA~
' (2v)'* (UV' —O'V) (UU'+ VV') (U"U—V"V)(UV"+ VU")

g'Aoo
I m) cQ'

where

f(E,E',«) = (O'V —UV')'
(o—lj.) (O' —V') E-

(E+jp)o

(UU"—VV")'

2Q ~" (E+E')'(Aoo+E"+E')

(UV"+VU") '(Aoo+ 2E+E"+E')
+ (O'U+ V'V)'

(E+E')'(Puo+E" +E)'
g'Puo (U V"+VU")'

x p . (»)
2Q &" (A(v+E+E")'(Aoi+E"+E')

In the London limit this becomes

(eA) ' A(r) 2 g'Ace k'(UV"+ VU")'
jo(r) =

I

—
I

& m) c 3 Q' &, &" (Acu+E+E")'

g2 2/2

=&V(0)— vs( )A0(—r),
0 3c

This vanishes in the normal metal and also in the
London limit where the important values of k and k'
are such that lk —k'IAvo((oo. Ill the Pippard limit,
lk —k'IAvo))oo, which is applicable to penetration
phenomena this term is of order (ooo/Avol (k—k'IAoi) and
can still be neglected.

The remaining graphs of which there are sixteen are
connected with the self-energies of the particles. They
are such that H&' creates and destroys two particles;
H2&, H2& or a phonon interacts with one of the particles.
The contributions of these graphs to the current are

peA ~
' (2~) ~

jo(r) =
I

—
I

0 m) 2cQ'

X P (k+k')L(k+k') a(k —k')7e'&~ —~'&'

X CJ(E,E',oo)+f(E',E,«)7, (12)

where
vo=A&o/m= (1/A) I vsoj, l.

Therefore the total current in this limit is

(r) = ——;Br(0)v,e /c7(1 —p) A(r).

This limiting form implies a Meissner eGect. ' The factor
(1—p) takes into account the renormalization of the
velocity at the Fermi surface to order g2. For this re-
normalized velocity is

v, = (1/A) I v, o I.

With the use of Eq. (9) this can be rewritten

vo=vo/(1+~) =vo(1 —~).

Hence the limiting form of the current is

j(r) = —-',
I 1V(0)vo'e'/c7A(r),

in terms of the parameters of the normal metal. This
is in agreement with the result of BCS.

To evaluate the current in the general case it is useful
to split oG the corresponding current in the normal
state, that is,

jo(r) =jo'(r)+j2" (r),

where

(eAi ' (2v)&
jo"(r)=

I

—
I P (k+k') a(k —k')e"

Em& 2cQ' i,~

xD(lzl, IVI 0)+f(lg'I, lgl, o)7,

and f is defined in Eq. (13). Combined with the corre-
sponding contribution of zero order in g, jo"(r) gives the
Landau diamagnetism of a normal metal and the zero-
order correction to it. The interesting part of the current
in the suPerconductor is jo'(r). From Eq. (12) we can
follow the analysis of SCS which leads from their

' M. R. Schafroth, Helv. Phys. Acta 24, 645 (1951).
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Eq. (5.15) to (5.37). In this way we obtain

e%' p LG„(R)—G,„(R)jRC A(r') Rj
jo'(r)=, d'r'

2mc'n. 4" R'
where

t
dky'

Gos(R) Gpe(R) +o~p R
~ )

& &p2p+2(R),
E dE ~ 1g=fgp

Jp(R) = I(R,O) —I(R,op),
and

f
I(R,oo)= — ' i' dcdoQ'(E, E',«)+f(E',E,«)j2'' 6p~

Xcos, (o—p')
A8p ~

The second term is canceled by the corresponding term
in I (R,O) so that, neglecting terms of order (pp/&co)', we

can take

1 t t (U' V—V'U)'
I(R)«) = d p d c

pr'oo" " E+E'
(s—c')R

cos

The important contributions to the integrals are ob-
tained when ~() and ~$'~ are of order pp. For these
values of

~ $ ~

and
~

$'
~

we have, neglecting terms of
order (poetico)'

g'Ao) (U' V—V'U)'
f(E E' «)+f(E E op) =

20 I" E+E'

2 2(E+E') 2(UU'+ VV')'
X —— +- +

(Puu+E")' (Aco+E")' (Ao)+E")'

g'Aced (U'V —V'U)' 4 1
N(0) —— —+

2n EyE' A (A )'

.k'

(b)

FIG. 2. Graphs which give rise to small energy denominators
above the absolute zero.

to replace the cA, which appears in the definition of
U& Lsee Eq. (7)j by cp

——op. The result is then exactly
the same as that of BCS.

4. MEISSNER EFFECT AT ANY TEMPERATURE

In this section we outline the extension of the method
to a general temperature. We proceed formally as in
Sec. 2 introducing new operators pkp, p» through Eqs.
(2) and rewriting the Hamiltonian as in Eq. (4). How-

ever, U& and Vk satisfy a diAerent equation for there
are more possibilities of obtaining small denominators.
The zero-order state contains the quasi-particle excita-
tions with probabilities given by the Fermi-Dirac func-
tion, f(E). This means that besides the graphs of Fig. 1

there are "dangerous" graphs like those of Fig. 2. For
all these graphs to cancel we must have

g Ac@

(eg—X) UgVg=Q (UV'+ VU') (UU' —VV')
20

X
A(o+E+E' Acu+E E'—

This equation leads to the same temperature-dependent
energy gap as obtained by BCS, with E& still given
formally by Eq. (9) and cp temperature-dependent.

To the 6rst order in A and zeroth order in g, one
obtains for the paramagnetic current,

—00 eh q
' (27r)o-

2)
~

— Q (k+k')L(k+k') a(k' —k)ge'~" "'&'
If the zero- and second-order terms are now combined, (2~j cq&

then

e' N(0)aooo p J(R)RLA(r') Rj
j'(r) =--

2c E4

where

I(R)= (1—2p)(I(R,O) —I(R,op) j.
Since to this order

do=do(1+p),

we can replace unrenormalized quantities by renor-
malized ones in J(R) and obtain just Eq. (5.42) of
BCS with all parameters referring to electrons in the
normal state. It is consistent with our approximations

(U'V —UV')' (UU +VV )'X, (1-f-f')——,(f f') . -
(E+E') (E E')—

The diamagnetic current is the same as at the absolute
zero. If the terms of order g' and (oo/her) are neglected
the total current is formally the same as given by BCS.
The eGect of higher order terms has not so far been
computed.
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