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Effective Parameters in Ferrimagnetic Resonance
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The steady-state solution for the susceptibility tensor of a two-
sublattice system has been found by using sublattice equations of
motion which include complete Landau-Lifschitz relaxation terms
with individual relaxation parameters and which describe relaxa-
tion toward the instantaneous total Geld acting on the sublattice.
It is shown that one can deGne effective parameters describing the
behavior of the system as a whole which remain Gnite throughout
the compensation region and, in particular, insure that the ab-
sorption coeKcient will remain positive. It is also found that the
effective gyromagnetic ratios characterizing the absorption and

Faraday effect are different in principle, and a new term is found in
the expression for the off-diagonal element which is a consequence
both of the sublattice structure and total Geld relaxation. In the
case of small damping, many of these distinctions disappear and
some parameters reduce to those previously obtained. It is shown
that the inclusion of total Geld relaxation is necessary to obtain
results which are unambiguous and correct in principle; the
magnetization line width product is also shown to be continuous,
but vanishing at the compensation point for angular momentum.

whereINTRODUCTION
' 'F the electronic magnetic moments in a ferromagnetic
~ ~ material are subjected to a magnetic field having a
constant component in the s direction and a small
oscillating component in the xy plane, then the gyro-
scopic behavior of the spins leads to expressions for the
transverse components of the magnetization of the form

M,=X~, i&H„, —
M„=+H,+X„H„.

(1)

The components of the susceptibility tensor (X„X„,g)
can be calculated once the proper equations of motion
of the magnetization components are known.

An equation which has been extensively used for this
purpose is the Landau-Lifschitz equation, which we
shall write in the form

dM/dt=yMXH —o.MX (MXH). (2)

The form of this equation is a direct consequence of the
simple requirement that

~
M~ remain constant —a rea-

sonable expectation for the strongly coupled ferromag-
netic moments. For, if ~M~ is constant, dM/dt must lie
in the plane perpendicular to M, and can therefore be
written as a linear combination of two orthogonal
vectors in this plane, namely MXH and MX (MX H).
This immediately yields (2). The coefficient n has the
dimensions of the reciprocal of angular momentum and
must be positive in order that the last term of (2)
actually describe a relaxation toward the direction of H
as it is meant to do. It is common practice to assume ~
to be a constant, in particular, to be independent of the
components of the magnetization; for simplicity, we
shall also adopt this assumption.

Let us neglect anisotropy and demagnetizing 6elds so
that H in (2) is just the applied field. Then, if we write
B,=II, assume that H and H„are proportional to e'"'
and are both small compared to A, and neglect second-
order terms in (2), we can easily fmd the steady-state
solution of (2) in the form given by (1). The result is
that x =Xy ——x, and

D (x=y'[1+ (oS)'7HM+iooiM', (3)

Dip= yoicV,

Di y'[1+——(ns)'7H' co'+—2inMHM (5)

M, =M const, and S=M/y. We shall have occasion to
refer to these specific results later.

It is also common practice to use these formulas (or
their equivalent in other notations) to analyze results of
experiments performed on multiple sublattice systems,
i.e., ferrirnagnetic systems. One obtains in this way
values of y and+ which characterize the material studied.
We shall refer to these quantities as "eGective parame-
ters" and denote them by p, and 0, Previous experience
with the effective gyromagnetic ratio' shows that they
can be regarded as suitable averages of the separate
parameters of the individual sublattices.

Recently, an investigation was made of the possible
existence and properties of the effective relaxation
parameter o, ' For the purposes of this initial study,
sublattice relaxation terms of the Bloch type were
used, since the line shapes predicted by Sloch and
Landau-Lifschitz terms are indistinguishable at low
signal levels. It was found that one could indeed define
an eGective relaxation parameter by comparison with
the results for the analogous ferromagnetic case. How-
ever, it was shown that, in the compensation region,
these equations predicted negative values for the ab-
sorption coefficient for appropriate relative values of the
sublattice parameters. It was concluded from this that
the set of sublattice equations of motion which had been
used could not serve as completely adequate descrip-
tions throughout the whole range of possible ferrimag-
netic behavior. It was further pointed out that the
equations were inconsistent in the sense that they djd
not describe relaxation. toward the instantaneous total
field acting on each sublattice, and it was suggested that
if this defect were remedied, one would obtain con-
sistent and correct results in the compensation region as
well as in the region of apparent ferromagnetic behavior.

Our purpose in this paper is to carry out this sug-
gested program and to see whether the inclusion of

r R. K. Wangsness, Phys. Rev. 91, 1085 (1953); 93, 68 (1954);
95, 339 (1954); Am. J. Phys. 24, 60 (1956).

( ) s R. K. Wangsness, Bull. Ain. Phys. Soc. Ser. II, 3, 43 (1958).
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COMPLETE SOLUTION FOR TWO SUBLATTICES

Since each sublattice represents a strongly coupled
system of electronic moments, we adopt an equation of
motion for the ith sublattice of the Landau-Lifschitz
form (2), i.e., we write

dM;/d~=~;M, XH;— Mn, && (M;XH;). (6)

In (6), y; and n; are the gyromagnetic ratio and relaxa-
tion parameter of the ith sublattice, while H;, the total
Geld acting on it, is given by

Hi ——H+XM2, H2 ——H+XM1, (7)

where H is the external field and X the molecular field
coefficient.

We assume the external field has a constant com-
ponent II,=H, and two small transverse components,
H, and H„, each proportional to e'"'. Inserting (7) into
(6), assuming that 3II, and 3II„are also proportional to
e'"', and neglecting second-order terms, one finds that

M;,=M, const, (8)

and that the remaining four components of the equa-
tions of motion can be put in the form

(i(a+A)M —CM„jJh,—Fh„=n+H, —y~H„, (9a)

CM,+ (io)+A)M„+F6,+J6„=7+H,+n+H„, (9b)

EM, DM„+ (icd+B)A, Gh—„=n H, y—H„, (9c)—.

DM +EM„+GA,+(iu)+B)d „=y H +n H„, (9d)

where (with j=x, y):
M, =My,+M2;, h, =My,—M2;, (10)

ng =nIM g'&e2M2',

yg =y 1M1&y2M2.

The various coeKcients are given by

A =- (H12r~ —Xr 6),
B= ',r, (H+7,M), -
C=yH —MD,

D=SB'—)yh,

E=
2 (Hr —Xr+6),

(11)

(12)

(13)

(14)

(15)

(16)

(17)

Instantaneous held relaxation terms for the sublattices
will still enable one to de6ne effective parameters in a
consistent and precise manner and whether the previous
difhculties in the compensation region will be satis-
factorily alleviated. In order to avoid excessive compli-
cations, we shall only consider the case of two sub-
lattices. Further, we shall include only the external and
molecular fields in the total field acting on a sublattice,
thereby neglecting anisotropy and demagnetizing 6elds.
Although these 6elds can also be included in our general
equations in a straightforward way, the results become
so much more cumbersome as to almost entirely obscure
the basic points of interest.

F=b(H+71M),

G =7 (H+71M),

J= ',r (-H+71M),

3II=M1+M2,'A=M1 M2-,

v=lb+v), ~=l(v —v),

(18)

(19)

(20)

(21)

(22)

(23)

Equations (9) can now be solved for M, and M„. The
solutions are found to have the form (1) with X,=X„=X.
The results are

where

Sg=n+X+p~Z+n SR+7 X&

SQ= i (y+X—n+2+—y 5R nK), —
(24)

(25&

EFFECTIVE PARAMETERS

Our basic general results contained in (24)—(30) are
obviously much too complicated to be easily interpreted.
As usual, '' however, we can exparid our results in
powers of the molecular held coefficient X and keep only
the terms in the highest power of X. One 6nds from
(13)—(23) and (26)—(30) that the coefficients of X' in 5)
and of X' in X), X, 2, 5R, and K are zero, so that the only
terms of these expressions that we need now consider are
those of order )P.

One finds that, to this approximation,

n/ pLpiy2)'=H'M'(1+n psi') (1+n2's22)
—&PP'2+ (n +n )2S 2S 2]+2~HMLniS12

+n2s2 +nln2(nl+n2)sl s2 ]y (31)

X/72=HM2{-,'r Ly2+Pj —'(I'+' —I' ')]—7Br }
+icdM $M (y2+ ,'r+2)-

(vs+-', r+r )], (32)

X=A (B'+G')+B(DF EJ)—
G(DJ+E—F) (o2 (A+ 2B—)

+is){B'+G'+2AB+DF EJ oP)—, (2—6)

2=C(B'+G') G(DF —EJ) B—(DJ+—EF)
—cu2C+ ia) [2BC—(DJ+EF)], (27)

5R=E(F2+J')+J(CG AB) F(A—G+BC—)
+sPJ 2id[J(A—+B)+F(C+G)], (28)

97,=D (F2+J') F(CG AB)—J(A G—+BC)—
aPF ia&[J—(C+G—) F(A+B)]—, (29)

and where S, the determinant of the coefficients of (9)
is given by

&= {(A'+C') (B'+G')+ (D'+E') (F'+J')
+2(AB CG) (DF E—J) 2(AG—+BC)—(DJ+EF)

cv'[A'+ C'+ B—'+G'+4A B+2 (DF EJ)]+(d'}-
+2210/A {B'+G')+B(A'+C')+(A+B) (DF EJ)—

—(C+G) (DJ+EF) (o2(A+B)]. —(30)
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X)p=y, '4dM+ip, HM ,
2 (37)

where
%)=y '[1+(nP)']H2 (u'+2iQ. ~H—M (38)

y '[1+(&Q)']= [M'(I+(zimSi2) (I+a22S22)]/Z (39)

a8= [4iaSP+&2SP
+aiam (ni+a2) Si'S2']/2, (40)

y, '= {M[S+(ai'Si+~pS2)SiSg]}/&) (41)

ps g (yl Y2) '{(&i &2)&1&2S1S2
—L( 'M' — 'M')/(y y )']}/~, (42)

Z =S'+ [(ni+n2)SiS2]'. (43)

The quantities denoted by the subscript e are the ones
we designate as the effective parameters, because, by
comparing (36)—(38) with the ferromagnetic result given

by (3)—(5), we see that the susceptibilities for the two-

sublattice system have essentially the same dependence
on frequency, field, and net magnetization as do those
for the ferromagnetic system.

If we write y=x' —ix", g=g' —+", and set

F'= y '[1+(~&)'] (44)

we easily find that

Dx'= HM [I'(F'H' —aP)+ 2 (a~M)'],
Dg"=n~M2((em+ F~H2)

Dg =ceM [y,'(F'H' cv')+ 2ng+'M'—]
Dg"=HM'[2n, y, '4' —P, (I'H2 —44')]

where

(45)

(46)

(47)

(48)

D —
~
Q

~

2 (F2H2 ~2)2+ (2~~HM)2
F {[F4H (F2 2+ M2)4o2]2

+ (F2—n.2M') (2n~'M)'}. (49)

As a simple check on our work, we see that if we set
e,=O, then n, =P,=O, y,2= (M/S)', y, '=M/S, and the
components of y and P reduce to well-known previous
results. ' We can obtain the ferromagnetic case by
setting y;=y, n;=n, S;=-',S;we find that n, =-,'n, P, =O,
and y,=y, '=M/S=y, and the values of x and p, of
course, reduce to those given by (3)—(5).

&/~'= HM'{yLy' —b'+-'(F+'+F-')] —kbF+F-}
+icoM[-,'h(yF —bF )], (33)

5K/X'=HM'{-,'F [y'+b' —~(F/' —F ')]—ybF+}
+i40M[ —M(yb+-', F+I' )

+h(b'+-,'F ')], (34)

Ot/V=HM'{ —b)y' —b' —-', (F+ +F ')]——,'yI"+I' }
+icoM[——,'M (yI' —bI'+) ], (35)

where S,=M;/y; is the angular momentum of the ith
sublat tice and S=Si+S2 is the total angular momentum.

Inserting these results into (24) and (25), one finds

that y and p can be written in the form

Pg =y,2[1+(nP)']HM+ia~M', (36)

There are several remarks to be made, however about
. the general results. The effective relaxation parameter
0., is always positive since the 0,;&0. Therefore, the
absorptive component y" given by (46) will be always
positive; thus these expressions no longer lead to the
previous unacceptable situation of negative absorption. '
We also see that since, in general, y, @y,', the effective
gyromagnetic ratio which basically determines the
Faraday effect, y, , is different in principle from that
obtained from the study of the resonance absorption.
An interesting property of y, ' is that for appropriate
relative values of n; and S;, y, ' can have a sign opposite
to that of M/S since the product SiS2 is negative in the
ferrimagnetic case. Finally, the term in P proportional
to P, is a completely new term, entirely absent in the
ferromagnetic case as we can see from (4). This new

term is a direct consequence of the sublattice structure
since it is proportional to (yi —y~) from (42) and hence
vanishes for the case of equivalent sublattices; we also
note that it is of third order in the relaxation parame-
ters n;.

All of these distinctions disappear, however, if the
damping is suKciently small. If we keep only terms
linear in the a;, we find from (39)—(43) that P, =O,

a.= (aiSP+a.2S2')/S', (5o)

ae (1+aia2S1 )/[(&1+&2)Si ]p (52)

y'=r(y —y)/( + )S]'(1+ 'S')(1+ 'S'), (53)

ys (Yl y2) (&1 &2)/(441+&2)y (54)

P. k(yi =y2)(~i+—~2) '
X{(&4 &2)&1&2 (Y1Y2) (y2 &1 yl &2 )}. (55)

Equation (54) shows quite clearly that y, ' can in

principle be of either sign, and upon further comparison
with (53), we see that y PA (y.')'. It is easily shown. that,
for this case,

y' —(y')'= L(yi —y~)~&i]'.

y '= (M/S)' y '=M/S, (51)

and we are back to our familiar results with a simpler
expression for the effective relaxation parameter which
is still always positive even in this limiting case of small

damping. For many cases, of course, (50) and (51)
along with (45)—(49) will be sufficient to use in dis-

cussing experimental results.
The values at the compensation points M=O and

S=O are of particular interest. Since 0., is always
positive, there will not be a compensation point for
effective relaxation parameter, in contrast to previous
simpler results. ' At the compensation point for mag-
netization (M =0), x =/ =0 and y 2 and y, ' also vanish;
we return to this case below. At the compensation point
for angular momentum (S=O), S~= —Si, M=yiSi
+y2S2 ——(yi —y2)Si, and we easily find from (39)—(43)
that
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NECESSITY OF TOTAL FIELD RELAXATION

Since the Eqs. (6) lead to results which are reasonable
and avoid the difFiculty of a negative absorption
throughout the whole range of magnetization, including
the compensation region, the question then naturally
arises as to whether this is really due to the inclusion of
relaxation toward the instantaneous total held on the
sublattice or whether it is simply a result of using the
complete Landau-Lifschitz relaxation term in (6). The
simplest way to answer this question is to look at the
consequences of dropping the terms involving X in the
relaxation term of (6). One easily sees that this means
that all terms involving a product Xn;, or, equivalently,
XF~, will not appear in (13)—(20). One can now proceed
exactly as before but with the omission of these terms.
One finds, first of all, that the coeKcient of —ebs in (31)
is simply S'. The final results still can be written in the
form (36)—(38), but now the values of the effective
parameters, indicated by dashed symbols, are found to
be simply

y.=y, '=M/S, (56)

(rr 1M1S1+ir2M 2S2)/MS (57)

,=O. (58)

Although it is still possible to define effective parameters,
they are immediately seen to have the undesirable
properties that were eliminated by (39)—(43), even for
the case linear in o.;. In particular, the eBective gyro-
magnetic ratios and relaxation parameters have infinite
discontinuities at the compensation points. In addition,
(57) can be written, with the help of (56), in the form

~.= —(1/v.){I vr I
~iSi'+ I» I

~&s'&/S' - (59)

and the sign is thus determined as the negative of the
sign of y.. Since y. is positive between the compensation
points, 0., will be negative in this region, thus once again
leading to the possibility of an unacceptable negative
absorption. These results thus show quite conclusively
that an adequate macroscopic representation of relaxa-
tion in multiple sublattice systems must describe re-

We have seen that our expansion to order ) ' has given
us 6nite, nonvanishing results except for the single point
M=0. In order to investigate the situation more closely
here, we can calculate the terms of order l~ in (24)—(29).
Since (30) does not vanish for M =0, we need not con-
sider it; our work can be further simplified since we need
only And the terms of order 0 when M=O, since, for
SINO, our expansion to order A' suffices. The pro-
cedure is quite straightforward, and we And that

(eiM1) [(yl Y2) + (irr+rr2) Ml )) +x +/~y
and $&=0. Therefore, at M=O, we can say that
y= (—1/X)+terms of order (X ') and that P is of order
(X '). Therefore, the absorption at M=O is, at most, of
order X ', and can usually be taken as zero. If anisotropy
is included, then y" turns out to be of order (1/X)
at M=O.

laxation toward the instantaneous value of the total
Geld acting on the individual sublattice.

In this connection, we see from (56) and (58) that the
distinction between y, and y, ', as well as the new term
in (37) proportional to P„ is also a direct consequence of
total field relaxation and in principle offers a means of
experimentally checking these results.

Although we shall not discuss it in detail here, one can
apply the same approximate methods previously used
for an arbitrary number of sublattices' s to Eqs. (6)
and (7). One easily finds that the effective parameters
obtained in this way are exactly those given in (56)—(58) .
Thus, this method, which has been previously quite
useful, fails to give the correct result for an arbitrary
number of sublattices even though the total fields are
used in the initial set of sublattice equations of motion.

A brief mention of the effect of assigning diGerent
sublattice parameters has been made by Calhoun,
Smith, and Overmeyer. ' Although they do not discuss
their derivation of their result, their expression for the
eQ'ective relaxation parameter in their notation is only
linear in the e; and is of the same general class as that
given in (50), i.e., will also not remain finite in the
compensation region.

LINE WIDTH BEHAVIOR

We can get some idea of the expected behavior of the
line width by looking at the conditions on the external
field for the minimum value and twice the minimum
value of D in (49) since these are almost the same as the
conditions for the maximum and half-maximum value of
g". If the value of the field which makes D=D;„be
designated by Ho, and that which makes D=2D;„by
H*=He+AH, we easily find from (49) that

2HshH+ (AH)'= 2n~'M(F' —n.sM') &/F4. (60)

If, for simplicity, we assume that the n; are small
enough so that we need only consider the linear ap-
proximation, we have I' y M/S, and Hs rd/ly, l, so
that (60) becomes

(MAH)+ [(MAH)'/2~
I
S

I ]=~(~.S')
&(rriS1 +RsS2 ) =redo) (61)

with the use of (50). We note that the right-hand side of
(61) is always finite and positive. Solving (61) for MAH,
we get

M»I=NISI {[1+(2~/ISI)g'—1) (62)

If o/ISI«1, we g«M&H=~~, whi« if ISI—4,
MEH e&(2cISI)1 and vanishes at S=O. Thus, we see
that the product SIXTH varies continuously through the
compensation region, in agreement with previous
results. '' This result does not mean that hH itself
vanishes at S=O, but is a consequence of keeping only
the linear terms.

3 Calhoun, Overmeyer, and Smith, IBM Research Memo.
RC 79, November 1957 (unpublished); Calhoun, Smith, and
Overmeyer, J. Appl. Phys. 29, 427 (1958).


