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Theory of the Anharmonic Properties of Solids*
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A theory is presented with which one can calculate the anharmonic properties of solids such as thermal
expansion, temperature dependence of elastic constants, dependence of elastic constants under stresses, and
the deviation of the specific heat from the Dulong-Petit law at high temperatures. The theory is applied to
sodium under the assumption of a special force interaction between nearest neighbors only. In the approxima-
tion used, three parameters enter. The three parameters are obtained from experimental measurements of the
elastic constants near O'K, the temperature dependence of the compressibility, and the thermal expansion.
Then the variation of the volume with pressure and the deviation of the specific heat from the Dulong-Petit
law at high temperatures are calculated. A satisfactory agreement with experiment is obtained. Another
prediction of the theory, that the temperature derivative of the compressibility is proportional to the specific
heat, also shows satisfactory agreement with the experimental measurements for sodium.

I. INTRODUCTION

A T low temperatures a solid consists of atoms ar-
ranged in a regular array performing small vibra-

tions about their equilibrium positions. In most solids
the displacements from the equilibrium positions are
small enough at low temperatures that the potential
energy can be expanded in a Taylor's series about the
equilibrium positions and only the 6rst nonzero term
kept, the higher order terms being neglected. This ap-
proximation is called the harmonic approximation. As
the temperature of a solid is increased to temperatures
near its melting point the vibrations of the atoms in-
crease in magnitude so that higher order terms in the
Taylor's series expansion become more important,
making the harmonic approximation less accurate. For
example, in the harmonic approximation the volume of
a solid is independent of the temperature. Quantitatively
this is a good approximation since the total change in
volume of a solid from O'K to its melting point is of the
order of 5 jo. At low temperatures the change in volume
is very small becoming increasingly greater at higher
temperatures. In general the harmonic approximation
describes the main quantitative features of a solid, ,but
does not explain important qualitative characteristics of
a solid such as thermal expansion, temperature variation
of the elastic constants, deviations of the specific heat at
high temperatures from the Dulong-Petit law, etc.

This paper presents a theory that goes to the next
higher order approximation than the harmonic approxi-
mation and is capable of explaining anharmonic effects
such as thermal expansion. Various other authors have
presented theories of anharmonic effects. ' ' Gruneisen's'

treatment of solids assumed a special form of central
force interaction between atoms. The anharmonic
property that his theory most conspicuously explained
was thermal expansion. Born' and his collaborators
present a very complete theory of the thermodynamics
of solids. However, they also assumed a special form of
central force interaction between atoms.

The elastic constants of a solid in the harmonic ap-
proximation are independent of the temperature. The
temperature variation can be explained by the anhar-
monic terms. Born and his collaborators' explain the
temperature variation of the compressibility, but limit
the applicability of their results by their assumption of a
special central force between atoms. Zener' gives a good
physical picture of the cause of the temperature de-
pendence of the elastic constants but does not give any
quantitative results which can be compared with experi-
ment. A new method of calculating the temperature
dependence of the adiabatic elastic constants which
can be used with a more general force between atoms
is presented in Sec. II.

In the harmonic approximation both the Debye and
Born-von Karman' theories of specific heat predict a
lattice specific heat of 3R per mole at high temperatures.

Experimentally, however, the total specific heat is
practically always greater than 3E at high temperatures.
In many cases only a small part of this difference can be
attributed to the electronic specific heat. Peierls' shows
that deviations from the Dulong-Petit law are caused by
anharmonic terms. However, he does not explicitly
evaluate his expression and therefore cannot compare it
with experiment. The deviation from the Dulong-Petit
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law which is proportional to the absolute temperature at
high temperatures has been previously explicitly evalu-
ated only for the case of a linear chain with central force
interaction between nearest neighbors. 4 ' Again no com-
parison with experiment can be obtained since no one
dimensional solids exist. In Sec. III, the term in the
speci6c heat which is proportional to the absolute
temperature at high temperatures is calculated for a
three dimensional solid permitting a comparison with
experiment.

The thermal expansion and its dependence under
stresses and the dependence of elastic constants under
stresses are also consequences of the theory.

II. TEMPERATURE VARIATION OF
ELASTIC CONSTANTS

The main difference between the theory presented
here for the temperature variation of elastic constants
and that of others such as Born, ' is that the constants
are determined by calculating changes in energy under
stress variations instead of strain variations. This has
the advantage that the effect of the stress can be put
directly into the Hamiltonian of the system and its
effect can be directly calculated, in contrast to the other
methods where the macroscopic strain does not appear
explicitly in the Hamiltonian.

For simplicity a calculation of only the adiabatic
compressibility will be given. Other constants can be
calculated in a completely analogous way if the pressure
is replaced by the appropriate stress corresponding to
the elastic constant.

A fundamental assumption that will be made is that
in considering the motion of the ion cores of a solid we

can replace the effect of the valence electrons by a
potential energy which only depends on the coordinates
of the ions. This assumption is a common one in solid
state physics and is called the Born-Oppenheimer or
adiabatic approximation" and can be shown to give only
a small error in the energy states of a solid.

The Hamiltonian for the ion cores with no external
stresses can be written as

Hp= Q.(P,'/2M)+ U(rt, r~),

where the sum is over all ions, and the potential U is a
function of only the E ion-core positions. For simplicity
a solid with only one ion per unit cell is considered.

The potential can be expanded about its minimum in
a Taylor series:

U(r&, ,re) = Up ——', Q U;, (tt, tt')X, (n)X;(n')
—-', P U;, t(tt, tt', tt")X;(n)X;(st')Xt(tt")
——,

' Q U;tt (tt, tt', tt",tt"')X;(tt)X, (tt')

XX (&")X (tt"')+, (2)

where

U;;(tt, n') =-
ctX, (n) etX,(tt')

O'U
U...(tt, te', tt") = ——

2 ctX;(tt) ctX, (e') itXt(tt") (2')

and each summation is over all subscripts and all
arguments. Here tt denotes the lattice site at r(tt) = terat
+ttpap+ttsas, where a; are the primitive lattice vectors
and tt, are integers, and X(tt)=LXt(tt), Xp(tt), Xe(tt)j
denotes the displacement from the potential minimum
of the atom at the nth site in Cartesian coordinates.

Under a constant external pressure P, the Hamiltonian
for the solid becomes

H=Hp+P Q As X„
surface

(3)

where P is the applied pressure, hs is the average area
per surface atom, X, is the displacement of a surface
atom.

An idealized pressure is used which acts only on the
surface atoms but should give the same results as a
physical pressure produced by atoms from other ma-
terials colliding with the 6rst few layers of atoms of the
solid under consideration.

Assume that the problem for the Hamiltonian Hp has
been solved so that Hpf =E P . Consider P to be
small in order that its eGect can be calculated by per-
turbation theory. This is no restriction since we are
interested in the limit as P—+0. To first order the eigen-
energies of Eq. (3) are

E '=E +P Q p *As Xp d7.
surface

t

f *f d7

To find the volume at temperature T the canonical
ensemble average of hV is taken":

=E„+P(DV),

where (AV), is for the state P, the average change in
volume from the volume where the potential energy is a
minimum, Up, Note that as yet no approximation has
been made, harmonic or otherwise, so that (AV) WO.

But (AV) is just the measured volume change so it
will be called AV . Differentiating Eq. (4) with respect
to P and setting P=0 gives

BE '/BP I s =p ——4V = V —Vp.

M F. Seitz, 3fodern Theory of Solids (McGraw-Hill Book Com-
pany, Inc. , New York and London, 1940},p. 470.

"R. C. Tolman, The Prirtciples of Statistical Mechanics (Oxford
University Press, Oxford, 1950), Chap. XIII.
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AV(T) = U(—T) Uo— From Eq. (8') and because E does not depend on P,

/BE
e ~~"

~ P e
—~~- (6) tB,(T)=-

m k BP p=o ) m V(T)

where

E(T)= —B lnQ/BB,

g
—&&m

fn

where 8= 1/kT.
By second order perturbation theory the effect of the

pressure P on E ' can be found to order P'. From this
the compressibility of the solid can be calculated be-
cause of the following reasoning. If the pressure exerted
on the solid is varied from 0 to P very slowly compared
to the vibration frequencies in the solid, then, according
to the adiabatic approximation, " if the system had
initially energy E it will end up with energy E . The
internal energy of a solid can thus be determined as a
function of the external pressure. If the solid were
initially at temperature T, its enthalpy) is"

(BE
e ~m&sr

[ P e Em&s~. (10)
m ( BP p=o ~ m

The problem of calculating P, (T) thus reduces to the
calculation of the dependence of E ' to second order
in P.

Although ideas from perturbation theory were used in
deriving Eqs. (6) and (10), the dependence of E ' on P
will be calculated by a different method than perturba-
tion theory, one which is much simpler.

When the solid is under no external pressure, the
force in the i direction on the atom at the lattice site
r(m) is given, using Eq. (2), by

The increase in enthalpy of the solid produced by an
adiabatically applied pressure is Jo (V—Vo)dP. For
small volume changes, Hookes' law states that the rela-
tive change in volume is proportional to the pressure,
&.e.,

LU V(T)l—l V(T) = P.(T)P—

Here U(T) is the initial volume at temperature T
and zero pressure, t/' is the volume at pressure P,
and P, (T) is the adiabatic compressibility. If one de-
notes by DE(T) the change in enthalpy of the solid
which was initially at temperature T, one obtains

hE(T) = (V—Vo) dP= —-', P, (T) V(T)P'

+LU(T) —VojP, (g)

1 B'hE(T)

U(T) BPO p=o

As pointed out previously if the solid is in an energy
state E„,and then a pressure P is adiabatically applied,
the solid will end up with energy E '. The probability at
temperature T that the solid have an energy state E is
proportional to exp( —E /kT). But this is the same
probability that after the pressure P is applied it will
have energy E '. Thus

&E(T)=Z-L(E-' E-)e -j/2-e ' " —(9)

'2L. I. Schiff, QNantlrn Mechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1949), p. 209.

$ E(T) represents the enthalpy and not the internal energy
since Q is the partition function for constant pressure and not
constant volume.

E, '= Uo'+Q;(n, +-,')hco, ',

"See reference 10, p. 477.

(13)

XX;(n')Xi(e")X (e"'), (11)

where each summation is over all repeated subscripts and
arguments. Of course when all X, are zero, f;(e) is also
zero because the potential energy was chosen to have its
minimum value there.

Now when an external pressure is exerted on the solid,
the total potential energy is U+P P As X, as in

surface

Eq. (3).f, (e) is not zero any more for the surface atoms
when all X;=0. This means that the total potential
energy has its minimum at new lattice site positions
because of the applied pressure. In other words, a
pressure applied to a solid at absolute zero changes its
volume. By choosing a new origin such that all f, (n) =0,
the potential energy will have the same form as Eq. (2)
except that now the U;;, U;j~, and U;j~ will be different
because they are evaluated at new positions. Thus the
problem is only to find the unperturbed solution in-
volving EIO, Eq. (1), and to determine how the U...
Uzj $ and Uzj $m, depend on the pressure.

The eigenenergies of Hp to terms proportional to T at
high temperatures are"

E = Uo+P, (rr,+,')Iito, , - (12)

where coj are the frequencies of the normal modes of the
solid and depend on only U;, (e,e'), and the index m
denotes the selection of the n, .

Since, as was shown above, H in Eq. (3) can be put in
the same form as Jlp,
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where Uo' is the new minimum of the energy and or are
the new normal modes of the solid which depend on only
the new U, ,'(21,n'). The U;, '(6,22') depend on the new
equilibrium lattice sites which in turn depend on the
pressure. The co,

' are therefore functions of the pressure
only.

By considering the solid at O'K, one obtains from

Eqs. (8), (12), and (13) that

AE(0) =Emo' —Emp ——Uo'+-', Q, A(d,
' —Up

—
2 E2 A~2= —2p. (o) V(o)P'+LV(0) —VojP (14)

From Eqs. (13) and (14) it follows that

P- '= Uo+2 Q;Aa); ——,'P, (0)V(0)P'

+P[V(0)—Vo]++2 22,A~,

r 1 her,
P, (T)=P (0) I

1— 2»
l V(0) 1 e»"~—1)

where

6,Aa);
+ Z, (2o)

V(0) ~' e» —1

1 8(0

co& BI y —o

In a completely analogous manner one can show for a
cubic crystal that

to terms proportional to T at high temperatures one
obtains

I =o

8 co'
= —p, (o) v(o) yp ~,A

~~' s=o

1 1 82E(T)
(15I) S44(T) =-

C44(T) V(T) BT1

8 Mj'
yPA

BP

Here the well-known result that

(2111„,) 1 (16)
and

2[S11(T)—S12 (T)j

From this and Eqs. (7) and (8'), one obtains

V(0) 1
P.(T) =P.(0)

V(T) V(T)

1 A%2'

E»
V(0) 2' e»"~—1)

1 @co~'

+ Z ~~'", (21)
V(0) 1 e»"1—1

a2Z(T)

22(T) =-
exp (A10;/k T) —1

is used. To determine U(T) use is made of Eqs. (6),
(12), and (15), giving

1 8&o2 r 1
V(T) V(0) =P A~ —

l I (17)
~; &P 2=o le~""~' 1)—

The thermal expansion now becomes

1 rBV) 1 8 Aa);
«(T)=—

I
I=— 2 v

VlBT) V BT 1 e» ~ —1

C11(T)—C12(T) U(T) 8222

Ao) ~

V(0) 1 e»"1—1 &

+ P 8;"& . (22)
U(0) 1 e»"~'—1

Here r1 is the stress that produces a shear in the (100)
plane along the [010$ direction, r2 is the stress that
produces a shear in the (110) plane along the [110j
direction, and

where

8 incr

g, (~)—
2u7 I 7y=o

g-o

It is of interest to note that Eq. (18) is equivalent to the
Gruneisen rule

where

~~(T) =~'PrC(T)/V (T),

y'= —8 in~;/rj lnV,

(19)

and pr is the compressibility at constant temperature,
as is shown in Appendix I.

Using the results of Eqs. (16) and (17) and calculating

Expressions can also be obtained for the elastic
constants of crystal structures other than cubic but for
simplicity the discussion here will be limited to cubic
crystals.

The remaining step is to calculate 5;, 6;&", and 5;(".
To do this will require the assumption of a specific model
for the solid. In order to make the calculation as simple
as possible and still applicable to an actual solid the
following model is taken:

(a) A body-centered cubic crystal structure rom-
posed of only one type of atom.
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I r
Q ««««a

FrG. 1. Labeling of the
atoms in a unit cube of a
body-centered cubic lattice
as used in the text.

U;, (n,n') is a tensor of rank two, U;;~(m, e') is a tensor
of rank three, and U;;~ (e,e') is a tensor of rank four.

Consider the cube formed by an atom and its 8
nearest neighbors as labeled in Fig. 1. There is now one
remaining assumption that has to be made. Assump-
tion (c);

U,;(0,1)=n (independent of i and j),
U;;&(0,1)=P (independent of i,ja,nd l),

U, , & (0,1)=y (independent ofi, j, /, and m).

U, , („(m,e',e",n'") (23)

Because of the above relations the force in Eq. (11)
can be written as

f, (rs) =P U;;(~,e')(X;(e')—X,( ))
+P U, ,g(n, n', n")LX, (e') —X,(n)]
&& LX((e")—X((e))+P U;, („(m,n', e",n"')
X t X;(e')—X,(e)]LXi(e")—Xi(e))

&&(X (B"')—X (e)), (24)

where the sums are over repeated subscripts and
repeated primed arguments.

From assumptions (a) and (b), U,;(n,e')=0 unless
e equals e' or one of its eight nearest neighbors,
U, ;~(e,e',e")=0 unless n =n'= e" or both e' and e" are
nearest neighbors to e and similarly for U;, & (e,e',e",e'").
Equation (24) now becomes

f, (m) =Q U,;(e,e')PX;(e') —X;(e))
+P V;,((e,n')(X, (e') —X,(e))
XLXi(e') —Xi(e))+P V;, i„(e,m')

XLX;(e')—X,(e)]t X (e') —X,(e)]
Xt X (e') —X (e)], (24')

where the sums are over e' and repeated subscripts, e'
being one of the 8 nearest neighbors to n;

and
V;;)(n,e') = V,;,(n, m', n.'),

U, , (m(n, rs')= U,,gm(n)n')e'&n')—

(b) Only nearest-neighbor interactions are important.
A third assumption will be made further on.

It should be emphasized that assumptions (a), (b), and
(c) (to follow) are made only for calculational simplicity.
The theory is not restricted to these assumptions but
can be used for any general force between neighbors.

From the fact that the force in Eq. (11) and all its
derivatives are invariant under a uniform translation,
the following relations are obtained.

Q„U,, (e,n') =Q„U,, (e,e') =0,
Q„U;,((n, n', e")=Q„U,;((n,e',m")

=Q " U;, ((m, rs', n")=0,

Particle
pair No.

0, 1
0, 7
0, 2
0, 8
0, 3
0, 5
0, 4
0, 6

(—1)&n

(—1)
(—1)~0.

(—1)~n

(—1)-~
(—1) n

p
p(-1) p(-1)"+'p

( 1)z+1p
(-1)'p(-1).p
{ 1)~+Ip

& ( —1)& means ( —1) taken to the power of the number of y's in the ijim
subscripts of the U's. Similarly for ( —1)& and (—1)&.

'4 See reference 8, p. 272.
'~ See reference 8, p. 266.
"Charles S. Smith (private communication).
' S. L. (nimby and S. Siegel, Phys. Rev. 54, 293 (1938).
' 0. Bender, Ann. Physik 34, 359 (1939).

This assumption is not a central force interaction. A
central force interaction would require U;, (0,1) to be
independent of i and j but U;, ~(0,1) and V,, g (0,1)
would not be independent of i, j, l, and m. The force
constants between other neighbors can be obtained
from the transformation properties of tensors. They are
given in Table I.

Only 8j will be calculated. 8;(" and 8,") can be ob-
tained in an analogous manner, but they require nu-
merical evaluation. The calculation of b; requires no
numerical work and gives a simple result.

The secular equation for co; in the harmonic ap-
proximation is'

1—C1C2C3—O' SIS2C3 S1C2S3
S1M 3 1 +1+2'4 fI ~1S2S3 0 (25)
S1C2S3 C1SgS3 |—C1CgC3—0'

Here S,=sin(k;a/2), C, =cos(k,e/2), 02= —(~'&u2M/n)

and M is the mass of an ion core.
Comparing the secular equation (25) with the secular

equation in the acoustic limit, " one obtains C11=C12
=C44. The values'~' of the elastic constants for
three body centered cubic alkali metals are given in
Table II. As can be seen the relation C11=C44=C12 is
approximately satisfied only by sodium and thus some
comparison with experiment can be expected for
Sodlul11.

The approach here to calculate b; will be, as men-
tioned previously, to determine the dependence of 0. on
P and then from Eq. (25) obtain cu; as a function of P.
TABLE I.Values of the force constants between nearest neighbors. '
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Pa (a)' (ai'
-9I —

I
pp'+2I —

I
p'

&6~j (27)

Using Eq. (2') and the fact that e is small so that a
Taylor series expansion can be used, one obtains for the
new o.' at pressure P',

The force on an atom with no external pressure is given
by Eq. (24). Now apply a pressure P to the solid.
Imagine the solid cut along an internal (100) plane. Let
all atoms be 6xed at the positions where the potential
energy is a minimum. The force per unit area along the
cut plane is now P, or the force per atom on either side
of the plane is Pa'(1+e)', where the length of the edge
of the unit cube is changed from a to a(1+e) under a
pressure P. This determines the relative displacement of
the atoms from the positions they had in minimizing the
potential energy under zero pressure. Using Eq. (24')
and the fact that from symmetry, the displacement of
the atom of a cubic solid under pressure is uniform in all
directions, one obtains

Pao(1+e)o= 6nea —9P(ea—)o—(27/2)7(ea)o. (26)

Here u, p, and y are the force constants at zero pressure.
Solving for e to second order in P from Eq. (26), one
obtains

8 ln(o, '

s=p

a2P

4o.'
(29)

1 8'a&/ 3 a'(y 8 p p')
+ I, (30)

Bp' i=o 16 a'&c~ 9an

independent of the normal mode.
The compressibility P, = —V 'BV/Bp is seen from

Eq. (26), where dV/V=3e, to be equal to

P.(o)=a/2~ (31)
Using the values of Eq. (29) in Eq. (20) and using the
relation of Eq. (33), one finally obtains that

frequency spectrum is of order 1/1V, where X is the
total number of atoms, a negligible amount. Also the
determination of e in Eq. (27) is for an interior atom.
The e associated with surface atoms will be difkrent.
Since e is assumed to be the same for all atoms, a
negligible error of the order of 1/X is introduced.

As the pressure is applied to the solid only n and oP

change in the secular equation (25) for io The. C s and
5,'s remain constant. In fact, Eq. (25) implies that &o'/n

is a constant independent of the pressure. This permits
us to obtains as a function of pressure. A straightforward
calculation then gives,

BU;;n'= V;g'(0, 1)= U', ;(0,1)+Q AXg
BX)

O'U;,
+-,' Q DXihX„

t, m gx)BX

P.(2)=P.(o)-
Jp

t
r C(P)dT'

V (0)

P.(o)Pa' 3 a' (v P'&
x -' +——

I

——I.
12u' 16 et' &n o.') .

=U;;(0,1)+2+ U;; (0,i1)( o)e+a3 Q U, ;i~(0,1)(oea)'

=e+3pae+ (27/4) p (ae)'

paop f a lo p~
I

po
2o. &20. & 2a

47a opa ~

The secular equation (25) for the frequencies assumes
the Born-von Karman boundary condition. In the ap-
proach presented here the boundary conditions are
different from the Born-von Karman one. However,
Born" has shown that the error introduced in the

TABLE II. The elastic constants of some alkalis in units of
10"dynes/cm'.

Struc-
Element ture

Li bcc
Na bcc
K bcc

Cl1

1.34
0.608
0.459

1.13
0.463
0.372

0.96
0.593
0.263

Temper-
ature

195'K
80'K
77'K

Refer-
ence

See reference 16.
b See reference 17.
& See reference 18.

'9 M. Born and K. Huang, Dynamk al Theory of Crysta/ Lattices
(Clarendon Press, Oxford, 1954), p. 391.

r~ AM

C(T')dP=Q
"o ~ exp(Bko, )—1

where C(T) is the specific heat in the harmonic ap-
proximation. Therefore for a body-centered cubic solid
where assumptions (b) and (c) are valid

W. (&) C(&) P.(0)"P 3 "~v P'i
(33)

12aoV(0)

DV ( pa)——=P (o)P—lI:P.(0)pj'I 2——I+69.(0)pj'
V L ni

'34 6Pa 3 ya' (Pa) '

9 o. 2n KnJ

The temperature variation of the compressibility is
proportional to the specific heat.

The dependence of the volume with pressure will next
be calculated neglecting zero point energy. Since the
lattice parameter a changes to a(1+e) under a pressure
change, where e is related to P from Eq. (26), straight-
forward differentiation gives a Taylor series to order P'
for the change in volume at O'K as
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III. DEVIATION OF THE LATTICE SPECIFIC HEAT
FROM THE DULONG-PETIT LAW'

The a, (k, t) are the normal modes and have the property
that

A classical calculation will be made of the next higher
approximation to the specific heat than the harmonic
approximation. At low temperatures where quantum
effects are important the anharmonic e8ects will be very
small. It is only at the higher temperatures where the
quantum mechanical eGects are small that the anhar-
monic eGects are important, and thus a classical calcula-
tion will su%ce.

Integrating Eq. (24'), one obtains for the potential
energy

a.*(—k, t) =a, (k,t).

There is the further relation that

(1/+)Q„ f(k)e' l(~'= f(k)b(k, g),

where f(k) is any function depending on k and

b(k, g) =0 if keg
if k= g.

Here g is defined by

(39')

(39")

U= Up ——,
' Q U;, (n, n')X;(n)I X;(n') —X,(n))

—-', Q U, , i(n, n')X, (n)tx, (n') X;—(n)]
Xlxl(n') —Xl(n)) —

4 Q U;, l (n, n')X, (n)
x I x, (n') —x, (n)]I x, (n') —x,(n))

XI x (n') —x (n)), (35)

where here and in Eq. (37) the sums are over n, n', and
repeated subscripts. Using the labeling as in Fig. 1,
U;, (0,1)= U;, (0,7) (see Table I). Now if the origin is
shifted to particle 7, by translational symmetry particle
7 can now be called particle 0 and particle 0 can now be
called particle 1.It is then seen that U;;(0,7) = U,, (1,0).
Therefore U;;(1,0) = U, , (0,1).In the same way it can be
shown that

expLig r(n)7=1.

New normal modes can be introduced which are real."

b. (k) =

b, (—k) =

a, (k)+a.*(k)

V2

a.(k) —a,*(k)

iv2

(40)

E(T)= —8 inQ, (BB, (41)

In Eq. (40) k is limited to vary over that half of the first
Brillouin zone which includes k but not —k.

The enthalpy of the solid as a function of temperature
can be obtained by

U;;(n, n') = U;;(n', n),

U, ;l(n, n') = —U;;l(n', n),

U;;l„(n,n') = U;, l (n', zz).

(36)
where Q, is the classical partition function

f
e ~edb. (k)

— dp. (k)

Using the relations in Eq. (36), it can be seen that
Eq. (35) can be put into the form

U= Uo+4 Q U;, (n,n')LX;(n') —X,(n))
XLX,(n') —X,(n)7+-', Q U;, l(n, n. ')

XI X,(n') —X,(n)]I X;(n') —X,(n))
XI Xi(n') —Xl(n))+ —' p U;;l (n,n')

X I X,( ') nX, (n)]—I X;(n') X;(n))—
XI xl(n ) xl( )n)I x('n ) x (n)) (37)

The normal modes of the solid are next introduced":

X;(n) = P a.(k,t)P;,(k)e'" r(")y, (ME)' (38).
k, o

The total number of lattice sites is )V. o- describes the
polarization of the normal mode in respect to its wave
number k. For a simple lattice without a basis, the
situation considered here, (r has 3 values. The P, ,(k) are
components of the unit vector in the direction of the
displacement of the atom. They have the property that Q

I~ ~ ~
C exp

p.'(k) +b,'(k) co,'(k)

k, o

The integration is with respect to all of the normal
coordinates b, (k) and their conjugate momenta p, (k).
The normal coordinates are substituted for the X, in the
potential energy terms, Eq. (35).

The potential energy can be separated into U(b, (k) )= U, (b, (k))+Uz(b, (k))+U4(b, (k)); where Uz(b, (k))
which equals" —,

' Pl...b,'(k)&u '(k), Uz(b. (k) ), and
U4(b, (k)) are the terms in the potential energy that
contained X; to second order, third order, and fourth
order, respectively. These terms now contain b, (k) to
the same order as they contained X, since the trans-
formation to normal coordinates is a linear one. As is
usually done, "the exponential containing U3 and U4 is
expanded in a power series:

P, P, , .*(k)P;,.(k)=b., ..

20 See reference 10, pp. 125-133.

(39)
Uz U4 1 Uzz

~X
I

1— — +———Idb, (k) dp. (k)
kT kT 2 (kT)'

"See reference 9, pp. 34—39.
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The integration over V3 is zero since V~ is odd in the
b, (k) while the exponential is even, leaving Q.=Qo+Qi
+Qp, where

Q = (2 &&)' /g .(k)
k, o'

where r(Ae') =—r(e') —r(N) and U;; (hip') = U—;;(e,n'),
and P~„means P„.keeping n fixed, i.e., sum over
nearest neighbors. Multiply both sides of the above
equation by P;, ,*(k) and sum with respect to i. Using
Eq. (39) one obtains

~ ~ ~

00 —oo

1 ~ ~ ~ ~ ~ ~

00 00

p.'(k) +b.'(k)(u. '(k)
2

k, o kT

Xdb, (k) dp, (k)

co.'(k)

Summing both sides in respect to k and 0 gives

g;, ,*(k)(j,.(k) sino)-,'k r(AN)g
31V=—Q Q Q U "(Ae)

~ink, o i, j p~,'(k)

g;.*(k)(;,.(k) sin'L-', k r(&e)j1=—P U,,(~) ' . (44)
3E,~, ~

p.'(k)+ b.'(k)(o.'(k)
Xexp

kT

Uo(b, (k)) '
X db. (k) dp, (k)

kT

If the summation is first done with respect to k, o, i, and

(42) j, the sum, from cubic symmetry, is independent of de,
giving after summing over the eight nearest neighbors

16n $;, ,*(k)P;,,(k) sin'Lipk r(0,1)g
ZZ

(o.'(k)

p.'(k)+ b.'(k)(u. '(k)
Xexp

k, o kT

or
I=3%M/16n.

16nI
(45)

M

U4(b, (k) )
db (k) dp (k)

kT

Substituting in for U4 and utilizing the cubic symmetry
of the lattice in a straightforward but tedious calcula-
tion, o' one obtains for Qp

48Qoy I'
M'ÃkT

where
g;, ,*(k)r";,,(k) sin'L-,'k r(0,1)gI=+ P

op.'(k)s, jk, o

(43)

MM, '(k)g;. (k)= Q Ug~(he))ei~'&~~& ljg. (k)
j,b, nr

=2 P U,;(De') r";, ,(k) sin'L-', k r(hn')g
j,hn'

"Peierls in reference 9 presents a calculation of the same
term in the specific heat as presented here. The resentation
here evaluates Peierls' b(f,s; f',s'; f",s"), Eq. 2.40), and
c(f,s; f',s', f",s";f'",s'") Kq. (2.52) for the particular model used.
The other new step performed in this paper and not done elsewhere
is the evaluation of the complicated sums.

Here r(0, 1) means r(1)—r(0), the distance between
nearest neighbors. By cubic symmetry r(0, 1) may be
replaced by r(0j ) where j can be any of the 8 nearest
neighbors. Neighbor one is taken in order to be de6nite.

To evaluate I, consider Eq. (24') in the harmonic
approximation. Using f;(n) =Mr d'X;(n)/dt'), and sub-
stituting a normal mode for the displacements one
obtains'-'

Therefore from Eq. (43)

Qp
—— 27QplVyk—T(16n') '. (46)

It remains to evaluate Qi, a more involved procedure.
Substituting the expression for Up in Eq. (42) and
integrating, one obtains a complicated expression which
contains, among others, a double sum over nearest
neighbors. If the sums are first performed over all the
other variables, leaving the double sums over nearest
neighbors undone, only two different types of terms are
obtained, because of the cubic symmetry. For one the
same nearest neighbor is involved twice and for the
other two diferent nearest neighbors are involved. The
result is, after another tedious but straightforward
calculation, "

16 kTQp
Q, =— (16p p G;„',.(1)G;,;....(k')

3 M'Ã

XGi, i...-(k")+48P Q U;;.i (0,2)

XP,„',.(k)S;,,'...(k')F. ..;.(k")), (47)

where

G;, ;,,(k) =op, '(k)P;, ,(k)g; „*(k)sin't."k r(0, 1)j,

~;.;,.(k) =-.-'(k)~;..(k) ~', .*(k)
XsinL.",k r(0,1)j sinL.",k r(0,2)j,

and g are the reciprocal space vectors that have the
property that exp[ig r(n)j=1; the sums are over
i, j, l, i', j', i', o, 0', 0", k, and k', with the restriction
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The enthalpy of the solid becomes, using Eqs. (41), (42),
(46), and (49),

that k+k'+k"=g. The difficulty in evaluating the
sums of Eq. (47) comes about because the sums over k
and k' are coupled to one another by the restriction that
krak'+k"= g.

The second set of sums on the right hand side of the
Eq. (47) will now be shown to be zero. Another property
of the vectors g are that all physical properties that
depend on k will be the same for wave number vectors k
replaced by k+g."In particular the second set of sums
on the right-hand side of the Eq. (47) should be the
same if k is replaced by k+g. Let g= 27r((j —k)/a7. This
g satisfies the condition that expLig r(he)7=1. From
Fig. 1 it is seen that r(0, 1)= (i+j+k)a/2 and r(0,2)
= (i—j+k)a/2. As k is replaced by k+g, one has

(9 p' 27 yq
E(T)=31((kT+

~
~~(kT)&

&16 a' 16 a')
(5o)

The specific heat per mole, at constant pressure, becomes

p)E, (3 P' 9 yy=3~ 1+~ ————IkT .
BT . (Sa' 8 n')

(51)

Equation (51) is the classical result for C~. At the
temperatures where the term proportional to T will be
important, there will be still some small quantum
e8ects present. These eGects, being small, do not have
to be known very accurately. Their eGect is approxi-
mated as shown in the following equation.

sinL.",k r(0, 1)7 sinL-', k r(0,2)7~
sinL-,'k r(0,1)7 sinL2k r(0, 2)—pr7

= —sinL —',k r(0, 1)7 sinLpk r(0,2)7. (eq- (3p
C.=3WI —

I 1+i ————lkT,(T) ESn' 8 n')
(52)

(T ) 3 (P/T ~a~4

&~) ~.
dx)

(e*—1)'

Thus the second set of sums changes sign under this
substitution. The only way that this is possible and the
sum still be invariant under the transformation k~k+g where f(p/T) is the Debye function given by
is for the sum to be zero.

The first set of sums on the right-hand side of Eq. (47)
will now be evaluated. Now

1—Q j(k,k', k")e'("+'+"")'("'=Pf(k,k', k")
S

from Eq. (39"),where the sum on the left-hand side is
over k, k', and k", that on the right-hand side over k and
k' subject to the restriction that k+k'+k" =g. There-
fore Eq. (47) can be put into the form

256 kTQpP'
Q

' P Q Q ~ik r(n)

~3+2 ~ k~i e

(, .(k)g; .(k) sin'P-,'k r(0)11)7 '
X

pp, '(k)
~ (48)

The problem is now reduced to evaluating the bracketed
term of Eq. (48) raised to the third power. Multiply
both sides of Eq. (44) by e'k'(") and then sum over k
and 0. Because Pk e'k'(") =0 unless r(e) =0, one
obtains

3ÃM
Sn P P (, 'k i(n)

k, o i, i'

256 kTQpP' (31VM) ' 9 QpP'

f
=—1l(kT

3 M'E' 4 16n ) 16 n'
(49)

P;.*(k)g; .(k) sin'Pk r(0, 1)7
X

(p.'(k)

Equation (48) now becomes

and 0 is the Debye temperature. "
There should be some discussion why the specific heat

was said to be for constant pressure and not for constant
volume as is often stated elsewhere. '4 From thermo-
dynamics

(av& (av~
C, C„= Ti- —

(aT) E aZ),
In the harmonic approximation C„and C„are equal
because (BV/BT) I is zero. It is usually stated" that the
harmonic approximations to the specific heat such as the
Debye and Born-von Karman theories calculate the
specific heat at constant volume, since in the aprpoxi-
mation used the volume does not change. This is not
quite true since, as just pointed out, in the harmonic
approximation C„=C, . The Debye and Born-von
Karman theories calculate neither C„nor C, but only the
first approximation to both. The paper here has pre-
sented the next higher approximation to the specific
heat, the first one where C„and C, will differ. C„has
been calculated here because the Hamiltonian that was
solved )see Eqs. (1) and (2)7 was for zero pressure. If
C, were to be calculated, the Hamiltonian of Eq. (3)
would have to be used, with P determined by the
condition that the volume remains constant. C„calcu-
lated this way divers from C~ just as predicted from
thermodynamics as shown in Appendix II.

The reason why the Debye theory usually agrees
better with experimental values of C„rather than C~ is

~3 See reference 10, p. 110.
2' See reference 10, pp. 136—137; reference 9, p. 39.



THEORY OF AXHARMONI C PROPERTIES OF SOLI DS '795

TA&LE III. The' experimental data for sodium used in calculating the parameters of the theory. ' All quantities are expressed in cgs
units. The units of n, P, and y are dynes/cm, dynes/cms and dynes/cm', respectively.

V (0)/mole

22.77' 4.22X 10-s 0

ap (T)V(0)

C(T)

1.92X10 "~

Pe (T) V(0)

8T C(T)

1.58X10-»
a =$+ (C11+C12+C44)

1.17X10' —0.590X 101' —0.105X10»

a C(T), the specific heat in the harmonic approximation, is assumed to have the Debye values obtained from J. A. Beattie t J. Math. and Phys. 6, 1(1926-1927)j using a Debye temperature of 170'+
b The values for C11, C12, and C44 are given in Table II.

See reference 27.
& S.Siegel and S.I .Quimby, Phys. Rev. 54, 76 (1938).
e See reference 17.

because the term in Eq. (52) that is linear in T is usually
positive, and C„ therefore usually becomes greater than
the Dulong-Petit limit. C„ is always smaller than C„and
will therefore usually agree better with the Dulong-
Petit value, the limiting value of the harmonic ap-
proximation.

IV. COMPARISON WITH EXPERIMENT

The theory presented above involves three parame-
ters, a, P, and p. Fortunately, though, the theory
predicts more than three quantities and thus it can be
checked against experiment. From Eq. (31)

-', (Crr+2Crs) =2a/a.

Since the theory requires that C»=C»=C44, 0. will be
determined by taking an average of the experimental
values of Ctr, Crs, C44 and setting it equal to 2n/a. The
parameter P is determined from experimental values of
the thermal expansion by using Eqs. (18) and (29). The
parameter y is determined from experimental values of
the temperature variation of the compressibility using
Eq. (33). In this way one obtains

is only a few percent of the anharmonic contribution.
The diGerence between the two curves is also shown.
This difference does not appear to have any dependence
proportional to T. The approximation used here calcu-
lates the specific heat to terms proportional to T at high
temperatures. The approximations of next order would
give a dependence proportional to asT'+ asT'+ . The
theory satisfactorily agrees with experiment since the
linear term in T is accounted for by the theory. Also
shown in Fig. 2 is the specific heat in the harmonic
approximation with the electronic specific heat added.
The harmonic approximation alone fails to account for
the high temperature specific heat of sodium.

Using Eq. (34) and the values in Table III, one
obtains hV/V =P,P—2.07 (P.P)s+—5.4(P,P)'.
theoretical curve for sodium is compared with experi-
ment" in Fig. 3.The value of the compressibility used is
that given in reference 27, P,=1.39)&10 ' atmos '.
Curve C in Fig. 3 represents the equation —AV/V
=P,P. The experimental curve A can be represented by

AV/V =P,P 2.—41(P,P)'+5.0(—P,P)'. The P' term in
the theoretical expression is about 14% lower than the

4ct' rr v(T)
p= — V(0),

a' C(T)

(4nv(T) V(0)n) '
!

a'C(T) )

(53)

16 'V(0) t'~P. (2') P.(0) (2') )
(54)

3 a4C(T) E BT 3 )

l.2-

. Cp

3R
.6-

3-

A

B
c

- .08

cp..
-.06 BR

04

-D2

Since sodium is the only element that satisfies the
approximations made in this paper, the prediction of the
theory can be. compared only to the experimental
measurements made on sodium. Table III gives the
pertinent data and references used in determining the
parameters of the theory.

Figure 2 shows the comparison between the theory
$Eq. (52)g and experiment" of C~/3R for sodium. A
Debye temperature of 160'K was assumed. The contri-
bution of the electronic specific heat" was added to
Eq. (52), but it gives a term linear in temperature which

2~ Dauphinee, MacDonald, and Preston-Thomas, Proc. Roy.
Soc. (London) A221, 267 (1954).

"See reference 10, p. 155.

-0
40 80 l20 l60 200 240 280 320

TEMPERATURE K

FIG. 2. C„/3R for sodium. Curve A is the experimental results. s'
Curve 8 is the curve,

160'
3R T

"=/ [1+2.34X—10 4Tg+0 20X10 4T,

predicted by theory taking into account the first anharmonic
contribution of the lattice and the electronic specific heat. Here
f(160'/T) is the Debye function for a Debye temperature of
160'K. Curve C is the curve predicted by the harmonic approxima-
tion with the electronic specific heat added. Curve D is the
difference between curves A and 8 plotted on the expanded scale
to the right.

'7 C. A. Swenson, Phys. Rev. 99, 423 (1955).
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Fzo 3. —gV/V es pressure for sodium. Curve A is the experi-
mental resultss which can be represented by nV/V=—P,P—2.41(P„P)s+5.0(P,P)'. Curve B is the theoretical curve —6V/V
=P&P—2.07(P,P)'+5.4(P,P)'. Curve C is the curve —aV/V
=p,P.

V. SUMMARY

A theory is presented which correlates the thermal
expansion and the temperature variation of the com-
pressibility of the alkalis with the deviation of the
specific heat from the Dulong-Petit law and the change
in the volume with pressure. The theory of the tempera-
ture variation of elastic constants satisfies the condition
that Lazarus'8 found experimentally must be true; the
elastic constants must be both explicit functions of
temperature and volume or pressure. In Eqs. (20)—(22),
the 8 s and p s are functions of only the pressure,
independent of the temperature, while the rs;= 1/
(en" ~ —1) are functions of only the temperature.

The temperature dependence of elastic constants can
be understood physically. The second derivative of the
energy with respect to the stress gives the elastic con-
stant. Neglecting the zero-point energy, when a stress is
applied at O'K the problem involved is just a static one.
The atoms are stationary at their equilibrium positions

's See D. Lazarus, Phys. Rev. 76, 544 (1949).

experimental value while the I" term is about 8%
higher than experiment. Considering the approxima-
tions made in the theory, this is a satisfactory agreement
between theory and experiment.

Another prediction of the theory is that the tempera-
ture derivative of the adiabatic compressibility for
sodium should be proportional to the specific heat Lsee
Eq. (33)j. By use of the measured values'" of the
temperature derivative of the compressibility in the
high-temperature region where the compressibility varies
linearly with temperature, and also by use of the
measured value of the compressibility itself at 180'K,
Eq. (33) is used to calculate the compressibility at other
temperatures. As can be seen in Fig. 4, the agreement
for Na is well within the experimental errors, though
more precise experimental data are needed for a critical
check on the theory.

and the stress just changes their equilibrium positions.
However, at nonzero temperatures, an applied stress
will also change the vibrational energy of the solid. The
second derivative of the internal energy with respect to
the stress now has a part due to the vibrational energy
which will depend on the temperature. This temperature-
dependent part explains the temperature variation of
the elastic constants. It should be noted that the
temperature variation of the elastic constants is not due
to thermal expansion as is sometimes mentioned in the
literature. In fact, if the potential energy can be
expanded in a Taylor series of only even powers of the
displacements from the minimum, then the thermal
expansion will be zero. However, there will still be a
temperature dependence of the elastic constants since
this depends on both the odd and even anharmonic
terms.

The theory differs from others in that in calculating
the thermal expansion and the temperature dependence
of the elastic constants, the stresses are used as variables
instead of the strains. This has the advantage of greatly
simplifying the calculation since the stresses can be
inserted directly into the Hamiltonian for the solid. In
addition, the adiabatic elastic constants are calculated
instead of the isothermal elastic constants. In order to
facilitate the actual numerical calculations and to permit
the exact summing of the complicated expressions in the
speciic heat calculation, special assumptions of the
force constants between atoms /assumption (c)) were
used. The anharmonic effects were calculated to the
next higher order approximation than the harmonic
approximation. Similar methods can be used to calculate
still higher order approximations but those were not
presented here. As far as is known to the author, this
paper is the erst to present an evaluation for a three-
dimensional solid of the complicated sums present in the
anharmonic contribution to the specific heat.

The theory is compared with experiment for the body-
centered cubic alkali Na. Considering the approxima-
tions made in the theory and the uncertainties in the
experimental results, the agreement with experiment is

xl0

2.l8-
2.I4-
2.IO ~

2.06 ~

P~tT) 2.02 ~

Cm' '98
dyne & 94.

1.90-
l.86-

1 I I z
'

a I I

0 20 40 60 80 l00 l20 l40 l60 l80 200'K

TEMPERATURE

Pro. 4. The adiabatic compressibility of sodium as a function of
temperature. The curve was normalized to have the same slope
and value of the compressibility at high temperatures as the
experimental points. The rest of the temperature dependence was
calculated from Eq. (32).
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satisfactory. It is unfortunate that the experimental
measurements on the alkalis are not more complete in
order to permit a more complete comparison between
theory and experiment. Only for Na is there a reasonably
complete set of measurements and even in that case the
situation is not entirely satisfactory. For instance,
Swenson" obtains a value for the compressibility of Na
at 77'K of 1.54X10 " cm'/dyne, Quimby and Siegel"
obtain the value at 80'K of 1.96)&10 ", and Bender"
obtains the value at 90'K of 1.20)&10 ".It is hoped
that in the near future the experimental situation for the
alkalis will be improved since it appears that they are
one of the better structures for calculating the anhar-
monic effects.

APPENDIX I

Equation (18)will be shown to reduce to the Griineisen
relation, Eq. (19). The variable is changed to V, the
volume, in place of the pressure P. In Eq. (18) y;
becomes

8 inc), '
Vj=

s o

where 7,'= —8 in~ /8 lnV and P, (T) is the adiabatic
compressibility. Using the approximation of the
Gruneisen theory that p, '= p' independent of the normal
mode j,' Eq. (18) becomes

Within the approximations made in the calculation, the
above becomes

«=~'P~(T)c(T)l v(T),

the Gruneisen relation.

APPENDIX II

The Hamiltonian in Eq. (3) for pressure P can be
transformed to be of the same form as the Hamiltonian
of Eq. (1) for zero pressure as shown in the discussion
following Eq. (11).If o, is the lattice constant at zero
pressure then the lattice constant changes to a(1+e)
under a pressure P, where e is related to P by Eq. (27).
The potential energy terms in the Hamiltonian of F.q.
(3) are now in the same form as that in Eq. (2) with new

To order T', at high temperatures,

—v 0) LT«(T)7
+Ep(T).E(T)=

p. (0)

The speci6c heat at constant volume is

aE(T) =c.(T)—

since BEp(T)/BT=C&(T). Thus

V(0)
Tnr'(T),

p. (o)

c„(T)-c„(T)= Tv(o), (T)/P. (T).

This expression agrees within the approximations made
with the thermodynamic relation"

C.(T) C.(T)=—TV(T) '(T)/P (T),

giving added weight to the statement made in the paper
that C~ was calculated and not C,.

1Vote added ie proof It is of in.t—erest to note that C,
is also not constant at high. .temperatures. though it
varies more slowly than C„. Using the experimental
values for Na one obtains classically to order T includ-

ing the electronic contribution

C /3R= (1—0.40X10 4T)

"See reference 10, p. 137.

Uo'& U;, ', U;;~', and U;;~~'. In deriving E(T) of Eq. (50),
Uo, the zero of potential energy, was assumed zero. As
shown in Eq. (8) Uo' then becomes —-',P, (T)V(T)P'.
U@' is given by Eq. (28), and U;;4' and U,,~~' can also be
obtained in a similar manner. The E(T) at pressure P
can be obtained from Eq. (50) by adding Uo' and
replacing o., P, and y by n'= U@'(0,1), P'= U,;&'(0,1),
and y'= U,,~~'(0, 1).However, since the term containing
eL', P', and y' is already of order T', the primed quantities
can be replaced by the unprimed quantities within the
desired approximation. Finally,

E(T)= —-,'P, (T)v(T)P'+Eo(T),

where Eo(T) is given by Eq. (50), the energy at zero
pressure. J' is determined by the condition that the
volume remain constant. Thus, classically,

Lv(T) —v(o)7 T,(T)
p ~

P, (T)V(T) P.(T)


