PHYSICAL REVIEW

VOLUME 111,

NUMBER 3 AUGUST 1, 1958

Vibrations of a One-Dimensional Ionic Lattice

HEeRBERT B. ROSENSTOCK
United States Naval Research Laboratory, Washington, D. C.

(Received January 22, 1958)

The singularities in the distribution of vibrational frequencies in the one-dimensional ionic lattice are
studied. It is shown that presence of Coulomb forces, however weak, not only produces at least one additional
singularity, but also changes the nature of one singularity qualitatively.

HE vibrational spectra of infinite one-dimensional
crystals have been studied for many years.!? Re-
sults cannot be applied to real crystals directly, but are
often obtained in closed form by mathematically simple
methods. Certain conclusions can thus be drawn in a
particularly clear-cut way and extended to real crystals
later. On the other hand, direct calculations in more
than one dimensions of models with long-range (Cou-
lomb) forces have had to rely mostly on numerical
methods.? More recently it has been shown that the
frequency distribution of any crystal will exhibit certain
singularities?; and since these singularities constitute the
most striking feature of the distributions, attention has
been drawn to the problem of locating them and study-
ing their nature. The purpose of this note is therefore to
investigate the singularities in the frequency distribu-
tion of the one-dimensional lattice with Coulomb forces.
It turns out that when all atomic masses are equal, the
presence of Coulomb forces produces a new singularity
regardless of how slight the Coulomb forces may be
compared to the short-range forces, and that the nature
of one of the singularities is changed qualitatively,
differing from the usual inverse-square-root behavior.
When atoms of opposite charge have different mass (as
in case of all real ionic crystals) the allowed frequencies
separate into two bands and additional singularities
appear, as is usual ; but again the behavior of only one of
them differs from the usual inverse-square-root one.
Consider, then, an infinite chain of atoms a distance ¢
apart. Let atoms ¢ and 4’ interact by the usual Coulomb
force (—)##¥e*/r;;? and in addition let nearest neighbors
interact with Hooke’s law force constant «. At first, for
simplicity, let all atoms have the same mass m. Then
Newton’s equation of motion for the displacement #; of
the 7th atom,

M= Fishort+F iCoulomb

can be solved by expanding FC°u°mb in terms of the u;
and making the usual normal mode transformation

w;="U exp[i(wi+irp)].
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We find
A(D)=No(p)—aS(p), (1

where we have defined A=mw?/2a, o=2¢%/aa’, and
where

No(p)=1—cosp )

is the well-known expression for the squared frequency
of a one-dimensional metal and

S(p)= E (=) ¥-3Lcos(krp)—1]. 3)

S(p) is best studied with the use of two series,® of
which at least one converges rapidly for any value of p
of physical interest (0<p<1):

S(p)= 2 conp®™? for 0<p<1,

n=0
4
or
S(p)=2&+T(g) for 0£¢<2,
with .
T(Q) = Z ’anq2"+2,
n=0
where
g=1—p, con=—762./n(2n+1)(2n+2),
and
Yen= 62n/(22n_ 1),
for
n21, co=3n*In2, yo=3r(Inmrqg—3%),
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Fi1c. 1. The functions Ao and S as defined by (2) and (3).
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F16. 2. Critical points of A(p) as a function of ¢.

and the

=3 (k1)

k=0

are known constants.® Both S(p) and Ao(p) are shown in
Fig. 1, and A (p) as given by (1) can be constructed from
them for any 0<o<#371=0.9508 [for larger o, A(1)
becomes negative which implies that the lattice is
unstable].

In the metallic case 0=0, A(p) is known to have only
two critical points, a minimum at p=0 and a maximum
at p=1. In the ionic case, the interesting modification
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F16. 3. Frequency distribution, =% (ordinate scale arbitrary).
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results from the second term, —const ¢*Ing, in the
expansion of A(p) about A(1). In the first place, it differs
from the usual const ¢?; also, since it is positive the point
p=1 is a minimum rather than a maximum; and an
ordinary maximum, Am.x Will appear elsewhere (at a
point we shall call pn.x) between p=0 and p=1. In
addition, there is always the usual minimum at p=0.
The values of the two critical points Amax and A(1) as a
function of o are shown in Fig. 2.

The function of interest in physical problems is the
frequency distribution g(A), which in one dimension is
equal to dp/d\, and in particular its singularities.*’
Their position and nature, for all positive o, however
small, can be deduced from the critical points of A(p):
there are three of them, at A=0, Amx and A(1)
=2(1—cé&;). The first two are the usual one-sided
infinite peaks of inverse-square-root nature, but the one
at A(1) may be expected to differ from this behavior,
though only slightly (in some sense), since ¢? Ing differs
only “slightly” from ¢?. This statement can be made
precise by proving the following theorem:

275NN T A+ oA A1) ]
<g(\) <2-[A—A(1) T

holds for all A—A(1) <8(e), where 6= (72/2)(p*)* and
p*(e) is the solution of p exp(p~¢/0+9)=1. Figure 3
shows g() for o=4%, a value which is physically reason-
able (e.g., 0.550¢%0.8 for alkali halides of the sodium
chloride structure). A(1)—Amax as ¢—0 and when o=0
(metallic case) they coalesce, leaving only the two well-
known inverse-square-root singularities.

If we assume different masses, m; and ms>m,, for
adjacent atoms, and write A= (mam1)}w?/ 20, r2=ms/m,
then two values of A are possible for every 0<p<1 and
two additional singularities of the usual one-sided
inverse-square-root type appear in the frequency distri-
bution, at Ay (1/2)=r%(1—3¢&;). The allowed fre-
quencies appear in two bands, separated by a gap
bounded by these two new singularities. There is only
one singularity whose behavior differs from the usual
one in the described way; this one appears at A (0)
=M (D)= (r+r")(1—0&).

It has been known for sometime that introduction of
new forces into the crystal models often increases the
complexity of and in particular the number of singu-
larities in the frequency distribution,® and the appear-
ance of more singularities on account of Coulomb forces
should therefore occassion no surprise. What is of
interest however are the following two facts: first, a new
singularity occurs however small the Coulomb forces
may be; second, the new singularity that occurs is of a
qualitatively different kind from the usual inverse-
square-root singularity. Since the nature of the singu-
larities themselves differ with dimensionality, precise
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conclusions directly applicable to phenomena in three-
dimensional crystals’ cannot be drawn at this time. It
does not seem possible to extend these calculations to
two or three dimensions by the use of the present, or
similarly simple, methods: we have been unable to
generalize the simple representation (4) of the lattice
sum (3) to higher dimensions. Representations, ob-
tained by the use of theta functions, do exist® and pro-

¢ M. Born and M. Bradburn, Proc. Cambridge Phil. Soc. 39, 104
(1942).

vide a good starting point for numerical work ; but they
do not provide one with a comparably simple expansion
of the dispersion relation about the critical points which
are required for an investigation of the resulting singu-
larities. Although one may conclude from these repre-
sentations that the behavior of the dispersion relation
will differ from the usual quadratic one, we have been
unable to determine the precise effect on the frequency
distribution from them. A detailed investigation of these
“unusual” singularities in three dimensions would be of
considerable significance.
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An earlier investigation of the thermoelectric power of dilute (a-phase) indium-lead alloys, measured
relative to pure indium, indicated that there is detailed structure superimposed on the smooth trend of the
data. This investigation is now extended to include some twenty-two indium-lead alloys as well as thirteen
indium-thallium alloys. For the indium-lead alloys, the existence of structure at both 273°K and 77°K is
reaffirmed. On the other hand, the thermoelectric power of the indium-thallium system is found to be an
extremely smooth function of the composition in the same range of solute concentration. As a consequence,
it is concluded that the observed structure in indium-lead is due exclusively to changes in electronic con-
centration brought about by alloying.

An estimate of the pure electronic concentration contribution to the thermoelectric power is obtained
by subtracting the indium-thallium data from the corresponding indium-lead data. The results of this
procedure are demonstrated to be in qualitative agreement with the predictions of a band-model theory
which is developed for this comparison. It is therefore suggested that the observed structure can be attributed
to the extinction of bands of electron holes and the initiation of bands of overlap electrons. Furthermore,
as the result of comparing the thermoelectric data with lattice spacing information, definite suggestions are
made concerning the band configuration of pure indium and the evolution of said configuration with alloying.
Finally, a very qualitative explanation is offered for the novel face-centered tetragonal (c/a>1) to face-

centered tetragonal (¢/a<1) phase transformation which occurs at the a-phase solubility limit.

I. INTRODUCTION

N general, the addition of a solute impurity differing

in ‘valence from the solvent metal produces three
important changes relative to conditions existing in the
pure solvent : the concentration of nonlocalized electrons
changes, thereby changing the Fermi-level; the coupling
of such electrons to the lattice changes because of
increased impurity scattering, thereby changing the
electronic relaxation times; and the strains introduced
by the addition of foreign ion-cores cause a relaxation
of the Fermi-surface. (This last effect will be assumed
quite small by comparison and consequently ignored.
In the future, the remaining two effects will be referred
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to as the electronic concentration effect and the lattice
effect, respectively.) '

Recent work on the composition dependence of the
thermoelectric power of dilute magnesium alloys, as
measured relative to pure magnesium, indicates that
the lattice and electronic concentration effects may be
separated by considering the two contributions to be
algebraically additive.! Thus, for example, the electronic
concentration contribution for a magnesium-indium
alloy of a given atomic percent composition is obtained
by subtracting the observed thermoelectric power of
a  magnesium-cadmium alloy of identical atomic
composition from the observed value for the magnesium-
indium alloy. According to this scheme, the thermo-
electric power of the magnesium-cadmium alloy
system represents, to some degree of approximation,
the lattice contribution associated with the solutes of
the fifth period of the periodic table.
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