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Using simplified models, calculations are made for the contribution of mobile dislocations and small-angle
boundaries to the specific heat and thermal resistivity of crystals. The specific heat is found to be propor-
tional to T and T, and the lattice resistivity approximately to T " (where n lies between 3 and —, for the
usual range of measurements) and T for mobile dislocations and mobile small-angle boundaries, respec-
tively, over a range of low temperatures, but eventually both go to zero in the limit as the temperature
approaches zero. The magnitudes of the effects are such that although the contribution of dislocations to
the specific heat of some pure cold-worked nonconductors and superconductors may be measurable, that
from small-angle boundaries is not. The e6ect of dislocations on the thermal resistivity is large and should
compete with boundary scattering for temperatures of the order of 10 ' of the Debye temperature, with
dislocation densities of the order of 10' cm in specimens of a few millimeters in diameter. The predicted
temperature dependence is in agreement with recent measurements on superconducting lead at low tem-
peratures. At present a contribution from mobile boundaries to the thermal resistivity is not excluded as a
possibility.

points or the stress Qelds of other nearby dislocations.
Anticipating that the largest eGects occur when the
dislocation densities are large, one would like to know
the exact arrangement and distribution of obstacles
for motion of the dislocation in the cold-worked state.
There is little detailed information of this sort available,
but one may expect that models in which dislocations
are in networks, pileups, and small-angle boundaries
would be appropriate. Dislocations which form elements
of networks for which the average distance between
dislocation segments is not small compared to the
lengths of the segments may be treated as isolated
dislocations pinned at the network points. (See Ap-
pendix I.) Dislocations in pileups have complicated
modes of vibration when the interaction between the
various dislocations are taken into account and will
not be considered here. It is likely that such pileups do
not have great mobility. Most small-angle boundaries
are sessile. Simple tilt boundaries, however, which
are mobile will be considered. In what follows, there-
fore, the models used will be isolated, pinned dis-
locations for one-dimensional defects and glissile tilt
boundaries .for two-dimensional defects. Sessile dis-
locations and small-angle boundaries will not concern
us.

I. INTRODUCTION

HE inQuence of defects on thermal properties of
crystalline materials has been receiving increasing

attention. The speci6c heat can be aGected by imper-
fections through their eGect on the distribution of
frequencies and modes of vibration of the lattice. The
eGect of point defects has been examined by Montroll
and Potts. ' Extended defects which are mobile even
under the inQuence of small thermal stresses give rise
to low vibration frequencies and may therefore be
eGective at low temperatures. One- and two-dimensional

defects of this type will be considered here. The sensi-

tivity of thermal conductivity to imperfections is well

known. At low temperatures, the lattice conductivity
of nonconductors and superconductors is primarily
limited by the scattering of phonons at defects. A
detailed discussion of the influence of many diGerent

types of static defects has been published by Klemens.
Available measurements show that there are com-

ponents of resistivity which cannot as yet be accounted
for on the basis of the so far known mechanisms. It is
therefore appropriate to consider additional mechan-

isms. Klemens has computed the thermal resistivity
arising from static dislocations and small-angle bounda-

ries. We shall attempt here to determine the tempera-
ture dependence and order of magnitude of the thermal

resistivity oGered by mobile dislocations and small-

angle boundaries.
Dislocations which do not lie along crystallographic

directions where they are restricted by the Peierls"

stress and which are not completely pinned down by
point defects are free to move under the inQuence of

thermal shear stresses. Their mode of motion still

depends, however, on restrictions such as network

II. SPECIFIC HEAT

A. Pinned Dislocations

Consider a dislocation line segment of length I in an
isotropic material as in Fig. 1, which is free to oscillate
as a vibrating string in its slip plane. The equation of
motion of this dislocation is given by

E d'$ d'$—E- =0
C' dP dx'' E. W. Montroll and R. S. Potts, Phys. Rev. 100, 525 (1955).

See also Magnuson, Palmer, and Koehler, Phys. Rev. 109, 1990
(1958),who And that a radiation of 2.5X10"deute onsper sq~~~~ where the boundary cond t o $(o,f) =$(L, ) =0,centimeter produces a decrease of 16'K in the Debye |)t of copper.

' p. G. Klemens, proc. Phys. Soc. (London) A68, 1113 (1955). and where $ is the displacement of the dislocation. g is
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U=
~ exp (h&p„/z T)—1

(3)

where the sum is over all the normal modes of the
vibrating dislocation; K is Boltzmann's constant. .

If we approximate the sum by an integral in the
usual way, Eq. (3) becomes

f I&;~ kM dk
U=

l &p(k)—d&p,
& ao exp(h&p/KT) —1 d&p

(4)

the dislocation line energy, C'=G/p, s E/C' is the
effective mass per unit length of the dislocation, p is
the density, and 6 is the shear modulus. The resonant
frequency of the dislocation is given by

&op= prC/L.

The number of modes of oscillation of the dislocation
is given by L/a, where a is the lattice spacing along the
dislocation line. Although the vibrations of this oscil-
lating system are transverse, the problem is mathe-
matically equivalent to that of the determination of the
internal energy of a one-dimensional crystal. The
internal energy U of such a system is well known4 to be

The contribution of the loop I to the specific heat is
therefore

x 1.K'T
C =

3C (9)

pn' L T
Cg = — —K—.

3 u 8
(12)

Finally, to obtain the specific heat per mole (C„), we
multiply (12) by the number of loop segments L per
unit volume (A/L), by the volume per atom (a'/Z),
and by the number of atoms per mole (X), where A is
the dislocation density and Z is the number of atoms
per unit cell. Then (12) becomes

This can be put in terms of the Debye 8 once the relation
between C and vo, the velocity of sound in the perfect
lattice, is determined. 8 is defined by

K8= hv,
and therefore

8= v pprh/Ka= pCrrh/Ka,

where p=vs/C, and v is the limiting frequency in the
perfect lattice. Upon using (11),Eq. (9) becomes

where oo(k)dk is the number of modes between k and
k+dk. For a one-dimensional line, the density of modes
is given by

fir' Aa' T
C,= --- gK—.

3 Z 8
(13)

L I.
"

h&od&p

prC "o exp(h&p/KT) —1
(6)

Now, upon letting pp= hpp/x T, Eq. (6) may be expressed
as

L (KT)' &" xdx
U=

~C A ~0 e*—1

or, since the integral has the value m'/6,

x I. K'T'
U= ——-

6C A
(8)

x0 L

FIG. 1. Dislocation line of lengthI bowed out by an applied stress,
but fixed at its end points.

'This equation holds for a screw dislocation. For an edge
dislocation, C will have a slightly different value. /See A. Seeger,
Bandbuch de Physik (Springer-Verlag, Berlin, 1955), Vol. VII,

4 See, for example, C. Kittel, Introduction to Solid State Physics
(John Wiley and Sons, Inc. , New York, 1953), p. 72, or M.
Blackman, Proc. Roy. Soc. (London) A148, 365 (1935).

&d(k) =L/pr

We are interested in the temperature dependence of
(4) for low temperatures. For these long wavelengths
we may take dk/d&d = 1/C, and (4) becomes

The magnitude of this contribution to the specific
heat will be discussed in a later section. For the present,
we simply note that Eq. (13) predicts a specific heat
which is proportional to the dislocation density and
the temperature at low temperatures. Equation (13),
however, is not valid in the limit as T ~0, since for
very low temperatures (KT((h&po) even the lowest mode
(&op) is Ilot. fully excited. Fol' tllis case oilly tlie 6rst
term of the sum (3) need be used and one obtains

(h& oy'
C„=——EK~ [ exp( —h&pp/KT),

I. Z &zTj. (14)

so that the specific heat goes to zero exponentially at
very low temperatures.

For temperatures such that Aero=ET, the approxi-
mation of replacing the summation by an integration
should not be accurate. To determine the error intro-
duced, we evaluate this case separately. The value
obtained by direct summation of Eq. (3) is

C &*'=2.88XKAa'/LZ,

so that the ratio of the specific heat as computed by
summation of Eq. (3) to that determined approxi-
mately by integration, C&8) is

C&~'/C& & =0.88.

We therefore see that no great error is introduced by
using Eq. (13) for temperatures KT&~hoop.
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Fxo. 2. Small-angle boundary
consisting of parallel edge dislo-
cations spaced a distance h apart.
Under a stress, the individual dis-
locations boer out, but are re-
stricted at the edges of the
boundary.

The temperature defined by ET=keep depends on
the length of the dislocation segment, according to
Eq. (2). Taking an average value of C to be 10'
cm/sec for most metals, one finds

or
KT =ArrC/L Arr10'/L,

LT~2.4X10 '.

Thus for loop lengths I. of 2.4X10 ', 2.4X10 ', and
2.4X10 4 cm, Eq. (13) should be valid for temperatures
greater than 1.0'K, 0.1'K, and 0.01'K, respectively
(but only for temperatures which are also much
smaller than the Debye B).

[
=0.

C'h Bt' (gg' r)y')
(16)

Thus the natural frequency of the system is given by

mC (Ahy -'*

LEZ&' (17)

which is of the same order of magnitude as that for the
dislocation segment.

Proceeding now in the same way as before, but using
a two-dimensional distribution of modes co(k)=k/2s. ,
and the resonant frequency (17), one obtains

(kT)'
I

*" x'ch
U=

2/Ps-p 2 J

B. Simple Tilt Subgrain Boundari'es

As a model here, we consider a simple tilt boundary
composed of edge dislocations arrayed as in Fig. 2,
separated by a distance k and supposed to be clamped
down at the ends. The tilt angle of the boundary is
given by

B=b/h

Under the action of a shear stress o-, the boundary will
bow out, but be constrained at the ends. The dis-
locations will not be able to bow out independently
but will be coupled through their mutual stress fields.
In general, the tension in the two coordinate directions
will be di6erent although of the same order of mag-
nitude. For the purposes of the following estimate, this
difference will be ignored and the tension will be taken
to be the grain boundary energy per unit area (A). The
equation of motion of the dislocation is then

or U'= s KT'I 2/2a'B' per unit area of boundary per unit
volume, where

or

l2=
xdx

p 8 —1

E=,pi ei,

cilia,

. (19)

Since we shall be interested in the results for low tem-
peratures, we can take v~ to be a constant, vp. The
contribution to the specific heat from the mode with
wave vector k is found by differentiation of the kth
term of Eq. (3) with respect to T to be

c(co) =
(ez 1)2

(20)

where @=Aors/KT. The distribution of modes to be used
is that for the lattice phonons, or

co (k) =3k'/2s'= 3oP/2s'oo'. (21)
We then need only find the mean free path /I, for the
two cases of incident thermal phonons on isolated
dislocations and on small-angle boundaries.

A. Dislocation Line Segment

The scattering cross section 0 for a thermal wave
incident normally on a screw dislocation has already
been computed by Nabarro' for a diGerent purpose.
Nabarro gives

o =2''C/{roLln(4/kb) —1.077]'} (22)

as the scattering width per unit length of dislocation.
Multiplying (22) by the dislocation density A, we
obtain the attenuation n of the incident sound wave.
The mean free path 1 is the reciprocal of n and is
therefore given by

l(ro) =o)Lln(4/kb) —1 077]'/2m'Ch (23)

Now using (23), (21), and (20) in (19) and replacing
the summation by integration, we find

r o p"" zx'e' fin(4/kb) —1.077]'KT$x=—
i

3 J a (e*—1)' 2s'CAA

3(IT)2g2 KT
X de. (24)

2HVp A Vph.

' F. R. N. Nabarro, Proc. Roy. Soc. (London) A209, 279 (1951).

(3m ) (T ) ' uS
C„=r,

~

—~zK~ —
[
—,

E2] &B) Z

where S is the total area of simple tilt boundary found
in unit volume of the specimen. The two-dimensional
aspect of the vibration is reflected in the T' temperature
dependence.

III. THERMAL CONDUCTIVITY

We start with the expression for the thermal con-
ductivity in the form



THERMAL PROPERTIES OF MOBILE DEFECTS

For the purpose of the integration, we regard the are zero, and for small-angle boundaries we have
logarithmic factor as an average value and find

where

k[ln(4/kb) —1.077)s pps (KT) '
I
~ (*),

4rr4 Ch. ( tttop)

We can now find plane-wave solutions for the ir-
radiated wave with the required properties for- small
and large s. For example, the solution

v =8d exp[i(ks —tot) j, (29)

To express the results in terms of the Debye 8, we use
the relation'

(25)

satisfies the wave equation and reduces to the proper
stress field e =8de '"' for k«s«X/2s. . The rate at which
energy is irradiated by this oscillating surface per unit
area is given by o,„(Bo/Bt). Since o.„=Ge,„=G(Be/Bs),
we have

in terms of which E may be written as W =Gds8sros/C, (30)

where

3 epK T4
E= cVK[ln(4/kb) —1 077j'J

2m' CA sea

as the energy irradiated away per unit area of boundary
per cycle. We determine d in terms of the applied
thermal stress 0-p from the differential equation for the
motion of the boundary:

Tables of the values of J (x) have been tabulated
by Sondheimer. ' J5, as T ~0, is given by 124.3. We
note that the conductivity is a very strong function of
the temperature and inversely proportional to the
dislocation density. The magnitude given. by Eq. (26)
will be discussed in a later section.

o/2= t tan(8/2). (27)

The displacements I and to (in the x and s directions)

B. Simple Tilt Boundary

To find the mean free path, we first determine the
energy irradiated by the boundary when it oscillates
with amplitude d. Consider the tilt boundary of Fig. 3.
The stress field surrounding a simple edge boundary is
very complicated in the immediate vicinity of the
boundary, but goes to zero quickly at points distant
from the boundary larger than the spacing h of the
dislocations in the boundary because the stress fields
of the individual dislocations tend to cancel at large
distances. ' The strain field is therefore very simple for
distances s)k. If the boundary moves a distance $,
then the displacement at points s) h will be given by

E B'$ bop
exp[is)tg,

C'h BP h
(31)

where it has been assumed that the motion is mass-
limited. From (31), we find that

d = o pbCs/Ero'. (32)

6= 128s C'S/[ln(h/b) ]'k'0'pp' (34)

where S is the boundary area per unit volume of
specimen. The mean free path is then

t(pp) =k'to'[ln(k/8) $'/64C'S. (35)

Now, using (35), (21), and (20) in (19), we obtain in
the same manner as for the previous calculation

The attenuation o, is conveniently found in terms of
the decrement ~ by means of the relation

(33)

The decrement is a measure of the damping of a sound
wave commonly used in internal friction studies and is
given by the ratio of the energy lost per cycle by ir-
radiation to twice the maximum stored energy in the
lattice by the sound wave. Taking E=Gb' ln(h/$)/
[&(1—v)] as the line energy of the dislocation and an
average value of v= —', for Poisson's ratio, we find

FIG. 3. Schematic figure
showing the displacement o
when a small-angle boundary
(solid line) of angle e is dis-
placed a distance g.

3 h'J ep K.'T'
E=—Ek[ln (k/b) g'

64 S C'O' 0'

wllelc J6= 73j..2.

IV. DISCUSSION

(36)

s E. H. Sondlreimer, Proc. Roy. Soc. (London) A203, 75 (1950).
7A. H. Cottrell, Dislocations and Plastic Iilom in Crystals

(Oxford University Press, Oxford, 1953), p. 93.

We consider first the contribution to the specific heat
given by dislocations in detail for a specific case. There
seems to be reliable evidence that dislocation densities
of the order of 10" cm ' are achieved in the case of
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cold-worked aluminum. ' We therefore take 4=10"
cm ', 1.=1.7X10 e cm (roughly estimated from the
relation, AI.'= 3, for a cubic array), 8=398'I,
G=2.5X10" dynes/cm' p=2.69 g/cm', b=2.86X10 '
cm, a=4.04X10 ' cm, and Z=4, from which we find
that p=2.21, using ee ——eke/W. Then from Eq. (13)
we find that the dislocation contribution to the specific
heat is

CD= 29.7X10 'Nz(T/8),

whereas the lattice contribution is

CL 233.8——Nz (T/8)'.

The two should have the same size, therefore, at
T=0.142'K.

The product LT is close to the critical value of
I.T= 2.4X10 ' so that Eq (13.) will give a value slightly
too high. For aluminum in its normal state, both of
these contributions will be overshadowed by the
electronic specihc heat. However, in the supercon-
ducting state, the electronic specific heat becomes small
at these temperatures. Using the data of Goodman' for
aluminum, the electronic specific heat, C,~, is given by

C,~= AT, exp[—bT,/T),

where y=3.34X10 'cal/mole deg', b=6.9, b=1.28, and
T,=1.18'K; so one finds that

C,~ (0.142'K) = 7.45 X 10 ' cal/mole deg,

CL,=2.17X10 a cal/mole deg,

Cg) =Cl„.

Therefore nearly 20% of the measured specific heat at
this temperature could be due to the dislocations. For
slightly lower temperatures (or higher dislocation
densities) the dislocation contribution could be a larger
fraction of the total, but at very low temperature CD
also goes to zero exponentially according to Eq. (14).

It is therefore concluded that dislocations can have
a measurable effect on the specific heat of some pure
deformed superconductors. In general, however, the
effect appears to be a small one and is probably not
detectable in most materials with present techniques.

For a dielectric material the electronic component
would be absent, but it may be more di%cult to achieve
the same dislocation densities that are obtained in
metals. The effect would appear at lower temperatures
for lower dislocation densities. The writer is not aware
of any measurements which could be examined for this
effect.

For the magnitude of the contribution of the mobile
small-angle boundaries to the specift. c heat, we note that

8P. B. Hirsch, Progress ie Metur, Physics (Pergamon Press,
I td. , New York, 1956), p. 236.' B. B. Goodman, Conference de Physiqle de Busses Temperu-
tlres I'ares, 1955 (Centre National de la Recherche Scientificine
and UNESCO, Paris, 1.956), Supplement to the Bulletin de
l'Institut j:nternational du Froid, 1955, p. 506.

Eq. (18) yields, for a rough order of magnitude,

while
Cs-107SN-z(T/e),

C 2X10'Nz(T/8)'.

K= 5.78'F (T//8)/a'CA,

oH B G. Casimir, Physica 5, 495 (1938).

Therefore, the two contributions would have the same
order of magnitude when

T/8 5X10 "5.
Taking a typical Debye 0 value of 6=300'K, we have
T=0.15X10 'S. Thus, in order for the specific heat
contribution from the boundaries to be appreciable even
at 0.1'K, we would require a surface area of boundary
of ~10' cm' per cubic centimeter of specimen. This is
exceedingly large and could be achieved only if mosaic
blocks with average dimension of 10 ' cm permeated
the crystal and if the boundaries of these blocks con-
sisted entirely of simple mobile small-angle boundaries.
Even if this were so, the dimension of 10 ' cm implies
that the natural frequency of the system would be
much higher than the average phonon frequency at this
temperature, so that Eq. (18) would not apply and the
exponential form of this equation would have to be
used. We conclude, therefore, that although dislocation
line segments can contribute to the specific heat at low
temperatures, mobile low-angle boundaries cannot.

In discussing the thermal conductivity due to dis-
locations, it is of interest to consider the order of
magnitude of the mean free path given by Eq. (23).
Using Sar =3zT and ee ——aze/mA, we 6nd that the factor.
ln(4/kb) —1.077, may be written approximately as
ln(8/5T). Then Eq. (23) may be expressed as

i=3pDn(e/5T) yT/(82~ah),

where p=vp/C. Using typical values of p=2.5 and
a=4.0)&10 cm for metals, we find that for T=IO '8,

1~2./X 10e/~,

so that for a dislocation density of 2.7&(10' cm ' the
mean free path should be about one millimeter in a
typical metal. At low temperatures the thermal con-
ductivity of nonconductors and superconductors is
usually limited by boundary scattering. This process
has been considered by Casimir, ' who showed that the
conductivity should be proportional to dT', where d is
the diameter of the specimen. From our expression it is
clear that even moderate dislocation densities ( 10'
cm ') should compete with boundary scattering at low
temperatures for specimens of the usual diameters (say,
several millimeters).

We now express Eq. (26) for the conductivity in a
somewhat more useful form. Multiplying (26) by
(Z/Na') X10 ' to obtain units of watt/sec-cm-deg, and
introducing 8 through tte ——ake/vrA, we obtain
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where
F(T/e) = (T/e) Dog(e/5T)] .

The eGect of the slowly varying logarithmic term is to
decrease the temperature dependence somewhat. In-
spection of a log-log plot of F shows that it can be
represented to within 10% by

F=F =9.0X10 'PT/(BX10 ')]",
for the range 0.005 &T/0&0.02, or by

F F, 9 4X10-sLT/(eX10-s)]v

for the range 0.002 &T/e &0.008. Upon using Fs, our
expression for the conductivity becomes (in watt units)

@=5.4[T/e]7&see/a CA

Using the values, 0=398 K and 88'K., a=4.04X10 '
and 4.94X10 cm, C=3.05X10' and 0./15X10'cm/
sec, for aluminum and lead, respectively, one obtains
K=1.7 X1 0/ A and 0.24X10'/A, respectively, when
T=10 '8. Thus the order of magnitude of the dis-
location resistivity is unity (in watt units) for dis-
location densities of ~10 cm ' at one percent of the
Debye 8. This result is in contrast to that found by
Klemens' for the thermal conductivity resulting when
phonons are scattered by static dislocations. In that
case a T' law is found and dislocation densities of the
order of 10" cm ' are required for observable effects.

Although it is often reported that there seems to be
more thermal resistivity in some specimens than can
be accounted for by boundary scattering, there seems
to be little systematic work along this line at the present
date. One experiment, however, reported by Mendels-
sohn and Montgomery" provides us with some evidence
for dislocation resistivity of the foregoing type. Lead
specimens were deformed and the conductivity was
measured before and after, in both the normal and
superconducting states between 1 and O'K. The normal
conductivity, which is believed to be mostly by elec-
trons, was unaffected, but the conductivity in the
superconducting state was reduced from 0.2 to 0.033
watt units as a result of the deformation. Furthermore,
the temperature dependence of the conductivity was
increased as a result of the deformation. Since the
conductivity in the superconducting state is believed
to be primarily by phonons, it is reasonable to suppose
that the increased resistivity is a result of the increased
density of dislocations. According to the expressions
written above, a dislocation density of about 7&10'
cm ' would be required to account for the added
resistivity at 1'K. The measured temperature de-
pendence, however, is only T". It is likely that the
measured resistivity in this range contains components
from other sources since the measurements are near a
maximum, and measurements over a wider and lower
temperature range should be more informative. In

"K. Mendelssohn and H. Montgomery, Phil. Mag. 1, 718
(1956).

measurements on superconducting lead below 1'K by
Felix, Passell, and Silsbee, "a conductivity of AT3 7+0 2

was found, where the values of A for three specimens
lie between 0.1. and 0.2 for the range from T=0.15'K
to 0.8'K. This is in good agreement with the tempera-
ture dependence predicted here for this temperature
range. It should be pointed out that there are no other
known mechanisms which predict such a large tem-
perature dependence and the magnitude of the dis-
location density required (~2X10s cm ') appears to
be reasonable.

We shall limit our discussion of the contribution of
mobile small-angle boundaries to a discussion of the
magnitude of the mean free path, as there seems to be
no experimental evidence of such a large temperature
dependence at present. From Eq. (35), making the
same substitutions as before, and using p=2.5 and
h= 3X 10 'cm for the dislocation spacing (corre-
sponding to a boundary of 0.6 degree), we And

l-g. 7 X 104(T/e)'Dn(h/b)]'/5,

where 5 is the small-angle boundary area per unit
volumeof crystal. Then, at T/e=10 ', one has i=200/5.
Thus to achieve a mean free path of the order of two
millimeters, one would need 5 10' cm'/cm'. If the
entire crystal were broken into mosaic blocks of linear
dimension I, arid if the fraction of boundaries that are
mobile is called f, then 5 would be given by 6f/L. For
f= &% and L~10 scm, the above conditions can be
met so that we cannot exclude this possibility.

There are a number of assumptions and simplifi-
cations in the estimates made here which require
comment. For example, it has been assumed that the
modes of vibration of the lattice-could be split into
those associated with dislocations and those connected
with running waves in the lattice. Since there are only
3Xnormal modes, those connected with the dislocations
must be subtracted from the total number. The total
number connected with dislocations is given by EAa'/Z,
which is, under ordinary circumstances, negligible
compared with 3Ã. Some evidence that this dis-
sociation of the modes may be valid is given by the
fact that deformation does not seem to affect the
Debye 0 as measured in the usual manner. "

The loop lengths I have been assumed to be constant,
and an improved model would consider a distribution
of loop lengths and also the effect of mild amounts of
pinning. The materials have been assumed to be
isotropic, whereas it is known that such quantities as
the dislocation energies depend on the degree of ani-
sotropy of the crystal. For the case of the contribution
of mobile tilt boundaries to the specihc heat, it seems
to be not worthwhile to improve the model by con-
sidering the tension forces in detail since they cannot
make a measurable contribution.

'~ Felix, Passell, and Silsbee, Phys. Rev. 100, 1808(A) (1955).
's J.A. Rayne, Phys. Rev. 107, 669 (1957).See also S. Nishiolm

Mem. Coll. Sci., Univ. Kyoto A27, 35 (1953).
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The contribution of dislocation segments to the
thermal conductivity, however, seems to be large
enough to provide a serious difficulty to workers who
would like to avoid it. It is remarkable to find the
result of this simplified calculation to be in such good
agreement with the data so far available. The result
holds strictly only for a phonon incident normally on a
screw dislocation. If edge dislocations are more effective
than screw dislocations in scattering the phonons, then
A in Eq. (31) will have to be replaced by a factor
(A,+gA, ), where A. is the edge dislocation density and

g is the ratio of the effectiveness of the edge to the
screw components. The scattering by dislocations is
directional, and this as well as the distinction between
longitudinal and shear thermal waves should be taken
into consideration in a more accurate treatment. Also,
for an oblique angle of incidence, the dislocations will
be berit and tension forces should be taken into account.
The expressions derived here for the mean free paths
should only hold at frequencies much higher than the
resonant frequencies. For frequencies much smaller
than the resonant frequencies, the mean free path
should increase again, so that as T —+ 0, the dislocation
resistivity should eventually go to zero, and the thermal
conductivity should finally be limited only by the
boundary scattering. It may be possible to measure the
resonant frequencies of dislocations by this approach.

V. CONCLUSIONS

Simple models have been used to estimate the con-
tributions of mobile dislocation segments and mobile
low-angle boundaries to the specific heat and thermal
lattice resistivity. Dislocations and boundaries have T
and T' specific-heat temperature dependence and
approximately T" and T' thermal-conductivity tem-
perature dependences, where e lies between 3.3 and ~7

for the usual range of measurements. Dislocations may
be able to make contributions to the specific heat of
super conductors and nonconductors at very low
temperatures. Low-angles boundaries cannot. Dis-
locations can make relatively large contributions to the
thermal resistivity of nonconductors and superconduc-
tors at low temperatures. It seems to be possible to
interpret the available data with reasonable dislocation
densities. It is at present uncertain whether or not
mobile low-angle boundaries can be available in
sufhcient quantities in crystals to inRuence the meas-
ured thermal conductivity.
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APPENDIX I

We wish to demonstrate that two parallel edge dis-
locations of length L, which are separated by a distance
I, have displacements which are approximately inde-
pendent of small displacements of either. Consider the
displacement y of a pinned dislocation when acted upon
by a shear stress 0-. One has

bo = Td'y/dx',

where T is the tension of the dislocation line. Solving
this with the boundary conditions y(0) =y(L,) =0 gives

y= (bo/2T)x(L x). —

The interaction stress, 0-,, between two parallel edge
dislocations is given by'

Gb' 1

2m(1 —v) R

where R is the distance between them, and u is Poisson's
ratio. R is given by L+y 2 y&, where y& a—nd y2 are the
displacements of the first and second dislocations,
respectively. We shall assume that y&/L and y2/L are
small, and can take R to be L+g2 g~, where g2 is—the
average displacement of the second dislocation. Also,
taking the approximate values, T=-',Gb' and v= —'„we
obtain

bo;= T/[2(L+g2 —gg) j,

1 p~ boL'
g=— y(x)dx=

j.2T

Consider the dislocation numbered (2). Because of the
interaction force, it will bow out until the interaction
force is just balanced by the tension force. The total
interaction force is given by br;I. and the tensile
restoring force by T(d'y/dx')L. For equilibrium the
net force on dislocation (2) must be zero, and we have

TL/[2 (L+g2 —gg) j—12Tg2/L= 0,

or

y2 ——(L/24) [1—(g2 —g~)/L+ terms of order(g/L)'j.

Therefore, to a first approximation, the average dis-
placement y2 is unaGected by variations in y~.


