GROUND-STATE ENERGY

Thus, although the two coefficients in (59) differ by
a factor of 100, we have established the asymptotic
dependence of (ax*+ax) on k (aside, of course, from an
oscillating factor which undoubtedly is not present),
and shown it to be quite different from (49). It is
interesting to note that (59) agrees with the asymptotic
dependence of (ax*4-ax) in H; of Sec. 2 and hence tends
to increase our confidence in the result for #* found in
Sec. 3.

The same procedure can be used to calculate {(@x*ax)
although the algebra is a trifle more involved. It is
found that the asymptotic dependence of {(ax*ax) is the
square of (59) aside from a numerical factor of order
unity, a result which is anticipated by the adiabatic
hypothesis.

Thus, by numerical methods one can obtain upper
and lower bounds for (ay*ax) for all @ and all k, the two
bounds being farthest apart for large « and large k. In
field theory a quantity such as {(ax*ax) is, aside from
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an additional time dependence which can be deduced
from relativistic considerations, a propagator of im-
mediate physical interest. Unfortunately, in field theory
one must face the two problems of renormalization and
the fact that a ground state does not strictly speaking
exist, both of which would make a lower bound a
somewhat unrigorous mathematical concept. Still, the
nonlinear elements in the usual field-theory Hamil-
tonian are positive definite so that the method of Sec.
2 may have some validity.
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The approximation of tight binding is employed to determine the width and the depth of the oxygen
band in MgO. A width of about 9 ev and a depth of about 7.6 ev are obtained. The agreement between theory

and experiment seems to be fairly good.

INTRODUCTION

XISTENCE of the oxygen double negative ion in
oxide crystals is usually postulated and widely ac-
cepted as a useful assumption, although the free O— ion
is not known experimentally.! Strictly speaking, it is
more or less meaningless to speak about the existence
of a particular ion within a crystal, since it is impossible
to assign the electronic charge cloud to nuclei in an
unique way.? However, we always want to have some
intuitive pictures of nature, and we believe that such
pictures are sometimes quite useful in the construction
of suitable models for certain problems. From the point
of view of the Heitler-London model, the unperturbed
system consists of an assembly of independent ions
in the crystal. In that sense we may imagine that the
oxygen double negative ion is an independent entity
in oxide crystals. In the usual cases, for example, in
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alkali halide crystals, the wave function of each ion in
the free state is assumed to be the unperturbed wave
function in the crystal. However, the situation is
different in oxide crystals, where we must determine
the unperturbed wave function of the O~ ion at the
outset. Although the wave function cannot be deter-
mined without more or less arbitrary assumptions, we
have tried to determine the outermost wave function
of the O~ ion within the MgO crystal by a variational
investigation using 2p orbitals.? Our values of the
electron affinity of the ion and the diamagnetic suscepti-
bility of the MgO crystal seem to be in good agreement
with experiment. Thus, the existence of the double
negative ion in oxide crystals may be a reasonable
assumption in the Heitler-London model. From this
point of view the MgO crystal consists of two kinds of
ions, Mg*™ and O, which have a closed shell structure,
and consequently there are no conduction electrons.
However, the band theory can also interpret the
insulating properties of the MgO crystal. We suppose
that the uppermost valence bands of the MgO crystal
have 6V states, and that they are completely filled

(lagé)Yamashita and M. Kojima, J. Phys. Soc. Japan 7, 261
952).
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with 61V electrons, since the crystalis aninsulator. Then,
we may assume that the wave functions of these bands
are approximately given by LCAO Bloch functions
formed from suitable atomic orbitals which have the
character of 2p orbitals of the O~ ion. In a first rough
approximation the 2p orbital which has been deter-
mined by us may be useful as an atomic orbital.

The electronic structure of the valence band in alkali
halide crystal and oxide crystals has been investigated
by using the optical spectrum and the soft x-ray
emission spectrum.? The observed characteristics of the
electronic structure of both groups are considerably
different. Alkali halide crystals have a narrow band of
the order of magnitude of 1-2 ev, while oxide crystals
have a wide band of the order of 7-10 ev. Although we
cannot obtain the accurate value of the band width
because of the widely spreading tails of the x-ray
emission spectrum, the band width of the MgO crystal
is estimated to be of the order of 10 ev.

Recently some experimental investigations of the
electronic structure of MgO have been performed by
observing photoelectric® and thermionic emission.® The
results are not yet conclusive, but the bottom of the
conduction band is situated at somewhat less than 1.0 ev
below the vacuum level, the exciton absorption peaks at
7.5 ev and the width of the forbidden band is estimated
approximately as 8.8 ev. Therefore, we suppose that
the top of the valence band is at approximately 9 ev
below the vacuum level. Further theoretical work on
the valence band structure of the alkali halides has also
been done in recent years. Casella’ has investigated the
structure of the halogen band in NaCl, and Howland?®
in KCl. However, since there has been no theoretical
work on MgO, we think that it is worth while to com-
pute the valence band structure of MgO and compare
the results with experiment.

METHOD

The approximation of tight binding is employed, and
the computation is carried through for the experimental
lattice distance. The crystal wave function is written
as a linear combination of Bloch sums of 3V 25 orbitals
of Mg++ion and 3NV 2p orbitals of O~ ions. The former
is given by the Hartree-Fock function® and the radial
part of the latter is given by

P(r)=Ar(e2940.15¢117). 1)

We construct the potential of the O~ ion by using the
1s and 2s Hartree-Fock wave functions of the O~ ion®®
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Crystals (Oxford University Press, New York, 1940), pp. 76, 79.

5 J. R. Stevenson and E. B. Hensley, Bull. Am. Phys. Soc. Ser.
11, 3, 46 (1958).

S E. B. Hensley and J. R. Stevenson, Bull. Am. Phys. Soc.
Ser. IT, 3, 46 (1958).

7R. C. Casella, Phys. Rev. 104, 1260 (1956).

8 L. P. Howland, Phys. Rev. 109, 1927 (1958).
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A238, 229 (1939).
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and the 2p orbitals (1). As for the potential of the Mg+t
ionweadopt the Hartree-Fock potential. Then the crystal
potential is constructed by summing up the potential
of each ion. We calculate overlap integrals and matrix
elements of the crystal potential between 2p orbitals
of nearest neighbor ions of the opposite sign, and second
nearest neighbor ions of the same negative sign. The
latter is much larger than the former. Thus, we suppose
that matrix elements between third neighbor ions are
not important, and matrix elements between fourth
neighbor ions become fairly small, and we may neglect
them. Since the orbitals are p type, there are two kinds
of matrix element for each pair of ions; one is that for
maximum overlap of the orbitals, the other is that for
the minimum overlap.

For convenience, we introduce here the following
notation: E is the one-electron energy of the band,
which is measured from the vacuum level, E, is the
energy of the 2p orbital in the free ion, M ,/a is the
Madelung energy, where M, is the Madelung constant
and ¢ is the distance between the nearest neighbor ions.
X is defined by E=Ey+e*M,/a+X, and k is the wave
number vector of electrons in an energy band. .Sy is the
overlap integral between the 2p orbitals of second nearest
neighbor O~ ions in the maximum overlap direction,
Sqis the similar overlap integral in the minimum overlap
direction, 7; is the overlap integral between the
2p orbitals of the nearest neighbor ions in the maximum
overlap direction, and T is the similar integral in the
minimum overlap direction. We calculate these integrals
by the standard method which was developed by
Léwdin and others. Further, we introduce the following
quantities: P; is the matrix element of the crystal
potential between the orbitals which appear in Sy, P
is the similar matrix element between the orbitals
which appear in .Sy, and Q; and Q, are the matrix ele-
ments of the crystal potential between the orbitals
which appear in 7'y and T, respectively. We denote the
crystal potential by V' (r) and the potential of the ion #
by V.(r). If we assume that the crystal potential
comes from only plus and minus point charges put
on the lattice sites, then we have P;=-—Si1M,/a,
Py= —SzMa/a, Q1= TlMa/d, and Q2= T?,Ma/d, and
consequently the energy band has no width. Thus, it
is convenient to write P1=—SiM,/a+p1, O1=T1M,/
a+¢1 and so on.

Calculation of Q, and Q. is not difficult, because the
2p orbital of the Mg ion is well localized around the
nucleus. We expand the 2p orbital of the O— ion and
the crystal potential around the Mg nucleus by a
series of spherical harmonics and calculate the matrix
element. Convergence of the series expansion is very
good. On the contrary, calculation of P, or P is not so
easy, because the 2 orbital of the O~ ion spreads con-
siderably. Let us denote the 2p orbitals of the O~ ion
by ¢.(r) and ¢.(r). Then we want to calculate the
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following integrals

0 T a2
I=f f 2(z) 7+ Ry1)
) e

XLV (@)= Vo) ]es) (r+Ro)dr, (2)
where |Ro—R;|=aV2.

Now, we introduce an approximation. Let us imagine
a sphere of radius 7; around the point R, whose surface
is divided into small portions by planes of §=constant
and ¢=constant. Further, we denote the area of a
small portion by 6;(r;) and its middle point by 4,;.
Then we replace the triple integral I by a double
summation,

I=22 % 0o(Ai)V(Ai) e1(Ai)d5(rs), ©)

k3 7

where ¢o(A4:;) and ¢1(A4:;) are values of ¢(r+Ro) and
o(r+Ry) at the point A4,;, respectively, and V(4s;) is
the lattice sum of the potential of each ion at the
pOiIlt A,‘j,

V(Aip)=2 Valds)). 4

n#=0

In the summation, we use the actual ionic potential
up to third neighbors of the R, ion and replace the
potential of further ions by point charges. In order to
determine the energy of the electron as a function of %,
we must solve the six-dimensional secular equation.
However, in the actual case, ¢; and ¢, are so small as
compared with p; and p,, that we can neglect them in
the first approximation. Then, the six-dimensional
determinant can be reduced, and we can easily manage
it. We compute E(k) curves for three directions in
k space, (%,0,0), (k,k,0) and (%,k,k). As a second approxi-
mation, we modify the results by considering ¢; and ¢»
as a small perturbation.

RESULTS

After some numerical calculations, we obtain the
following results:Sy= —0.124, §.=0.039, Ty = —0.0464,
T9=0.0137, $;=0.047, p,=-—0.013, ¢,=0.003, and
g2=—0.001 in atomic units. By using these values we
obtain the energy values of the electron in the valence
band of the MgO crystal. We find that two sets of the
bands are well separated in energy, so that we can
approximately assign the upper three bands as the
oxygen 2p bands and the lower three bands as the
magnesium 2p bands. The upper energy bands are
shown in Fig. 1 in atomic units. As seen from Fig. 1 the
2p O~ valence band is very wide in energy, about 9 ev
wide. The top of the valence band is situated at 7.6 ev
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FiG. 1. Energy of the O~ 2p bands in MgO for three directions
in % space. X (k) is defined by E(k)=FE,—e*M,/a+X (k), where
E, is the energy of the 2p orbital in the free ion, &2M,/a is the
D/;adelung energy. We use here the atomic units (e=1, m=1, and
h/2r=1).

below the vacuum level.!! These theoretical values are
in good agreement with the experiments mentioned
previously. The maximum energy of the valence band
appears at the point k=0.6(r/a) in the (k,0) direction.
However, it is not certain that the accuracy of the
present calculation is sufficient to give reliable knowl-
edge of the detailed structure of the band, because the
structure depends sensitively upon the relative ratio
of p1 and p.
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APPENDIX

For purposes of comparison, we have done a similar
computation for NaCl. We use the Hartree-Fock wave
function of CI~3p and Nat 2p and the Hartree-Fock
field also. Since calculation of the summation (3) is
rather laborious, we compute the integral I approxi-
mately by expanding the crystal potential around the
Cl~ nucleus R, by spherical harmonics. This method is
less accurate than that mentioned previously. In the
following we show the result. The meaning of the nota-
tion is the same as before. S1=—0.0741, S;=0.0193,
T1=—0.0344, T:=0.0084, $,=0.0093, p.=—0.0023,
¢1=—0.00052, and ¢.=0.00016. The width of the
valence band is estimated as about 1.7 ev. Casella has
determined a minimum for the width of the halogen
band in NaCl. A minimum width of about 1.0 ev was
obtained by him. '

1t As E, of the O~ ion we use the experimental value, 9 ev. See
reference 1.



