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for energy E=kp'/2m. When normalized, it is approxi-
rnately (kpX))1)

(1/23.9,)L(k' —kp')'+kp'//Pj '

This shows that the eigenfunctions for energy E consist
of admixtures of plane wave states with a Lorentz
distribution around kp ——(2mE) l.

We should like to point out that the mean free path
X which appears in the amplitude correlation function
is not the same as that which one uses to compute the
electrical resistivity due to the impurity scattering. In

the latter case, a factor 1—cos0 appears in the integra-
tion over scattering angles 8 in order to de-emphasize
the importance of forward scatterings. The two mean
free paths will be the same only in the case that the
scattering is isotropic. The two are approximately equal
in actual cases.

We have applied the amplitude correlation to a
study of the effects of impurities on the transition
temperature of superconductors. " Details will be
published in the near future.

"Lynton, Serin, and Zucker, J. Phys. Chem. Solids 3, 165
(1957).
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The polaron Hamiltonian would be easily soluble were it not
for the quartic term appearing therein. It is proposed to substitute
for the quartic term a quadratic term having roughly the same
properties, and in such a way that the ground-state energy of the
new Hamiltonian is rigorously a Lower bound for the true energy.
With a very small amount of work one can obtain a lower bound
as a continuous function of cx for all values of e. The result agrees
fairly well with the results obtained by other methods. Using the
equivalent Hamiltonian one can also obtain an analytic expression

for the effective mass, although one cannot say it is a bound for
the true effective mass. Futhermore, once one has obtained a lower
bound for the energy as a continuous function of the parameters
of the Hamiltonian, one can rigorously derive upper and lower
bounds for the ground-state expectation values of various oper-
ators. For example, it can be shown that for large n and large k,
(o"*g')~k 'and not k s exp( —k') as in Pekar's solution. Because
of its simplicity, it is possible that this method may have appli-
cation to other ground-state problems.

l. INTRODUCTION AND ILLUSTRATION

'T has become common in recent years for field
theorists to turn their attention to the 6eld-theory-

like problems which are to be found in solid-state
theory. But rather than employing standard field-
theory techniques, as might have been expected, most
of the papers have tended to present entirely new
methods and points of view, and have ended with the
hope that the methods developed for solid-state theory
may have some application to field theory. It is from
this point of view that we should like to present a new
method for estimating the ground-state energy Eo and
the effective mass m* of the polaron.

It will be recalled that all the methods given so far
result in an upper bound for Eo. There is Lee, Low, and
Pines' weak-coupling variational calculation, as well as
Pekar's variational calculation for strong coupling.
There is every reason to believe that these answers are
correct. Feynman' has shown how to use the functional
integral to connect these two approximations. However,
Feynman's method is rather complicated, requiring the

*On leave of absence from the Research Institute for Funda-
mental Physics, Kyoto, Japan.' R. P. Feynman, Phys. Rev. 97, 660 (1955).

services of the Massachusetts Institute of Technology
Whirlwind computer, ' and moreover suffers from lack
of directness. It is not clear how to relate his method
to more pedestrian manipulations of Hamiltonians and
wave functions, although some attempts were made to
fill this gap. ' It is in fact possible to find a trial function
suitable for all coupling, 4 but here again it is not clear
what the changes in the trial function with coupling
constant mean. Finally, although a product function
such as is used for large coupling gives the asymptotic
dependence of Eo on e correctly, it yields patently
wrong answers in many cases if one tries to calculate
the expectation values of various operators in the
ground state. As a trivial example, one obtains(Hs) = ~
with a product function.

It is not our intention to critize the variational
calculations but to present an entirely different method
which exploits the properties of the Hamiltonian rather
than its wave function and at the same time gives a

'T. D. Schultz, Technical Report No. 9, Solid State and
Molecular Theory Group, Massachusetts Institute of Technology
(unpublished).

s For example, K. Yamasaki, Progr. Theoret. Phys. (Japan)
16, 508 (1956), and G. Hohler, Nuovo cimento 2, 691 (1955).

4 G. Hohler, Z. Physik 140, 192 (1955).
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lamer bolwd for Ep. Unfortunately, for large coupling
our Ep divers from Pekar's by a factor of 3, but we
believe the method is of interest because of its trans-
parency and mathematical simplicity. Furthermore, a
lower bound for Ep that is an analytic function of the
parameters of the Hamiltonian will yield rigorous upper
and lower bounds for ground-state expectation values
by a method which will be discussed subsequently. The
expectation value of a Schrodinger operator is of interest
in field theory since a propagator, which is the ex-
pectation value of a Heisenberg operator, may be found
from the expectation value of the corresponding
Schrodinger operator; the time dependence may be
derived by analytic continuation from the spatial
dependence. '

The method to be employed is suitable for a non-
linear Hamiltonian, the nonlinear part of which is
positive definite, say quartic. To fix ideas consider the
anharmonic oscillator'.

H =p'+x'+Ax' X&0 (1)

As regards Ep, what follows could equally well be done
with the Hamiltonian in the more usual form

H=p'+2k ak*ak+Zk ak*Jkc"*+H.c., (7a)

y being the electron momentum, but for estimating
m* it is easier to have the total momentum expressed
as a c number.

For P=O we proceed as follows: define the vector
operator

Z=pk Z(k)ak,

Z(k) being a c number, and

Ho =—[Qk kak*ak+-', (Z—Z*))
[pk kak*ak —o(Z—Z*)j&o (9)

Then if H= Ho+H—i as before, we obtain

Hi ——Qk ak*ak+Q k Jk ak+H. c.+-', (Z—Z )') (10)

where
Jk' ——Jk—-', k Z(k).

To find Ep', we displace ak .. ak —+ ul, —J~'. HenceWe first observe that if a Hamiltonian H =Hi+ Ho,
then

(2)
Hi=pk ak*ak+~(Z —Z*)'—Zkl Jk I'

=—Ho —pk I
Jk'I'. (12)

Eo&Eo'+Eo'

where Ep, Ep', and Ep' are the ground-state energies of
II, IIl, and H2, respectively. We introduce a constant,
c, such that

Let us assume that [Z,,Z,*j=0 for i' (i,j= 1, 2, 3)
and denote

),x' =g (x' c)'+2/—cx' gc'= H—2+2)—,cx' gc'—
Hi= p'+ x'+2zcx' )c'. —

Since Ep'=0 we have

Eo& Eoi = —Xc'+ (1+2cX)~.

Maximizing with respect to c, we find that.

(14)t;&1 (alii).

In fact, if we define r; by

&'=[Z,,Z,*j=gklZ, (k) I
. (13)

(3)
We note that (Z—Z*)' is negative definite and if Z(k)
becomes too large the ground state of Ho will not exist.
It is easy to show that the condition for the existence
of Ep 1s

where
Eo&Eoi =3Xc'+2c,

SXc'14c'—1=0. (6)

If a Gaussian function is used to obtain an upper
bound, equations very similar to (5) and (6) result; in
the worst possible case, large X, the two results have
the same asymptotic form and agree to within 30%%uo.

The point we wish to emphasize is that we have ob-
tained a lower bound with the correct dependence upon
X and co which can serve to check t;he variational
calculation.

2. GROUND-STATE ENERGY

We take the polaron Hamiltonian in the form'

H= (P—gk ak*ak)'+pk ak*ak+pk Jk*ak+H. c.,

where P=total momentum (c number) and

J.=(4 /l')'Ikl '.
~ A. S. Wightman, Phys. Rev. 101, 860 (1956).
'A=2m=co=1. .

7 Z& ~ V(2~)-3J'd3S.

r o —[(4/t;) —2)jr,+1=0,
with the further condition

0&r,&1, or 0&t;&1, (16)

then it is a simple matter to diagonalize H3, with the
result

Eoo= —g r;(1+r;) ' (17)

liZ(k)

where the X; are Lagrange multipliers. It is then found

Hence, by Eq. (12), Eo' is the sum of an integral of
Z(k) and a function, Eoo, of another integral, (13), of
Z(k). Since

o&Eo'=Eo' —Ek I
Jk'I' (18)

we wish to firid the functional form of Z(k) which
maximizes Ep'. This is simply done by the condition
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that Z;(k) has the form

Z;(k) =k;c(k').

The scalar function, c, is found to be of the form

c(k') =2Iq(k'Pp') '

p being a constant.
Performing a few simple integrals, we obtain

(20)

(21)

then still commute with the total momentum operator,
P=p+gq kaj,*aq. This being the case, when we
attempt to evaluate (7) with PWO to obtain m*, the
resulting H~ which we propose to evaluate instead of
the true II may, owing to its having the correct in-
variance properties, yield a sensible result for m*.

3. EFFECTIVE MASS

and
t~ ——(2 ——t8 ——3 (a/p)

—= t,

K~II. I

—rp~

(22)

(23)

When we come to consider (7) for PWO, the lack of
symmetry in k space permits us to choose a slightly
different II2 and of course a different Z(k). We may
change (9) to

Z=gq Z(k)aqe'" * (8a)

to obtain the same result; and the modified H~ would

The t; are all equal as they must be from the symmetry
of the problem, but for PNO this will not be the case.
Denoting all the r,, which are equal for P=O, by r, we
note that r, p, and t are all functions of each other and
anyone of them may be chosen as the independent
variable. Choosing p, and recalling the condition, (16),
which implies that

x3o(p( ~,
it is found that

2
E,'= ——; 1—

]
1——

[
——,'p~.

3pl

It is left to determine p. Maximizing (24) gives

p4$1 —(2n/3p)) =1. (25)

It was un. derstood in (22) and (23) that p is positive;
with this convention we see that maximizing Eo'
automatically satisfies (16).Using (25), we may express
E0' as a function of p only:

E0&Ep' ———3 (p' —1)(p'+3)/4p' (26)

Thus, (25) and (26) taken together constitute a
lower-bound solution for Eo, in which o. and Eo are
expressed by a parametric equation. If the solution is
investigated numerically, it is found that it agrees with
Feynman's solution up to approximately o,=1 and
then departs from it radically. In the worst case, large
n., the asymptotic solution of (25) and (26) is

(27)

which differs from Feynman's or Pekar's solution by
nearly a factor of 3.

To recapitulate, we have seen that the positive
definite character of the momentum may be used to
reduce the effective coupling by the term ~k Z(k)
(Eq. (11))at the expense of introducing the negative-
definite term ~~(Z—Z*)' which has the character of the
square of a momentum operator. Furthermore, the
calculation involves only algebraic manipulations and
the evaluation of a few simple integrals. But the point
we wish to emphasize is that had we taken the Hamil-
tonian in the form (7a) we should change Eq. (8) to

II,=—$Qg kate*a~+-', (Z—Z*)+R)
~

I P„kayak —-,'(Z —Z*)+R)&0, (9a)

where R is a c number vector. Consequently, II&
becomes

II~——P~ ag*ag(1+S k)+Pg I,'ag

+H.c.+P'—R', (10a)

where S=2(R—P). J~' is still defined as in (11). In
addition to maximizing E0' with respect to Z(k), we
must now also maximize it with respect to R.

Strictly speaking, however, the ground-state energy
of II& is unbounded, because for sufliciently large k the
factor (1+S k) will become negative. Were this not
the case, we could hope to use (10a) to get some idea
of the curve E0(P) for all P. But we can in fact use
(10a) to evaluate E0(P) for very small P in the following
way: clearly as P ~0 we will wish to choose R —& 0
and hence S —+ 0. We may therefore imagine the sum-
mation in the S k term of II~ to be cut off at some k'
such that S k'(1. Hence,

(28)

where
~
0) is the true ground-state wave function. Since

k' —& ~ as
~

P
~

', it is quite apparent that the last term
in (28) vanishes at least of order P' and can be neglected.
It might be supposed that for any P we could always
choose R such that the last term in (28) vanishes or
becomes negligible. But this would be contrary to the
philosophy of the method which is to let the Hamil-
tonian speak for itself as it were; that is to say, to
determine all the parameters in H& by a minimum
principle. We have no other guide to the effective mass
but that IIj is a linear Hamiltonian which has been
shown to be very similar to the true Hamiltonian, H.

If we admit the cutoG into III, then its eftect will be
that integrals of the form J'0"dk(p'+k') '(1 k'P) '—
are to be considered as principal-value integrals. The
calculation is straightforward but somewhat more
complicated algebraically than in Sec. 2; the lack of
symmetry in k space introduces many more parameters
with respect to which Eo' must be minimized. The
direction of R will obviously be that of P so that if we
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let P= (O,O,P) and S= (O,O,S), and furthermore
displace a» to ak —+ a» —Jk'(1+Sk2) ', we find that

E2' ———P r;(1+SC;)(1+r) '

4. GROUND-STATE EXPECTATION VALUES

If one wishes to 6nd the expectation value of a
Hermitian operator, 0, in the ground state (denoted
by (0)), then in principle one could proceed as follows:
define the Hamiltonian—P ~

Jk'~'(1+S4) ', (29)
H (I4) =H+I40; (39)

where
C;=t; ' Qk k2)Z;(k) ~2, (30) then, if E2(p) is the ground-state energy of H(p), one

has
4(1+SC4)r2— —2 r;+1=0, 0(r;&1, (31) (0)=lim

~pdp
(40)

and
c(k) = 2J»(k'+'p2+)SI42+ p'p3 +22S') '—(33)

d(k) =bSk2c(k). (34)

P, q, X, 22, and b are parameters; the dependence upon
S has been explicitly included, which means that p is
still defined as in (25) for P =0.

Maximizing with respect to all parameters, we find
that

where
E2(P) &E2'+P'/2m*,

(p' —1)(p'+2p' —2)
+1 m.

2+1

(35)

(36)

The dimensional dependence of m* on m has been
explicitly included in (35) and (36). E2' is defined by
(24) and p by (25).

For small e, we get

m*/m = (1+-,'n),

which is correct, but for large 0, we obtain

m*/m = (16/81)n4, (38)

a result which is about a factor of 9 greater than
Pekar's. It is not understood why the error in the
effective mass is the square of that for Ep.

Since a variational principle for the effective mass
does not exist, the fact that we have obtained a result
substantially the same as Pekar's by a completely
independent method serves to increase our confidence
in Pekar's result. For the bare polaron (i.e., with no
periodic potential present) with strong coupling it is
fairly certain that the effective mass is as large as Pekar
has claimed it is.

We should also like to point out that inasmuch as
the integrals appearing in the calculation are all
integrals of rational functions, it is a very simple matter
to introduce a Debye cutoff and still be able to carry
through the calculation analytically.

and (; is still defined by (13).Equation (29) is correct
only to second order in S since we have used per-
turbation theory to obtain it. It turns out that the
optimum Z(k) is of the form

Z;(k) =k,c(k)+Sb;2d(k), (32)
where

For large coupling, the product trial function gives

E,& ——;~-'~2(b y-2p-'), (43)

from which it may be supposed that the ratio (42) is
1:2:(—4).

How correct is this result? Since P, y, and b are
parameters which occur naturally in II, it is found that
the 1:2:(—4) ratio is obtained not only from difFer-
entiation of (43) but also from the expectation values
of the trial function itself after E has been minimized.
In other words, the fact that (40) agrees with the
expectation values obtained with the trial function is
a direct consequence of the variational method. How-
ever, a far more convincing argument is the following:
by the method of Sec. 2 we And that

E) 2422 (be
—2P-1)

Since it appears both in the upper and lower bound,
the factor (B'7—'p ') must be correct except possibly
for an oscillating factor. If we assume that the ratio,

Now, what is often done is to estimate E(44) by a
variational calculation; but since a variational calcu-
lation only yields information about a particular
integral of the wave function, for a general operator,
0, differentiating the variational result according to
(40) is a procedure of doubtful validity. However, if 44

is a parameter which appears naturally in H, the
variational procedure may be justified insofar as a
differentiation with respect to p, is included in the
variational calculation. Otherwise another method must
be found. In the following discussion we shall try to
clarify the @bove statement and present a workable
method for estimating (0) for the general case.

Consider (2) in the slightly generalized form

II=p(P —gk kak*ak)'+y Qk a»*a»

+b(pk Jkak+H. c.), (41)

where p, 7, and b are constants. For P=O, a ratio of
some physical interest is

((pk kak*ak)'):(pk ak ak) ~ (Q» Aak+H c )~ e, , 4. 2. -
BE BE BElim:: . (42)~2' 'BP By M
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(42), is asymptotically independent of a then the
oscillating factor cannot be present and we may be said
to have proved the 1:2: (—4) ratio.

If 0. is not large, the method of Sec. 2 gives

where

Ep(P) &EpjP /2m*,

, (p' —1)(p'+3)
E ——-7

(45)

(46)

and

1 (p' —1)(p'+2p' —2)
+1

m p (p'+1)

2n8'
p'I 1—

3p(Pv')'&

(47)

For small n these equations give the correct ratio
1:1:(—4) in (42). The dependence of m* on P, y, and
8 is also correct in the strong- and weak-coupling limits
insofar as it agrees with previous results, We may
therefore conclude that insofar as the dependence of
Ep on P, y, and 5 is concerned, the variational calcu-
lations are asymptotically correct, and for intermediate
coupling they are probably substantially correct.

However, when we come to consider quantities such
as (ak +ak) or (Qk, k' k k ak ak' akak') tile i'esillts
obtained from trial functions are very much in error.
For the latter quantity, the product unsated gives zero,
whereas it is easy to see that it is of order cP; there is no
way, within the framework of the product unsated, to
obtain a nonzero result. For the former quantity, the
product ansats with a Gaussian function gives

9~
(ak*+ak)= —2J, exp~ — k'

~,
8cP )

(49)

a result which, as we shall show, is definitely incorrect
for large k. It is true that in this latter case it is possible
to choose a product function to give the correct result
for (ak*+ak), but there is no way of knowing how to
6nd it by using a variational treatment. The difhculty
lies in the fact that the expectation values of the above
two operators involve a detailed knowledge of the wave
function which cannot be obtained from a variational
calculation.

At this point a lower bound becomes useful. The
equation

&
—'(Ep(&) —Ep~&(o) &&

—'I Ep—Ep( —&)j,
(t &o), (5o)

where Eo is the ground-state energy of H, can be
derived from the simple equation

Eo( )&(a)+ (o)=E,+ (o), (51)

and may be considered to be a diGerence-equation
generalization of (40). Equation (50) may be extended

to

p
—'(Ep (ti) —EpP1 (0) p

—'[Ep —Ep (—tj)j, (52)

2tip4
Ep (ti) = pPtk-

(pp+kp)
(54)

Lthe first term in (24) may be dropped for large nj, and

n 8 k'p
1 —0(~ ') = t(t ) =

p
—+-
p 3 (p'+k')

Hence P is not equal to Ppn as formerly but is now a
function of ti and k. Upon solving for p in terms of p,
Eq. (52) reads

—2p'J
(ak +ak)&

(pp+kp)p

4(2Epp+np')
k'Jk, (56)

(2n —3p) (p'+k')'

where the & sign holds if p&-'pn and the & sign holds
for p&-'pn. To find the best p we must differentiate (56),
which leads to a ninth-order polynomial equation in p
which will have two roots greater and less than 3n,
respectively. For seal/ k, these two roots coincide and
we find that

(ak*+ak) = —2Jk. (57)

For /urge k, the equation reduces to second order and
we And

2jk
(a *+ak)& or & Ln&(a +3Ep)*'g'. (58)

3k'

Equation (57) is exact and is in fact true for all n as
may be seen from the functional integral representation.
For large k, if we take EP= —a'/3~ as given by the
product trial function, we obtain

—0.034oPJk/kP)(ak+a„)) —3.0~2J„/k (59)

where U and L refer to upper and lower bounds,
respectively. It will be seen that to use (50) it is neces-
sary to have a toieer and not an upper bound as a
function of p. If one can find such a lower bound as an
analytic function of ti, one can then maximize (50) with
respect to p. Equation (40) tells us that the best ti is
p —+ 0, but since there will in general be a finite diR'er-

ence between the upper and lower bounds at @=0 one
must choose a nonzero p. In any case one can obtain
definite limits on (0).

As an illustration let us try to evaluate (ak*+ak)
for arbitrary k in the strong-coupling limit. Equation
(39) reads

&(t )= (Qk kak*ak)'+Qk ak*ak+t (ak*+ak)
+Qk J'kak+H. c. (53)

The method of Sec. 2 is directly applicable to (53).
Proceeding as before, we find
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Thus, although the two coeflicients in (59) differ by
a factor of 100, we have established the asymptotic
dependence of (as*+as) on k (aside, of course, from an
oscillating factor which undoubtedly is not present),
and shown it to be quite different from (49). It is
interesting to note that (59) agrees with the asymptotic
dependence of (as*+as) in Pi of Sec. 2 and hence tends
to increase our confidence in the result for no* found in
Sec. 3.

The same procedure can be used to calculate (uq*as)
although the algebra is a triRe more involved. It is
found that the asymptotic dependence of (u&*a&) is the
square of (59) aside from a numerical factor of order
unity, a result which is anticipated by the adiabatic
hypothesis.

Thus, by numerical methods one can obtain upper
and lower bounds for (a~*as) for all n and all k, the two
bounds being farthest apart for large n and large k. In
field theory a quantity such as (as*a&) is, aside from

an additional time dependence which can be deduced
from relativistic considerations, a propagator of im-
mediate physical interest. Unfortunately, in field theory
one must face the two problems of renormalization and
the fact that a ground state does not strictly speaking
exist, both of which would make a lower bound a
somewhat unrigorous mathematical concept. Still, the
nonlinear elements in the usual field-theory Hamil-
tonian are positive de6nite so that the method of Sec.
2 may have some validity.
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The approximation of tight binding is employed to determine the width and the depth of the oxygen
band in MgO. A width of about 9 ev and a depth of about 7.6 ev are obtained. The agreement between theory
and experiment seems to be fairly good.

INTRODUCTION
'

~ XISTENCE of the oxygen double negative ion in
~ oxide crystals is usually postulated and widely ac-

cepted as a useful assumption, although the free 0 ion
is not known experimentally. Strictly speaking, it is
more or less meaningless to speak about the existence
of a particular ion within a crystal, since it is impossible
to assign the electronic charge cloud to nuclei in an
unique way. ' However, we always want to have some
intuitive pictures of nature, and we believe that such
pictures are sometimes quite useful in the construction
of suitable models for certain problems. From the point
of view of the Heitler-London model, the unperturbed
system consists of an assembly of independent ions
in the crystal. In that sense we may imagine that the
oxygen double negative ion is an independent entity
in oxide crystals. In the usual cases, for example, in

*This research was in part supported by the U. S. National
Science Foundation.

$ On leave from the Institute of Science and Technology, Uni-
versity of Tokyo, Tokyo, Japan.'F. Seitz, The Modern Theory of Sotids (McGraw-Hill Book
Company, Inc. , New York, 1940), p. 82.

P. O. Lowdin, Advances in Physics, edited by N. F. Mott
{Taylor and Francis, Ltd, London, 1956), Vol. 5, p. 1.

alkali halide crystals, the wave function of each ion in
the free state is assumed to be the unperturbed wave
function in the crystal. However, the situation is
diGerent in oxide crystals, where we must determine
the unperturbed wave function of the 0 ion at the
outset. Although the wave function cannot be deter-
mined without more or less arbitrary assumptions, we
have tried to determine the outermost wave function
of the 0 ion within the MgO crystal by a variational
investigation using 2p orbitals. ' Our values of the
electron amenity of the ion and the diamagnetic suscepti-
bility of the MgO crystal seem to be in good agreement
with experiment. Thus, the existence of the double
negative ion in oxide crystals may be a reasonable
assumption in the Heitler-London model. From this
point of view the MgO crystal consists of two kinds of
ions, Mg~ and 0,which have a closed shell structure,
and consequently there are no conduction electrons.

However, the band theory can also interpret the
insulating properties of the MgO crystal. %e suppose
that the uppermost valence bands of the MgO crystal
have 6X states, and that they are completely 61led

e J. Vamashita and M. Kojima, J. Phys. Soc. Japan 7, 261
(1952).


