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The amplitude correlation function in an impure metal is the average over all possible arrangements of
impurities of the correlation Z„ip„*(r')g (r)S(E—E ), where the ip are eigenfunctions of a one-electron
Hamiltonian including impurity potentials. The 5 function restricts the sum to states rI, on the energy shell
K This quantity, whose usefulness in studies of impure metals is pointed out, is evaluated from first prin-
ciples by means of multiple scattering techniques. If the impurity density is not too high, the amplitude
correlation is p(E) sinL(2nsE)&R) exp( —R/2X)L(2mE)&R) ', where p(E) is the density of states and
E= [r—r'f.

]~)NE difhculty of a proper treatment of the effects
of impurities in metals lies in the great complexity

of the wave functions of the electrons in the presence
of the impurities with which they interact. As a model
of the metal we use a box of volume Vo containing a
dense free electron gas and E impurities at random
positions R; (r'=1, 2, , Ã). We define one-electron
wave functions in the presence of impurities. These
depend very sensitively on the locations of the im-

purities, Ructuating widely with changes in the impurity
positions. Experiments show, however, that many
physical properties do not depend on the explicit values
of parameters R; but only on the concentration of the
impurities, provided they are distributed at random.
In order to compute the physical effects of the im-

purities one would be tempted, therefore, to average
over all possible arrangements of the impurities. ' Such
an average carried out on the wave functions them-
selves is not physically meaningful because it yields the
result, as in multiple scattering, that the averaged
amplitude of the wave function is large only in a region
whose size is measured by a mean free path, or "ex-
tinction length. " This result does not correspond to
the physical situation which requires the averaged
probability distribution of an electron to be uniform
throughout the volume Vo.

Although the averaging process must not be carried
out on the wave function, there are other quantities of
physical interest whose average is meaningful. One of
these is the autocorrelation of the wave function

lf„(r'; R, .R~)lf„(r; Ri. Riv),

where f„(r; Rt, ,R~) is the exact one-electron wave
function for the state e with the impurities at the par-
ticular locations R;. A related quantity of interest is
the sum of autocorrelations on an energy shell K The
average of this quantity is

g(r', r; E) =(Z-&-*(r'; Ri" R~)
Xy„(r; R," R~)5(E—E„)). (1)

*Supported in part by the Rutgers Research Council and the
OfFice of Naval Research.' W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).

The 8 function restricts the sum to the specified energy
shell E and the angular brackets denote an average
over all possible arrangements of the impurities. This
function, which we call the amplitude- correlation, has
been used to study the efI'ects of impurities on the
electromagnetic properties of metals and supercon-
ductors. ' ' Its value at r'= r, g(r, r; E), is of course just
the density of states at energy E.The Fourier transform
yields the distribution in momentum space for the
speci6ed energy K

In the situation where there are no impurities, the
amplitude correlation is that for a free electron gas
and is

g'(r' r' E)=Z p *(r') v' (r)5(E E)—
sin(kp

f

r' —r
f )=p(E)

kpfr' —rf

where the happ(r) are plane wave functions normalized
in the volume Vp, kp= (2teE)f, and p(E) =ttskp/2rr' is
the density of states at energy E. Note that we take
A=1 throughout. The eGect of the impurities is to
modify the amplitude correlation in a remarkably
simple wa y

sin(kp
f

r' —r f )
g(r r. E) —p(E) e

—[r'—r[/?x

kpfr' —rf
(3)

where A. is a "mean free path" of an electron of energy
K This result was obtained by Bardeen' by using a
simple argument concerning the transmission of a plane
wave through a slab of material containing impurities.
There, X was related to the transmission coeScient of
the slab. Our purpose in this paper is to demonstrate
the validity of (3) from first principles and to give the
exact meaning of the mean free path ) .

The amplitude correlation cannot be obtained by
treating the effects of the impurities as a small per-
turbation. Our procedure is one in which these eGects
are taken into account to all orders. In Sec. II we give
the mathematical formulation of the amplitude corre-

~ J. Bardeen, ErIcyclopeChu of Physics (Springer-Verlag, Berlin,
1956), Vol. 15, p. 274.' D. Mattis and J. Bardeen /Phys. Rev. 111, 412 (1958)j have
applied the amplitude correlation to a study of the anomalous
skin-eGect in metals and superconductors.
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lation and show how it is related to a multiple scattering
problem. In Sec. III we get the amplitude correlation by
means of a straightforward multiple-scattering expan-
sion which we sum. In Sec. IV, the problem is solved
by rewriting the multiple-scattering problem in such a
way as to show more clearly the approximation we
make. We conclude with Sec. V in which we summarize
our work.

The total one-electron Hamiltonian in the presence
of impurities may be written

H=E+U, (4)

1 +"
g(r', r; E)=— dt e' (gHtP„*(r')e 'H"tP (r)) (6)

2~~ „

where E is the kinetic energy operator and V is the
potential energy due to the impurities. We neglect the
inhuence of the electrons upon one another except
insofar as the impurity potentials are screened due to
correlation e8ects. 4 We assume that we know how this
occurs and that an effective one-electron impurity
potential V is dered.

In a plane wave representation, the matrix elements
of V are

VE s= Q;(r)') E E= es ~ Qt e ""' "' *',

where t)' is an abbreviation for v(r —R,), the potential
due to the impurity at R;, and t) is that due to an im-

purity located at the origin.
The amplitude correlation, Eq. (1), can be rewritten

by the use of a Fourier transform for the energy b

function as

and p ), (r) = qr), *(r) occur. The form expressed in (9)
is convenient for two reasons: 6rst, the dependence on
the location of the impurities is contained only in the
operator H and not in the basis functions, and second,
the averaging procedure can be carried out in the plane
wave representation in a particularly easy manner.

The quantity

(10)

which appears in (9) is recognized as the solution of
the time-dependent Schrodinger equation subject to
the initial condition that at t=0 the solution be a plane
wave of propagation vector k. The equation satisfied
by lt), (r,t) is

8
i—P), (r, t) —HP), (r,f) = i 9 ),(r) i) (1—0),
Bt

for 1&~0, and Pk(r, f) is to be taken as zero for t(0. The
Fourier transform of ps(r, f) is involved in (9). It is

. f
@),(r; E)= —s ' e' 'P),(r,t)dt.

0

(12)

4'), (r; E)= (E—H)-'9 E(r). (14)

To insure convergence of the integral, E is supposed to
have a small positive imaginary part which we after-
ward let go to zero. This also permits the inversion of
(12) in an unambiguous way. The Fourier transform
of (11) yields the equation satisfied by Vs(r; E):

(E—H)%'), (r; E) = 9 E(r). (13)

The operator inverse to E H is defined—as (E H) ', —
and therefore'

df etEt(p f t)t( )rtetHtp (r)) (7) By inserting (10) and (12) into (7), we may now express
the amplitude correlation as

1 f'
g(r', r; E)= dt etH'(P), y,*(r')—e 'H'q), (r))

2~~
(8)

oo

dt e' '(P& p&*(r')e * 'tp&(r))
2' p

+c.c., (9)

where c.c. denotes the complex conjugate. Equation
(7) follows from (8) since in the sum over k both y), (r)

J. Friedel, in Adwnces Az Physics, edited by N. F. Mott
(Taylor and Francis, Ltd. , London, 1954), Vol. 3, p. 446; ¹ H.
March, in Adlncesin Physics, edited by N. F. Mott (Taylor and
Francis, Ltd. , London, 1957), Vol. 6, p. 1.

where we have abbreviated the wave functions in an
obvious way. Equation (7) follows from (6) inasmuch
as the P„are eigenfunctions of. H in (4). The great
advantage of the form (7) is that it is a trace of the
operator exp( —iHf). This can be transformed to a
plane wave representation without altering its value:

Our problem is reduced to solving Eq. (14). To do
this, it is convenient to use the powerful operator
techniques' which have been developed for scattering
problems. We introduce the "transition matrix" or
"scattering operator" T and the "Mffller wave matrix"
0 which are related to each other and to the potential
by

T= V+ V(1/b)T= VQ,

Q=1+ (1/f)) VQ,

b=E—E.
(16)

' The inverse transform of (12) is an integral along a path in
the complex E plane which is parallel to and above the real axis.
Along this path, (E—H) ' is not singular. Therefore (14) does not
contain a solution of the homogeneous equation derived from
(13) since such a solution belongs to a real value of E.' B.A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950);
M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398 (1953).

t(r', r; E) ga y~*(r') —=%~(r; E))+cc (15).
2'
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We have defined E to have a small positive imaginary
part so that Eqs. (16) are identical (except for the use
of E as a complex variable rather than the incident
energy) to those of a multiple-scattering problem for
which the boundary conditions are that there be a
plane wave incident upon a collection of scattering
centers and that asymptotically the scattered waves be
outgoing spherical waves. The matrix 0 carries a plane
wave into the exact solution of the scattering problem.

We apply these methods to the solution of (14);
using b=E—K, we have

The expression (17) represents a perturbation series
for %k(r; E) in powers of V. We have explored this
expansion and have been able to sum it provided that
certain multiple scattering terms can be neglected. It
is simpler, however, to use the scattering operator T,
and in view of its definition (16), there results

( 1 )1
+k(r' ~) =

I
1+-T I-0 k(r)

b )b
(18)

Alternatively, Eq. (18) can be written as

1 1
@k(r; E)=0—(0«(r) =—09 k(r),

b by,

Our 6rst method of solution involves the multiple-
scattering expansion of the operator T. We de6ne the
transition matrices for the individual impurities by the
operator equations

.1.t'= v~+i)'—t'b' (2o)

where, as before, the small positive imaginary part of
b specifies that contour in integrations which is ap-
propriate for outgoing waves. The matrix elements of
t' are, in view of (5), easily shown to be of the form

(t')k «=tk ke
""' "'R*', (21)

where we have made use of the fact that 1/b is diagonal
in the plane wave representation and 1/b~ is a number
equal to (E—Ek) '= (E—k'/2') '. In order to obtain
Wk(r; E), it is only necessary to obtain the matrix
elements of T or Q. Thus our problem is reduced to the
multiple-scattering problem described by the integral
equations (16). We notice that the positions of the
impurities appear only in the operator T (or 0) and
that we shall therefore require averages of the matrix
elements of this operator.

where t is the scattering operator for an impurity
located at the origin. ~ The total scattering operator T
can be expressed' as

.1.T=P t'+P" t' t+P-" t' t ti+-.- (22)

where the double primes on the summations indicate
that no two adjacent indices may be alike. We recall
that T must be averaged over the possible arrangements
of the locations of the impurities. To do this most
conveniently, the series (22) is rearranged as follows:
in any given order we separate out those terms for which
a given index is the same as an earlier one and combine
such terms with earlier terms having the same number
of di6'erent indices. What remains is a sum over indices
all of which are diferent. The series for T is now

Now the single primes on the summations indicate that
all indices must be diGerent. This expression separates
T into scattering by single impurities, by pairs, by
t:riplets, etc.'

To illustrate the averaging, we consider the leading
term in the scattering by pairs,

Then, on using (21),

.1.T"=P' t'-t'
b

1
(T20)k, k

—P t, „ t „P~&
—i(k'—k") Ra—i(k"—k) R&

((T )k'k) +(+ 1)Q tk'k" tk" «5«k'5«k"
k byrr

=1V(cV—1) (tkk'/bk) 5«.k,

and one sees that only the diagonal element of T"
survives the averaging process. Notice that t~~ is pro-
portional to Vo ' so that if S))1,T" is proportional to
the square of the impurity concentration e.

The leading term in the scattering by threes is, after
averaging,

(T")= 1V (X 1)(X—2) (tkks/bk')—5« k, (24)

and corresponding results are obtained for the leading

~ J. M. Lnttinger and W. Kohn, Phys. Rev. 109, 1892 (1958),
Appendix C. We are indebted to the authors for a preprint of this
work.

0 K. M. Watson, Phys. Rev. 89, 575 (1953).
9 See reference 7, Appendix A.

1 11 111
T=P t'+P'I t* ti+t' t~ -t'+t' —t~

'—t' t~+-. .-—'

ij k b b b b b b )
11 111 111

+P'I t' t~ ti+t' t-i 't-' t'+t-' t-i t-' ti+---
'i'&I bb bbb bbb

+." (23)
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Out of the sum we can abstract the term for which
ir"=lr and combine it with the average of the leading
term in the scattering by threes, T3o. This converts
the number N(N 1) (N——2) in (24) to N(N 1)'. —
Having removed the term k"=Ir, we discard the re-
mainder of ((T")k k). The terms T" containing four
factors of t and T" also containing four factors of t and
repeated indices are treated in the same way. In the
average, the fully diagonal terms are abstracted and
combined with (T4') and the remainders are discarded.
This makes the factor for (T4P) become N(N —1)'
rather than N(N 1)(N——2)(N —3). We adopt this
procedure for all remaining terms. In short, we preserve
all multiple scatterings in the forward direction and
neglect all others. We believe that the terms neglected
are negligible if the density of impurities is suKciently
low that there is no overlap of the force fields of the
diferent impurities. This criterion is easily satisfied
for concentrations less than 10 atomic percent. With
this approximation,

(Tkk) =1Akk+N(N —1) +N(N —1)' +
~k

(Mkk) i'

(25)

This is the solution to the multiple scattering problem.
If we now insert (25) into (18), we find

~ ~

s 'L ~ (NEkk) ~—+k(r; E) = Z I I ~k(r) (26)
2or 27rbs r=p 0 bk )

On using (15), we find the amplitude correlation func-
tion to be

z 1
g(r', r; E)= y *(r') po (r)+c.c. (27)

2X k E—Ek—Etkk

terms of higher multiple scatterings. The Grst cor-
rection term in the scattering by pairs is, on averaging,

I
tkk"

I
tk" k

&(2'")'.)=N(N-1)~- Z
kl /

scattering amplitude for a single impurity. Its imaginary
part is related to the total cross section, 0-, by the well-

known optical theorem"

Im(tkk) = — ko (k).
2mVo

(30)

This can be expressed in terms of a mean free path 'Al,

de6ned by
Xk '= (N/Vp)o(k), (31)

&kk'

kkk(E) = t kk+Q
kr jV—jVk,

(33)

We find that if v(r) has a finite range (as is the case
due to the shielding' ), then

Im(tkk(E)): 0,

and Im(fkk(E)) is substantially constant for
~

k —kp
~

(1/a, where u is the range of the impurity potential.
The 6rst remark insures the convergence of the integral
in (29) even when R=O. The second permits us to
rePlace Im(f»(E)) by Im(t'apso(E)) (we recall
E=kp /2m), provided the density of impurities is
sufIj.ciently low. The reason for this is that for low
density, both the energy shift NRe(tkk(E)) and the width
N Im(fkk(E)) will be small compared to E, which is the
order of the Fermi energy. In that case, the integrand
of (29) will be large only in the neighborhood of k= kp.

We observe that in typical cases' kp 1/a and we there-
fore modify (29) by replacing tkk(E) by tspkp(E). u As
in (32), we have

N Im(tkk) = —(1/2m) (k/Xk). (32)

In the present context, as we have pointed out, E is a
variable, whereas in scattering theory the parameter E
in the definition of t by Eq. (20) is fixed at the value of
the energy of the incident plane wave of wave vector
k, Ek. Thus, in (30) and (32), E=k'/2m. In Eq. (29)
the quantity involved is tkk(E), where E=kps/2m, and
the integration over ir involves values of tkk(E) where
Ek/E. We can estimate the behavior of 4&(E) by
using the first iteration of Eq. (20)

We separate tkk into its real and imaginary parts

tkk ——Re(fkk)+s Im(fkk),

and convert the sum in (27) into an integral

N Im(@pkp(E)) = —kp/2echp,

N Re(fkoko(E)) = Ao/2m.

Thus, (29) becomes

(34)

g(r', r; E)=
—(2rrz)'t 1 y' l.

~ dir N Im((kk)
(2orJ ~

~ik R2nz(1 )«r, r;E)=
~

—
~

—dl, (35)
L. 2ori Xp ~ (k' —kp")s+kps/X '

~ik R

X (29)
Pk'+2mN Re(tkk) —kp'j'+L2mN Im(tkk) j'

where we have used R=r r' and E—=kps/2m. The
quantity t» in usual scattering theory is the forward

where we have replaced ko' —6o by ko". The integral
is evaluated in the complex k plane in a straightforward

'P G. F. Chew and F. E. Low, "Scattering Theory Notes, "
University of Illinois, 1953 (unpublished).

"The conditions here are satisfied in typical cases for which
kp~1/a 10' cm ' and for which kp) p&&1.
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manner. We get

mko sin ko'R)
g
—R/2Xp

7

(
g(r', r; E)=

2z' kp'R
. (36)

get the multiple-scattering equations

(37)
which is the desired result. The meaning of Xp is given
in (34) where it is related to the imaginary part of the
forward scattering amplitude for a single impurity.
The result (36) is the same as (3) if we neglect the
difference between kp and kp . This difference is caused
by the energy shift Ap and at the Fermi level it is very
small for low concentrations since it is proportional to
the ratio of number densities of impurities to electrons.

We would like to call attention to the fact that the
density of states at energy E is just g(r, r; E) and it
may be computed from (29) by setting E=O. In o. rder
to obtain the change in density of states due to the
presence of impurities, one must carry out the inte-
gration with somewhat more care than we have given
in the steps leading to (36). In our approximation, the
density of states remains unchanged.

If there are a large number of scattering centers
randomly distributed, we attempt to solve (37) by
taking an average over the positions of the impurities.
Since f(r) and f& (r) diff'er by only one scattering, we
expect that (P)=(P&) to order 1/X. Furthermore, we
assume (Pf') = (t')Q')=(P)Q). With these approxi-
mations, (37) is solved by

(38)

From Eq. (21), P,(4s &)=Xtqi, lsd . If we let t, be the
diagonal part of 1, (38) becomes

IV

In this section we shall develop the multiple scat-
tering expansion in an alternative manner, one which
is similar to methods recently proposed by Watson. '
In order to make plausible the formal development
which follows, it is necessary to review the usual
treatment of multiple scattering. " Suppose we have a
multiple-scattering problem similar to that of Eq.
(16). The solution of the Schrodinger equation which
we seek may be written

The usual procedure" is to write P(r) as the sum of the
incident wave q (r) and outgoing scattered waves from
the impurities located at R, :

Here, M(r, R~) is the scattered wave from the ith im-

purity. If we now define P&(r) as the wave incident on
impurity at R;, it follows that

P&(r) =P(r) M(r, R;). —

However, the wave scattered from the jth impurity
is related to the wave incident on the jth impurity by
the scattering operator t7,

where the propagator 1/b is again (E—E) ' /see Eq
(16)]. Therefore, by combining these expressions, we

'sL. L. Foldy, Phys. Rev. 67, 107 (1945); M. Lax, Revs.
Modern Phys. 23,~287 (19S1).

(39)

since matrix elements are to be taken in the plane wave
representation in which b and t, are diagonal. Now
(39) may be inserted into (19), with the result

(40)

(E E V)fg(r) =0. — — (41)

Now the result (39) is instructive; it suggests that we
try to include all forward scatterings in the "unper-
turbed" states so that all such "coherent" effects appear
in the energy denominators as in (40). The incoherent
effects would then be treated by a multiple scattering
expansion. The procedure recognizes the fact that the
wave will propagate with a complex propagation vector
as if through a refracting medium, suffering nonforward
("incoherent") scatterings as it goes. Thus, instead of
solving (41), we would try to solve the equivalent
scattering problem

(E E V,—U)fi, (r) =0, — —

Equation (40) will be recognized as identical to (26)
and will therefore lead to the desired result for the
amplitude correlation.

It is our purpose here to derive (40) by a more
careful treatment of the multiple scattering. In so
doing we will be able to see more clearly the justification
of the steps leading to (38).

Our problem is again the solution of (19) which we
may replace by tt k(r) =Qq i, (r) If E=E. j„gi,(r) would
be the outgoing-wave multiple-scattering solution of
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where U= V—V„V, is diagonal (in plane waves) and
is to be chosen to contain all coherent eGects. We would
try to solve (42) by means of a multiple-scattering
solution for the incoherent potential U.

With this discussion as a guide we return to the
integral equation satisfied by the wave matrix 0 which
is

Q= 1+—VQ.
b

If we multiply both sides of this equation from the left
by b and replace U by V,+U, we get

In deriving (47), we have used the fact that

U=Q; U'=Q;(e' —t, ').

In view of the definition of d, 1—(1/d)f, —1 to order
1/N, so that (47) reduces to Q=Q and (44) is indeed a
solution. It can now be seen that we have achieved
our desired goal. We have treated coherent eGects
exactly to order 1/N and the multiple-scattering effects
are described by (44) which is equivalent to

1 1 1 1
Q= —b+—Q I'+Q" I' I'+Q" I—' I' I"——, (48)

d d ' 6 d 'H d d

or
(b V.)Q =—b+ UQ,

1
Q =—b+-UQ, (43)

where the propagator 1/d= (b U,) ' c—ontains all
coherent effects as we planned. Equation (43) has a
simple physical interpretation": The scattering is
redescribed in terms of a basic set of states which are
the solutions to the problem with U=O. These states
are. generated by (1/d)b and they propagate through
the medium with energy E'+V, ; hen. ce the modified
propagator 1/d. The scattering of these states is wholly
incoherent and arises from the incoherent potential U.
We attempt to solve (43) by means of a multiple scat-
tering solution including incoherent eGects only. To
this end, guided by (37), we propose the solution

1 1
Q= —b+—Q I'Q',

1 1
Q =-b+- P I'Q',

d iQj'

where I' is the oG-diagonal part of a modihed scattering
operator t',

.1 .
1i—1 i+I i ei+ei, Ii (45)

Q=-b+P~ 1—-&; )-I'Q'.
d 'E d )d (47)

"See Gell-Mann and Goldberger, reference 6.
'4 The modified t' differs from the usual one by a term of order

1/iy. See K. M. Watson, Phys. Rev. 105, 1388 (19571.

The modification of t' is consistent with our procedure
of including all coherent eGects in the propagator. "
We now choose V„

V,=P; t,'=N1, .

To see if (44) is in. fact a solution to (43), we insert
(44), (45), and (46) into the right-hand side of (43).
After some rearrangement, we find

where, again, no two adjacent indices are alike. All the
dependence on impurity location is contained in Q and
we may now perform the usual average. At this point
the great advantage of this method becomes apparent.
The eGect of the averaging process is to eliminate all
terms in (48) for which an index appears only once. In
other words, because only oG-diagonal elements appear
in (48), only those terms enter for which an impurity
which scatters once must do so at least once again. The
lowest order of (48) which survives the averaging
process is the fourth since in the earlier terms every
impurity cannot appear twice. We then neglect the
incoherent scattering in the fourth order and we get,
using the fact that b and d are both diagonal in plane
waves,

(
2 1 11—ei, (r; Z) =—(Q) ys(r)——

bg, p ),(r)
2x bI, bp dp

p ~(r),8—Eg—Eti, i,

which is identical to (26) and leads in the same way to
the amplitude correlation function.

V

We have derived, in Secs. III and IV, the amplitude
correlation function under certain limiting conditions.
One of these is that the density of impurities be sufFi-

ciently low, This insures that the energy shift due to the
impurity potentials is negligible, and that the imaginary
part of the scattering amplitude tsi, (E) may be replaced
by fkpsp(E) as in Sec. III. In addition we have neglected
certain high-order multiple-scattering terms. These are
displayed most clearly in Sec. IV where they may be
seen to consist of "incoherent" scatterings of the fourth
order and higher. We have attempted to give an explicit
evaluation of the magnitude of these terms as compared
to those which we keep. We have not succeeded in
doing this but we believe these terms to be small for
low density. Finally, we have neglected the possibility
of bound states throughout.

We have remarked that the Fourier transform of the
amplitude correlation function is the distribution in k
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for energy E=kp'/2m. When normalized, it is approxi-
rnately (kpX))1)

(1/23.9,)L(k' —kp')'+kp'//Pj '

This shows that the eigenfunctions for energy E consist
of admixtures of plane wave states with a Lorentz
distribution around kp ——(2mE) l.

We should like to point out that the mean free path
X which appears in the amplitude correlation function
is not the same as that which one uses to compute the
electrical resistivity due to the impurity scattering. In

the latter case, a factor 1—cos0 appears in the integra-
tion over scattering angles 8 in order to de-emphasize
the importance of forward scatterings. The two mean
free paths will be the same only in the case that the
scattering is isotropic. The two are approximately equal
in actual cases.

We have applied the amplitude correlation to a
study of the effects of impurities on the transition
temperature of superconductors. " Details will be
published in the near future.

"Lynton, Serin, and Zucker, J. Phys. Chem. Solids 3, 165
(1957).
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The polaron Hamiltonian would be easily soluble were it not
for the quartic term appearing therein. It is proposed to substitute
for the quartic term a quadratic term having roughly the same
properties, and in such a way that the ground-state energy of the
new Hamiltonian is rigorously a Lower bound for the true energy.
With a very small amount of work one can obtain a lower bound
as a continuous function of cx for all values of e. The result agrees
fairly well with the results obtained by other methods. Using the
equivalent Hamiltonian one can also obtain an analytic expression

for the effective mass, although one cannot say it is a bound for
the true effective mass. Futhermore, once one has obtained a lower
bound for the energy as a continuous function of the parameters
of the Hamiltonian, one can rigorously derive upper and lower
bounds for the ground-state expectation values of various oper-
ators. For example, it can be shown that for large n and large k,
(o"*g')~k 'and not k s exp( —k') as in Pekar's solution. Because
of its simplicity, it is possible that this method may have appli-
cation to other ground-state problems.

l. INTRODUCTION AND ILLUSTRATION

'T has become common in recent years for field
theorists to turn their attention to the 6eld-theory-

like problems which are to be found in solid-state
theory. But rather than employing standard field-
theory techniques, as might have been expected, most
of the papers have tended to present entirely new
methods and points of view, and have ended with the
hope that the methods developed for solid-state theory
may have some application to field theory. It is from
this point of view that we should like to present a new
method for estimating the ground-state energy Eo and
the effective mass m* of the polaron.

It will be recalled that all the methods given so far
result in an upper bound for Eo. There is Lee, Low, and
Pines' weak-coupling variational calculation, as well as
Pekar's variational calculation for strong coupling.
There is every reason to believe that these answers are
correct. Feynman' has shown how to use the functional
integral to connect these two approximations. However,
Feynman's method is rather complicated, requiring the

*On leave of absence from the Research Institute for Funda-
mental Physics, Kyoto, Japan.' R. P. Feynman, Phys. Rev. 97, 660 (1955).

services of the Massachusetts Institute of Technology
Whirlwind computer, ' and moreover suffers from lack
of directness. It is not clear how to relate his method
to more pedestrian manipulations of Hamiltonians and
wave functions, although some attempts were made to
fill this gap. ' It is in fact possible to find a trial function
suitable for all coupling, 4 but here again it is not clear
what the changes in the trial function with coupling
constant mean. Finally, although a product function
such as is used for large coupling gives the asymptotic
dependence of Eo on e correctly, it yields patently
wrong answers in many cases if one tries to calculate
the expectation values of various operators in the
ground state. As a trivial example, one obtains(Hs) = ~
with a product function.

It is not our intention to critize the variational
calculations but to present an entirely different method
which exploits the properties of the Hamiltonian rather
than its wave function and at the same time gives a

'T. D. Schultz, Technical Report No. 9, Solid State and
Molecular Theory Group, Massachusetts Institute of Technology
(unpublished).

s For example, K. Yamasaki, Progr. Theoret. Phys. (Japan)
16, 508 (1956), and G. Hohler, Nuovo cimento 2, 691 (1955).

4 G. Hohler, Z. Physik 140, 192 (1955).


