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The three elastic constants Cus, %#(Cr1—Ci2), and 3(Ci11+Cia+2Cy) have been directly measured for
silver and gold in the temperature range between 4.2 and 300°K. The various contributions to the values of
the 0°K constants are analyzed in terms of a simple model which quite successfully describes copper. It is
concluded that such a model is unsatisfactory when applied to the heavier noble metals because these appear
to have large noncentral forces contributing to their constants. Combined with pressure data the present
results show the elastic constants to be explicit functions of temperature. The Debye characteristic tempera-
tures calculated from the 0°K elastic constants are shown to be in substantial agreement with the results

from calorimetry.

INTRODUCTION

N addition to being of interest as intrinsic physical
properties, the elastic constants of a solid give
information concerning the nature of the forces oper-
ating in solids. Measurements on single crystals at
liquid helium temperatures are most important since
they are readily comparable to theory. The composite
oscillator technique has been used at liquid nitrogen
temperatures on sodium! and aluminum.? Dyanmic
bending and torsion measurements down to the liquid
hydrogen range have been performed on crystals of
copper, gold, lead, and aluminum by Goens.? Quite
recently the pulse method has been used to investigate
copper? and zinc® from room temperature to the liquid-
helium range. The semiempirical calculations by Fuchs®
of the elastic constants of sodium, potassium, and
copper are essentially in agreement with these experi-
ments. Measurements on the heavier noble metals are
needed to afford a further test of these calculations.
The low-temperature elastic constants may also be
used to calculate the Debye characteristic temperature
at 0°K which is required for the proper analysis of low-
temperature specific-heat measurements. However,
there exist so few elastic-constant measurements at
liquid helium temperature that the various methods
of calculating 8p from elastic data cannot be critically
examined in order to determine the extent to which
they can be trusted in the analysis of specific-heat
results. In accordance with these views an investigation
of the elastic constants of silver and gold in the tempera-
ture interval 4.2°K to 300°K was undertaken.

Experimental Procedure

Silver and gold single crystals were prepared by a
modified Bridgman method in a manner similar to
that previously described”; the metal being contained
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in a carbon crucible which was heated and cooled slowly
in an argon atmosphere resistance furnace. After
removal from the crystal growing furnace, the ingots
were etched and mounted in a jig. Back reflection Laue
photographs were used to align the jig so that a [110]
direction in the ingot was parallel to the x-ray beam.
A cylinder with faces normal to [110] was then cut
out of each ingot with a thin liquid-cooled abrasive
wheel. These single-crystal cylinders were then hand-
lapped until the faces were flat and parallel to within
+0.0004 cm. The length of the resulting [ 110 J-oriented
single-crystal cylinders measured 1.4548 cm for silver
and 1.6261 cm for gold. Spectrographic analyses of
portions of the single-crystal ingots showed them to be
of higher purity than the Matthey spectrographic
standards.

Determination of the wave velocities was by a
modified pulsed ultrasonic method.’ In this arrange-
ment, the 10-Mc/sec pulses are displayed without
passing through a detector stage, and the time between
echoes was determined by direct comparison with
standard time markers simultaneously displayed on
the oscilloscope. Attenuation in both silver and gold
is small enough so that it was possible to obtain echo
trains lasting for several hundred microseconds.
Individual settings were reproducible to 40.01 usec.

For temperature control, the specimen was mounted
on a flat copper plate which was placed in a copper
can covered with Styrofoam insulation. A heater coil,
resistance thermometer, and copper-constantan thermo-
couple were attached to the plate. Two thin brass rods
served as supports for the plate and provided a slight
thermal contact with the bath of either liquid nitrogen
or helium. A Brown Electronik Recorder was used to
control and measure the temperature of the copper
plate and hence the specimen. The thermocouple was
used for determining temperatures above 77°K and the
resistance thermometer below. The resistance-tempera-
ture characteristics of the thermometer were taken
from the measurements of Dauphinee and Preston-
Thomas.® Over the entire range the temperature could

8 T. M. Dauphinee and H. Preston-Thomas, Rev. Sci. Instr. 25,
885 (1954).
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Frc. 1. The adiabatic elastic constant %(Ci11+Ci2+2C4) for
silver as a function of temperature. The black square marks the
room temperature result of Bacon.

be measured to better than 0.1 degree and could be
controlled to at least 0.5 degree over the time required
for a measurement.

Longitudinal and transverse acoustic waves were
generated by X cut and B-T cut quartz transducers
with Salol as a binder at room temperature. At all
other temperatures glycerin was used. As discussed
previously,’ it is felt that no transit time correction is
justifiable. The density used in computing the elastic
constants was taken from the ASTM powder x-ray
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F1G. 2. The adiabatic elastic shear constant Cy4 for silver as a
function of temperature. The black square marks the room
temperature result of Bacon.
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card file. These room temperature densities, for gold
p=19.30 g/cm?® and for silver p=10.50 g/cm?, and the
measured values of the sound velocity, V, were cor-
rected for thermal expansion by using the expansion
coefficient data of Nix and McNair.’ The experimental
results are then a list of pV? values as a function of
temperature.

RESULTS

From determination of the elastic wave velocities in
a [110]-oriented cubic crystal, one obtains directly
three independent linear combinations of the elastic
constants. These directly determined quantities, Cas,
3(C1i—Cr), and 1 (C11+C12+2C44), are shown in Figs.
1-6 and are sufficient to define all the elastic constants.
Figures 1 and 4 show the quantity pV2=%(Cu+Cie
+2Cy4) plotted as a function of temperature for silver
and gold. Figures 2 and 5 show pV?=Cy and Figs. 3
and 6 show pV3?=%(C11—C12) plotted as a function of
temperature.
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F1c. 3. The adiabatic elastic shear constant %(Cy—Ci2) for
silver as a function of temperature. The black square marks the
room temperature result of Bacon.

Tables I and II show the elastic constants of silver
and gold taken from smooth curves drawn to fit the
data. In the tables, the 0°K values were obtained by
extrapolation of the smooth curves. The number of
significant figures is greater than is warranted on an
absolute basis but one extra figure has been retained
in order to show smoothness and internal consistency.
From consideration of the errors, it is estimated that
on an absolute basis the directly measured values are
accurate to 0.5%, and the computed constants to at
least 1.5%. The absolute temperature is estimated to
be accurate to better than 1.0 degree over the entire
range.

In Figs. 1-3 the experimental room-temperature
results of Bacon!® for silver, determined by essentially
the same method, are also plotted. Agreement is quite
good except in the case of C’ where the difference is

9 F. C. Nix and D. McNair, Phys. Rev. 61, 74 (1942).
1 R, Bacon and Charles S. Smith, Acta Met. 4, 337 (1956).
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about 19%. In Figs. 5-6 the results of Goens® for gold
are also plotted. The agreement is good for the two
shear constants. For the longitudinal mode, %(C11+C1e
+2Cu), the difference is about 139, and Goens’ value
is not plotted since it falls below the graph.

Theoretical Values of the Constants

The low-temperature elastic constants of monovalent
metals have been calculated by Fuchs.® In his work,
the contributions to the constants are considered to
come from a sum of terms; Wg, the energy of a positive
point lattice in a uniform negative sea; Wy, the Van
der Waals energy of a pair of ions; W7, the ion repulsive
energy; Wp, the Fermi energy, and the energy of the
lowest state, Wo. Important contributions to the shear
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F16. 4. The adiabatic elastic constant (Ci1+Ci2+2Cus)
for gold as a function of temperature.
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constants C=Cy and C'=%(C1;1—C12) were found to
come only from W and Wg. Important contributions
to the bulk modulus, B=%(C11+2C:2) were found to
arise from the ion and Fermi energies. Thus, to this
approximation, the elastic constants can be written as
a sum of terms:

C=Cg+Cr,
Cl — CE, _|_ CI,,
B=Bp+Br,
where the subscripts represent the contributions from
the ion, electrostatic, and Fermi energies. The electro-
static energy Wg and Fermi energy Wy can be estimated

rather simply, but any estimate of the ion energy Wy
requires a knowledge of the wave functions of the ion
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temperature result of Goens.

core and then an elaborate calculation. For copper,
Fuchs carried out this ion energy calculation using a
modified Fermi-Thomas method and obtained elastic
constants which are comparable with the low-tempera-
ture experimental values.

Since ion energy estimates are not available for silver
and gold, strictly theoretical values of the elastic
constants cannot be obtained for these metals. However,
by assuming a functional form for the ion energy, the
measured elastic constants may be used to determine
the parameters in this effective ion-repulsion potential.
If only two parameters are introduced, only two elastic
constants are needed to specify the ionic term, and the
third elastic constant can then be used to judge the
validity of the model. Assuming that the effective ion-
repulsion potential Wy is given by Wi=Aelr—role,
where 7, is the distance between ion centers, the two
shear constants C and C’ were used to determine A
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Fic. 6. The adiabatic elastic shear constant $(Cy—Cis) for
gold as a function of temperature. The black square marks the
room temperature result of Goens.
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TasLE I. The adiabatic elastic constants of silver as a function of temperature, all in units of 10> dyne cm™. The first three columns
are readings taken from smooth curves drawn through the experimentally determined points. The number of significant figures does not

indicate the accuracy of the absolute value (see text).

T pV12 pVa2 pVa? B
(°K) 3(Cu+Ci2+2Cu4) Cas 3(Cuu—Cr2) Cu Ciz2 1(Cu+2C12)
0 1.6550 0.5109 0.1708 1.3149 0.9733 1.0872
10 1.6545 0.5108 0.1707 1.3144 0.9730 1.0868
25 1.6535 0.5098 0.1704 1.3141 0.9733 1.0869
50 1.6491 0.5072 0.1693 1.3112 0.9726 1.0855
75 1.6407 0.5028 0.1675 1.3054 0.9704 1.0821
100 1.6305 0.4982 0.1657 1.2980 0.9666 1.0771
125 1.6204 0.4936 0.1640 1.2908 0.9628 1.0721
150 1.6103 0.4890 0.1622 1.2835 0.9591 1.0672
175 1.6002 0.4844 0.1604 1.2762 0.9554 1.0623
200 1.5901 0.4797 0.1587 1.2691 0.9517 1.0575
225 1.5800 0.4750 0.1569 1.2619 0.9481 1.0527
250 1.5699 0.4704 0.1551 1.2546 0.9444 1.0478
275 1.5597 0.4658 0.1534 1.2473 0.9405 1.0428
300 1.5495 0.4612 0.1516 1.2399 0.9367 1.0378

and 7o/p for silver and gold. Copper was also analyzed
in this way for comparison. The results of this calcula-
tion are shown on the first two rows of Table III. The
third row gives By, the contribution to the bulk modulus
from the ionic energy as defined from the shear con-
stants. To calculate the total bulk modulus, the bulk
modulus Br of the Fermi gas of electrons in the metal
must be added. This was calculated from free electron
theory modified for the effective mass of the electrons
" as determined from specific heat data and is shown in
the fourth row of Table III. The fifth row gives the
sum (Bp-+Br) which should be the same as the meas-
ured total bulk modulus if our semiempirical model is
to be a reasonable approximation. Agreement is good
for copper, poor for silver, and very bad for gold. Thus
at least one of the terms Wg, Wi, or W must be a very
poor description of gold. The elastic constants are not
very sensitive to Wx and since a major modification in
it in going from copper to gold would be very difficult
to justify, it seems reasonable to assume that Wg is
not the main source of the disagreement. The W; term
is presumably adjusted for each of the elements. This

leaves only the Wy term and hence the bulk modulus
of ‘the electron gas available for modification. De-
Launay! has shown that the bulk modulus of the
apparent electron gas active in a metal is given by the
quantity Cis—Cys. (Actually the difference Cio—Caq is
the bulk modulus arising from all sources whose
energies depend upon the total volume rather than on
central-force interactions between lattice points.) By
taking the measured quantity Cis—Cyq for the bulk
modulus of the electron gas and adding it to By, the
“theoretical” total bulk modulus shown in the seventh
row of Table III was obtained. Here the agreement
for all three noble metals is greatly improved. The
reason that Cis—Cas is so different from the free-
electron bulk modulus Br in the case of gold is not
clear. It may be that the valence electrons cannot be
described by the free-electron model used to compute
Wrp. Also the energy of the lowest state, W, may
contribute more to the bulk modulus of the heavier
noble metals.

Modifying the electronic terms which contribute to
the elastic constants is certainly not the only possibility

Tasie II. The adiabatic elastic constants of gold, in units of 102 dyne cm™2, as a function of absolute temperature. The first three
columns are readings taken from smooth curves drawn through the experimentally determined points. The number of significant figures

does not indicate the accuracy of the absolute value (see text).

T pVi2 pVa2 pVsd B
(°K) 3(Cu+Ci12+2Cus) Cua 3(Cu1—Cr12) Cu Crz 3(Cu+2C2)
0 2.3109 0.4544 0.1598 2.0163 1.6967 1.8032
10 2.3106 0.4542 0.1597 2.0161 1.6967 1.8032
25 2.3089 0.4533 0.1595 2.0151 1.6961 1.8024
50 2.3032 0.4510 0.1585 2.0107 1.6937 1.7994
75 2.2935 0.4477 0.1572 2.0030 1.6886 1.7934
100 2.2827 0.4446 0.1559 1.9940 1.6822 1.7861
125 2.2721 0.4415 0.1547 1.9853 1.6759 1.7790
150 2.2612 0.4384 0.1535 1.9763 1.6693 1.7716
175 2.2507 0.4352 0.1522 1.9677 1.6633 1.7648
200 2.2397 0.4320 0.1510 1.9587 1.6567 1.7574
225 2.2290 0.4290 0.1497 1.9497 1.6503 1.7501
250 2.2182 0.4257 0.1485 1.9410 1.6440 1.7430
275 2.2076 0.4226 0.1472 1.9322 1.6378 1.7359
300 2.1969 0.4195 0.1460 1.9234 1.6314 1.7287

1 J.D eLaunay in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press, Inc., New York, 1956), Vol. 2, pp. 219-303.
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Reference to Table IIT shows that the ionic potential
parameters are quite different for the different noble
metals. This indicates that there may be other contribu-
tions to the shear constants or that the electrostatic
contributions are too large, as has been suggested by
Huntington,” or that the simple ionic potential should
be modified by introducing noncentral contributions.
Following Huntington and using only one-half the
contributions from Wg, the ion-potential parameters
become somewhat more nearly equal for all three
metals and not quite so large, but the failure to describe
gold is not improved. The introduction of a noncentral
contribution to the ion-ion interaction by assuming
Wr=A'(14agp)et"/», where o is a constant and
¢ a function of the direction in the lattice (i.e., the
second Kubic harmonic), leads to physically unrealistic
results. Taking ¢ to be a combination of the second
and third Kubic harmonics improves the results but
seems to indicate that many harmonics need to be
used to obtain consistent values of shear constants and
bulk moduli.

TaBLE III. Interaction potential parameters and contributions
to the bulk modulus for the noble metals. By is the ionic contribu-
tion to the bulk modulus and By the contribution from the Fermi
gas of electrons. All the elastic constants are in units of 1012
dynes/cm?.

Cu Ag Au

ro/p 24.2 344 80
W (ro) [ev] 0.016 0.007 0.001
B 0.851 0.514 0.407
Br 0.469 0.356 0.299
B1+Br 1.320 0.870 0.706
Biness 1.420 1.087 1.803
Br+(Ci12—Cus) 1.283 0.976 1.649
12— Cas 0.432 0.462 1.242

.

Thus it is concluded that if Cio—Cas is considered
to be the bulk modulus of the electron gas, it is possible
to arrive at a self-consistent picture of the various
contributions to the elastic constants of the noble
metals. However, the model is quite empirical and may
have no general significance.

Variation With Temperature

It is seen from Figs. 1-6 that the elastic constants of
silver and gold are remarkably linear with temperature
(deviations being about 0.19;) in the range above 50°K.
The temperature variation of both is similar to other
metals in that the constants increase with decreasing
temperature. However, the variation is different from
metals such as copper* and zinc® in which the curvature
is more pronounced. The percentage change of the
constants relative to their 0°K values is about the
same for silver and gold as for copper. The elastic
anisotropy 2Cus/(C11—Cis), not shown in the figures,

12 H. B. Huntington, Phys. Rev. 91, 1092 (1953).
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TasirE IV. The intrinsic temperature dependence of the elastic
constants of the noble metals [in units of 107* (deg K)*].

Material (@ InM/oT)v (@ 1InM/dT)yp BK1(d InM/ap)r
Copper C —1.64 —3.68 2.04
c’ —2.64 —4.26 1.62
B 1.06 —1.60 2.66
Silver C —-1.15 —4.02 2.87
c’ —2.26 —4.65 2.39
B 1.54 —1.88 3.42
Gold C —0.01 —2.98 297
C’ —1.31 —3.39 2.08
B 0.94 —1.66 2.60

is readily seen from the tables to increase slightly for
both metals over the temperature range.

The three linear combinations of constants C=Cly,,
C'=%(C11—C1y), and B=%(C11+2C1s) completely char-
acterize a cubic crystal. Near room temperature these
constants vary linearly with temperature and have the
slopes:

dC/dT=—1.85, dC'/dT=—0.705,

and dB/dT=-—1.95 for silver,
dC/dT=—1.25, dC'/dT=—0.50,

and dB/dT=-2.87 for gold,

all in units of 10 dyne cm™2 deg'. All these values
were computed from the smoothed curves.

Thinking of the modulus M as an explicit function
of temperature, and as an implicit function of tempera-
ture through the temperature dependence of the volume,
one can write

(0 InM/dT)y= (d InM/dT),+K78(d InM/p)r, (1)

where B is the volume expansion coefficient and K is
the isothermal compressibility. By evaluation of Eq.
(1), it has been shown experimentally®® that the elastic
constants are explicit functions of temperature. Table
IV shows Eq. (1) applied to the noble metals, and the
values for copper! are included for comparison. The
values of the isothermal pressure derivatives used in
computing the table are taken from Daniels.* From
Table IV it is clear that the elastic constants of the
noble metals are intrinsic functions of temperature,
Although for these metals the total change in modulus
with pressure is always positive and the total change
with temperature is always negative, the intrinsic
temperature variation may have either sign. For the
shear constants, the intrinsic temperature dependence
is negative, and greater for C’. The intrinsic dependence
of the bulk modulus is always positive, contrary to
results for other metals.® On the basis of a simple
thermal vibration of the ions, the ionic repulsion would
be expected to increase with temperature. The ionic

3D, Lazarus, Phys. Rev. 76, 545 (1949); T. R. Long and C. S.
Smith, Office of Naval Research Report (unpublished).

“4'W. B. Daniels, dissertation, Case Institute of Technology,
1957 (unpublished).
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TaBLE V. Debye characteristic temperatures of the noble metals.

Method Copper Silver Gold
Lattice dynamics® 345.3 227.4 161.6
Average wave velocity? 345.4 227.1 162.2
Calorimetric® 343.84-0.5 225.3+0.2 164.6+0.14
Calorimetricd 346.7+1.1 226.5+0.5 164.840.2
[ Calorimetric® 164.1

d See reference 17.
e See reference 19.

= See reference 11.
b See reference 15.
© See reference 16.

energy and the Fermi energy, which is not very
temperature-sensitive, are the major contributors to
the bulk modulus, and it is thus reasonable to expect
the intrinsic temperature dependence of the bulk
modulus to be positive as is observed here. Since the
observed moduli decrease with temperature, one might
conclude that both the Fermi energy and the ion
repulsion energy are lowered through the increase in
volume to more than offset the intrinsic temperature
increase.

In the lattice dynamics of DeLaunay,! deviations
from the Cauchy relations are ascribed to the electron
gas which follows the motion of the ions. This deviation,
the difference between Ci2 and Cu4, considered as the
bulk modulus of an electron gas, would be expected to
decrease with temperature through the thermal
expansion. Actually, the difference increases for copper
and silver, and decreases for gold. This corroborates
DeLaunay’s statement that the electron gas as used
here is a phenomenological quantity and does not
depend on the accuracy of the Sommerfeld theory of
the electron gas.

Debye Characteristic Temperatures

In principle, the Debye temperature of a solid may
be computed from the low-temperature elastic con-
stants. Various methods are available for carrying out
the velocity-averaging over all crystal directions which
is necessary for this computation. Betts ef al.'® have
extended Houston’s method to take into account cubic
crystals of elastic anistropy greater than 1.5. They find
that for anisotropies up to four, taking a six-term
approximation gives results which compare with
Blackman’s numerical integration results to within less
than one percent. The case of aluminum is apparently
anomalous since the disagreement for such a nearly
isotropic metal is large (about 2%).

15 Betts, Bhatia, and Wyman, Phys. Rev. 104, 37 (1956).
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Using the Born-Von Kérmén model of a lattice,
modified to include the noncentral electron gas con-
tribution, DeLaunay! has also developed a method of
calculating Debye temperatures from elastic-constant
data. He has shown that using his method for copper,
the calculated Debye temperatures are in agreement
with calorimetric data to within 0.59.

Table V compares the Debye temperatures of the
noble metals as obtained by various methods. The
original calorimetric data of Corak et al.!® are included,
as well as a new computation'” based upon their data
but corrected to the 1955 van Dijk and M. Durieux
temperature scale.’® Included also as a matter of
interest is a recent unpublished determination®® of the
characteristic temperature of single-crystal gold. This
specimen is the remaining part of the ingot from which
the acoustic specimen was cut. The elastic and calori-
metric determinations of Debye temperature for each
metal differ by about 19, for copper and silver and by
about 2%, in the case of gold. Except for gold, the elastic
and calorimetric values of 8p are very close. The cause
of the small discrepancies between the results of the
two methods of calculating Debye temperature from
elastic constants is probably connected with the
approximation methods used in the average velocity
method of Betts et al. Differences between the calori-
metric data are of interest since they represent es-
sentially two different opinions on treatment of the
same experimental results. We take Table IV as
empirical proof that Debye temperatures derived from
elastic and calorimetric measurements are in agreement
to within at least 29;. We think the differences are
probably not significant and that they indicate the
spread in Debye temperature values to be expected.
For materials, such as the transition metals, where the
calorimetric determination of Debye temperatures is
difficult, the calculation of 6p from low-temperature
elastic constants is probably the most accurate method
available.
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