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This projection will be (Fig. 3)

Proj(AQ) = AS&+ AS&, (37)

where the denominator is just the sum of the reciprocal
passage times 1/tt=et/$t, and 1/ts ——ns/$s. The exten-
sion to more dimensions is now immediate, and so we
have generally

where hS; is the surface element whose normal points
in the direction of ~;. But because of the orthogonality
we have AQ=s;hS; for any j, so that we may replace
ESt and ESs in the denominator of (36) by AQ/$t and
BQ/ss, respectively.

The expression (36) for the mean segment will then
take the form

(39)
~coInc
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A kinetic equation governing the time dependence of the cor-
relation function of flux is established for dilute gases and is in-
tegrated to yield a relation between the correlation time and the
transport cross section. The spectrum of the binary collision
operator is determined for spherically symmetric forces between
molecules, which, for the hard-core model, consists of two discrete
values in the classical limit; hence it is shown that the question
of validity of approximating the correlation function by an
exponential decay depends upon the type of intermolecular force
and the temperature of the system, Approximate eigenvalues of
the master collision operator are obtained corresponding to the

Quxes of viscosity and thermal conduction, and their relations
to the macroscopic transport coefhcients are derived. These
relations lead to a new approach to the transport properties of
dilute gases, which is different from Enskog-Chapman's method,
but yields the same results in the classical limit. An expansion
formula for the canonical transformation describing the motion
of dilute gases is obtained and is employed to clarify the assump-
tion of random u priori phases in the momentum representation
for spatially uniform gases; this is done by formulating the
quantum-mechanical equivalent of Brout's idea in the classical
derivation of the master equation.

1. INTRODUCTION

'HE typical examples of the molecular theory of
transport phenomena, such as the viscosity of

dilute gases and the electrical conductivity of metals,
are usually based on the Maxwell-Boltzmann integro-
diBerential equation for the velocity distribution func-
tion of molecules' or its modification. The extension of
the kinetic method to the treatment of transport phe-
nomena in dense gases and degenerate quantum gases
has not been made in the general case.

On the other hand, according to the recent theories
of transport processes, "we.can obtain molecular ex-
pressions for transport coeKcients or kinetic coef6cients
which are valid over the same region as the thermo-

*This work was supported in part by the U. S. Air Force
through the Air Force Ofhce of Scientific Research of the Air
Research Development Command.' S.Chapman and T. G. Cowling, The Mathernaticat Theory of
Iionnniforrn Gases (Cambridge University Press, Cambridge,
1939).' R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).' H,.Mori, J. Phys. Soc.ItJapan'll, 1029 (1956).

rt = (1/Vk2') dl +r, t (t),
0

(1.2)

4 S. R. de Groot, Thermodynamics of Irreversible Processes
(North-Holland Publishing Company, Amsterdam, 1951).

~ M. S. Green, J. Chem. Phys. 22, 398 (1954).' In the classical limit, Eq. (1.2) agrees with Green's expression'
except that the average in (1.1) is made with the canonical en-
semble whereas, in his expression, with the micro-canonical
ensemble. The latter situation causes a serious difference in the

dynamics of irreversible processes. ' The most remark-
able feature of the theories is the formulation of the
transport coefficients in terms of the correlation func-
tions of the equilibrium fluctuations of the corresponding
dynamical cruxes P,

(t) =-',(FF(l)+F(t)F), (1.1)

where the angular brackets mean the average over the
canonical ensemble of the system, and F(t) is the value
of F after time t and should, in the quantum-mechanical
case, be read as the Heisenberg operator. For example,
the coefFicient of shear viscosity of isotropic fluids can
be expressed as' "
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with

(1 3)

p; and (r;;),being the a components of the momentum
of molecule i and the relative coordinate betweeni and j,
and (F;;)„ the y component of the intermolecular force
between i and j. T is the temperature, V the volume,
X the number of molecules, and k the Boltzmann
constant.

By determining the time dependence of the correla-
tion functions, therefore, we may calculate the transport
coefIicients. Interesting studies along such a line have
been carried out in several important cases. '

Green's' investigation of classical dilute gases is
based on the assumption that the temporal develop-
ment of a conditional average value of the flux F(t) in
the correlation function is governed, in a certain
manner, by the linearized Maxwell-Boltzmann equa-
tion. Thus, although he has shown the consistency of his
approach with the kinetic theory based upon the
Enskog-Chapman solution of the Maxwell-Boltzmann
equation, the molecular picture of the time-dependence
of the correlation functions has not been clarified.

In Kubo-Tomita's' theory of magnetic resonance
absorption and Nakano's' method of calculating elec-
trical conductivity, it has been assumed that the correla-
tion function decays exponentially in time, and the
relaxation time has been calculated by the second-
order perturbation theory. It is necessary, however,
to discuss the physical aspect and the limit of validity
of this approximation, which will be seen to depend
upon the Hamiltonian and the thermodynamic state
of the system concerned.

The principal purpose of the present paper is, there-
fore, to investigate the time dependence of the correla-
tion functions of cruxes from the standpoint of molecular
dynamics. As a typical example, we consider the vis-
cosity and the thermal conductivity in nondegenerate
quantum gases of one component with spherically
symmetric forces between molecules.

We set up in Sec. 2 two problems which are the main
subjects of the following sections; one is to establish a
kinetic equation for the diagonal elements of the
Heisenberg operator of the Rux, and the other is to
determine the spectrum of the binary and master
collision operators in the kinetic equation. These
subjects are essential to the analysis of the relaxation
processes in momentum space and their relations to the
macroscopic transport coefIicients. In Sec. 3, the spec--

calculation of the transport coe%cients; for example, the 2nd
term of the flux of thermal conduction (3.23) is missing in his
corresponding expression. Equations (1.2) and (3.24) will be
proved exactly, in a forthcoming paper, with the assumption tQat

. the macroscopic motion of the fluids can be described by one
velocity, one temperature, and one mass-density 6eld.

s R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).
s H. Nakano, Progr. Theoret. Phys. (Japan) 15, 77 (1956); 17,

145 (1957).

F= Q p; p;„/ttt. (2.1)

Therefore, by neglecting the interaction energy in the
Hamiltonian in the Boltzmann factor, the correlation
function can be written as

(2 2)
where

(8)=QsB exp( —Es/kT)/gs exp( —Es/kT), (2.3)

where Ii, and E, are, respectively, the eigenvalues of F
and the kinetic energy Ho corresponding to the eigen-
state of the total momentum, p= (yr, . , p~), and

(p ~
F(t)

~ y) are the diagonal elements of the Heisenberg
operator F(t) in the momentum representation.

The Heisenberg operators at different times are
related to each other as

F(t) = U(s) tF (ts) U(s), U(s) =exp(sH/ih), (2.4)

where H is the total Hamiltonian of the system, U(s) t

the Hermitean conjugate of U(s), and t=ts+s. In order
to obtain a kinetic equation for the diagonal elements of
the Heisenberg operator, we make use of the postulate
of random a priori phases' in the following manner.

' R. C. Tolman, The Prirtciples of Statistical 3fechassics (Claren-
don Press, Oxford, England, 1938), Chap. XI; D. ter Haar,
Elemestts of Statistical Mechassics (Rinehart and Company, New
York, 1954), Appendix L

trum of the binary collision operator is obtained, and
the Ruxes of viscosity and thermal conduction are shown
to be approximate eigenfunctions of the master collision
operator. On the basis of these results, the time de-
pendence of the correlation functions of Quxes and the
relaxation processes in momentum space are investi-
gated. In Sec. 4, Enskog and Chapman's expressions for
the viscosity and the thermal conductivity are derived
from the corresponding eigenvalues of the master
collision operator, and it is pointed out that our theory
may be regarded as a generalization of Maxwell and
Boltzmann's original theory of transport in dilute
gases. Sections 5 and 6 are devoted to establish the
above-mentioned kinetic equation from the principles
of statistical mechanics. A linear operator governing
the change in time of the Heisenberg operator is in-
troduced, and an expansion formula for it is obtained.
This enables us to derive the kinetic equation without
the repeated use of the assumption of random a priori
phases.

2. PRELIMINARY DISCUSSIONS

We first present a simple and practically convenient
method of obtaining a kinetic equation for the correla-
tion function and a molecular expression for the relaxa-
tion time.

In gases of low density, the contribution due to the
intermolecular part to the viscosity flux, (1.3), may be
neglected in comparison with that due to the first part:
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The value of (PIF(t) Iy) depen. ds upon all the matrix
elements of F(ts) at a previous time. If, however, we

may neglect the contribution due to the o8-diagonal
elements of F(ts), then Eq. (2.4) leads to

(P[F(t) ly)=Q W(P', P; s)&y'IF(to) [P'), (2.5)

molecules; namely,
(2wit) s x—1

W(y', y; t) =w(y;, p;;; t)1V!
V

&&~(y-t' —y-) II ~(y.'—P~),

where we have defined

w(y', y; ~) = l(y'I &(~) ly) I',

V

(2 6, tn(yv «Prie t) I Idy'i
2 6) & (2wi')s

(2.10)

with the corresponding matrix element of the U(s) in
the momentum representation. W(y', p; t), (t)0, y'Ny),
expresses the transition probability of the system from
state p to state p' after time t."By taking the unit
operator instead of F in Eq. (2.5), we obtain the con-
servation law of probability,

1=W(PP ~)+ Z W(y'P'~)
u'(&u&

(2.7)

which is inserted into (2.5) to give

(PIF(t)ly)=(y[F(to)lp)+ P W(p', p;s)
u'(&u~

&&((y'IF(to) ly') —&PIF(to) ly)}, (2 8)

which describes the change in time of the diagonal
elements in terms of their increments due to the transi-
tion processes. We note here that Eq. (2.8) is rigorous
when tp=0, because Ii is a diagonal matrix in the
momentum representation and therefore the use of the
assumption of random a priori phases is unnecessary
in this case.

Now we consider a dilute gas whose molecular motion
can be analyzed in terms of binary collisions. The inter-
molecular interaction is assumed to be a spherically
symmetric force of short range. The mean free time
and the mean collision time are denoted, respectively,
by rr and rs, and we assume that rs«rr (the assumption
of instantaneous collisions). In a time much shorter
than the mean free time, each molecule collides with

at most one other molecule. By a binary collision

between i and j, the state p is transformed to

~';(1)y= (Pr y;+(y —y') &&

P,—(P;—P;) ll, , Pg), (2.9)

where p;, , p„,, and E;, are, respectively, the relative and
center-of-mass momenta and the relative kinetic energy,
and dQ the element of solid angle in the direction of

scattering (0, ip), and o (p;, ,t)) the scattering cross section
in which the symmetry eGect due to the collision of
identical particles has been taken into account. The
dF„' should be of the order of magnitude of A/t. There-
fore, by taking into consideration all possible binary
encounters, Eq. (2.8) leads to

&y

IF�(t)

I y) = (1—r~)&y[F (t—r) [y), (2.11)

for such a short time interval that ~p&&7&&~y. Here, we
have defined the following collision integral operators
familiar in the kinetic theory of dilute gases":

i~1 j=i+I

2p" (2 12)
1t;,g(y) = —(1/V) dp do sino o.(P...8)

"o s ns

x fg(&,, (&)y) —g(p)},

which will be called, respectively, the master and binary
collision operators. The condition 7-p«~ means that the
majority of collisions concerned start and end during
the time interval 7 so that the change of the diagonal
elements in v can be described sufficiently in terms only
of the scattering cross section. Thus, with the use of the
assumption. of random a priori phases in the above

armer and the assumption of instantaneous collisions,
we obtain

(2.13)(y I
F(t) I y) =exp (—tA) F„

which is substituted into (2.2) to give"

+p p(t) =&Fs exp( —tA) Fs)

where I is the unit vector in the perihelion direction. The
corresponding transition probability can be expressed
in terms of the usual scattering cross section, "because,
according to the definition of the binary collision, the
wave packets of i and j do not overlap those of the other

(2.14)

"M. Kac, I'roceedirlgs of the Third Berkeley Sympos~lm oe
Mathematical Statistics aed I'robability (University California
Press, - California, 1956), Vol. 3, p. 171.

"We note here that Eq. (2.14) is valid only for t)0 and does
not satisfy the relation O'I, z(t) =+F,z(—t), which is obtained
from (1.1) with the aid, in the classical case, of the Liouville
theorem and, in the quantum-mechanical case, of the identity
TrAB=TrBA. In order to clarify the origin of this inequality of
the direction of time axis, we consider (2.11) with t =a. Since (2.8)
is rigorous when to=0, the origin is in the procedure of obtaining

I The density matrix p(t) satisfies p(t) =U(t)p(0)U(t)t There-.
fore, under the initial condition (y [p(0) [y)=P(p)8& &, we obtain
an equation for the density matrix analogous to (2.5), which gives
(p[ p(t) [p) =W(y, pe, t), if Z(y) =Sp,p, . From this, the foregoing
follows.

"D. Bohm, Qttowtttrw Theory (Prentice-Hall, Inc. , Englewood
Cliffs, New Jersey, 1952).



STATlSTlCAL MECHANICS OF TRANSPORT PROCESSES 69'I

which is positive. "Then, the correlation function (2.14)
can be written as

+s ~(t) =(F,') exp( —t)t„)L1+tt(t) 1, (2.16)

where we have defined

(2.17)

with the eth moment about the average value;

(2.18)

If all the moments tt„, (n~ 2), vanish, then the correla-
tion function decays exponentially to zero. The neces-
sary and sufficient condition for this is the requirement
that F~ be an eigenfunction of the master collision
operator and A, be the corresponding eigenvalue,

h. Fp=X,Fy. (2.19)

This condition will be shown to be satisfied rigorously
by the Maxwell model of intermolecular force in the
classical limit. In general, especially in the quantum-
mechanical cases, Eq. (2.19) cannot be satisfied exactly.
It is nautral, however, to consider that the deviation
tt(t) may be neglected as the first approximation;

I t (t) I
«1. (2.20)

Eq. (2.10) which is valid only for t&0. Thus the inequality turns
out to be due to the adiabatic approximation in the theory of
collision (see reference 30), which is introduced so that the states
before and after collision can be expressed by definite eigenfunc-
tions of the kinetic Hamiltonian, and, therefore, which is related
essentially to the process of interaction of the quantum-mechanical
system with a classically describable system, an apparatus of
measuring the kinetic Hamiltonian, in the theory of quantum-
mechanical observation (See reference 11, Secs. 18.9, 22.14). Such
relation to the process of observation is important to clarify the
statistical-mechanical picture of kinetic equations. In the present
paper, we shall not consider it further. It should be emphasized,
however, that the assumption of random u priori phases introduced
just before (2.5) has no primary relation to the inequality of the
direction of time.

'4 With the aid of microscopic reversibility (6.24), we obtain
Qsr

&g(u)Ag(1))=2U Z, dv, «»»
i&j'

X "
O(P;;,0) g(A;2P) —g(P) '

When the average de Broglie wavelength of molecules
becomes of the order of magnitude of the average
molecular distance at very low temperatures, then
multiple collisions appear so that the binary collision
approximation may be invalid.

Next we consider a formal condition under which
these equations can be expressed approximately in
terms of one relaxation time. We introduce an average
value of the master collision operator for the viscosity
Rux,

(2 13)

Then, substitution of (2.16) into (1.2) gives

((Fo')/Uh T)
(2.21)

for the viscosity coefficient of dilute gases. The straight-
forward calculation of (2.21) will be shown to yield,
in the classical limit, Enskog and Chapman's expression
for the viscosity in the first approximation. '

As has been seen in the above, the crucial points
about the correlation function to be investigated
further are the following:

(I) the eigenvalue proMem of the ntaster collision operator;
(II) the physical meaning and the limit of validity of the

assumption of random a priori phases in the momentum
rePresentation.

These problems themselves are of great interest and
have been, respectively, investigated in a number of
papers. The question (I) is closely correlated to the
eigenvalue problem of the collision operator in the
linearized Maxwell-Boltzmann equation" which has
been solved for the Maxwell molecules in the classical
case. The spectrum of the master collision operator
has been investigated by Kac," but has not been
obtained even for his simplified model, a kind of one-
dimensional Maxwell model. Our particular intention
is to obtain the eigenvalues of A and A;; which give the
relaxation times of the Quxes of viscosity and thermal
conduction, and to know how the eigenvalues depend
upon the type of intermolecular force and the thermo-
dynamic state of the system.

The problem (II) is a central subject of the recent
investigations of the statistical mechanics of transport
processes. Van Hove" has clarified this question by
deriving a kinetic equation with the requirement of the
postulate of random a priori phases at the initial time
only. His derivation is based on the recognition of the
fact that the perturbation responsible for the irre-
versible behavior possesses remarkable properties which
result from the largeness of the system. The classical
counterpart of this situation has been established by
Prigogine and Brout. '~ These derivations, however, are
based on perturbation techniques which may become
invalid if the interactions between particles of the
system include forces of repulsion as the hard-core or
Lennard-Jones' potential. As has been pointed out
before, the derivation. of (2.13) does not need the as-
sumption of random a priori phases if t is a short time
interval in which successive binary collisions do not
occur. This means that the assumption of random a

's L. Boltzmann, Uorlesurtgert aber Gas 2'heorse (J. A. Barth,
Leipzig, j.895). A review on such problems in the kinetic theory of
gases is given by G. E. Uhlenbeck, Higgins lectures given at
Princeton University, 1954 (unpublished)."L.Van Hove, Physica 21, 517 (1955).

~r R. Brout and I. Prigogine, Physica 22, 621 (1956); I. Prigo-
gine, Can. J. Phys. 34, 1236 (1956).
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priori phases is related to successions of binary collisions.
The second purpose of the present paper is to clarify
this situation, which will be done by formulating exactly
Srout's' idea in the classical derivation of the master
equation to the quantum-mechanical case.

~'P'r =~'~(p'*P'o+P~*p~o)/ . (3.1)

It is worth while to notice here that m, +m, , y;+y; and
p;2+pp are eigenfunctions of the binary collision
operator A.,; and the corresponding eigenvalues are zero
according to the laws of conservation of mass, momen-
tum, and energy in binary collision. Using the relative
and center-of-mass momenta, we have

y = (y,—y')/2,

y =y~+y~')
(3.2)

p= m/2,

7

(p'.p'.+P .p w)/~= P.p./I +p:P.'/~ (3 3)

3. EIGENFUNCTIONS AND EIGENVALUES OF
THE COLLISION OPERATORS

We first determine the spectrum of the binary
collision operator. From (2.1) and (2.12), we obtain

F(O",C")= 2 D-F-, (8, ~). (3.11)

The coe%.cients D depend upon the angle and direction
of rotation. If we put 8=0, then Fo, [(8,p) =1 and
F ~(8, io)=0, (et/0), so that Do= F~(O,C'). Thus, in-
tegration of (3.11) with respect to p gives

d& F&((3',C') =Pq(cos8) Fi(O~,C'). (3.12)

where the C 's ar'e constants which may be functions
of the invariants of the collision, such as p, y', and p'.
Let the axes of coordinates be rotated so that the new
s axis passes through the direction of p and the angular
coordinates of y' become the scattering angle (8,y) in
the new coordinate system. Then, according to the
transformation (O'',C')~(8, io), the F~(0',C') goes into
a new function of 0 and p which is a spherical harmonic
of the same degree L. This can be seen easily from the
fact that spherical harmonics are eigenfunctions of the
square of the quantum-mechanical angular momentum"
which is invariant to a rotation of the coordinate system.
Therefore, we can expand Fq(O', C') as

Equation. (3.1) can be written as

A;;F~= A;,g;;,
with

4'rj =pzpy/p~

(3.4)

(3.5)

This result means that a spherical harmonic is an
eigenfunction of the binary collision operator, because
substitution of F~(O,C) for lp;, (O,C) in (3.9) leads to

which will be shown to be an eigenfunction of A.;;.De-
noting the spherical angular coordinates of y by (O,C),
Eq. (3.5) is written as

(3 6)

where
A;, F((O C) =X;,&'&F((O C), (3.13)

tea
2 7l

d8 sin8 —o (p, 8) f 1—Pg(cos8)). (3.14)

in terms of the spherical harmonics"'

F ~(O C') =P~t ~ (cosO) exp(insC) (3.7)

Since the absolute value of the Legendre polynomial is
not larger than unity, the eigenvalues are always
-positive or, for the trivial case, zero;

=F, t*(O C). (3.g) y. «&=0 ) . .(~l)P (i)1) (3.15)

If the relative momentum after collision is denoted by
y'= (P,O~',C'), then. Eq. (3.4) may be written as

For the rigid elastic molecule with a force range u, these
become in the classical limit

d8 sin8 —o (P,8)
p

X;,«~=0,

) ""=(&'/F)(p/p), (i)1), (3.16)

de (4'~(o C') —4'~(e',C")}, (3 9)

F~(OC')= Z C F,~(OC') (3.10)

'8 R. Bront, Physica 22, 509 (1956)."P.M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), p. 1271.

where we have expressed in. |P,;(O,C) its angular de-
pendence explicitly.

In order to calculate the integral with respect to q,
let us now consider a spherical harmonic of degree l,

since o (P,8) = ~ra'. The quantum-mechanical case is not
so simple because the cross section depends upon the
angle and wavelength in a complicated manner. "
Another special example is the Maxwell molecules in
the classical case. In this case the eigenvalues become
independent of the relative momentum, because
(po (p, 8)) becomes a function of 8 only. '

By making use of the above results, approximate
eigenfunctions and eigenvalues of the master collision
operator can be obtained readily. Equation (3.6) is a
spherical harmonic of the second degree so that (3.13)
gives

(3.17)
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with

A. Fp ——)„Fp,

), =--'N((Z;, &»)),

(3.18)

(3.19)

where we have put the total momentum, P=P, P p, ,
to be zero in the equation

We now assume that, on the average, the deviation of
the eigenvalue X;;"~ is small from some average value
of it with respect to the relative momentum, ((X;,&")).
Then, from (2.12), (3.4), and (3.17), we obtain
approximately

with

0' = (p' pP. s—P'P*')ll M (3.26)

= (P'/61JM) DP: ip—„')I'»(O, c)
+(P,'+sp„')F'i, s*(O',C)+4P,'7's, s(O~ C)j. (3.27)

The second term of (3.26) is invariant to collisions and
hence gives no contribution to (3.25) but it is added
so as to yield (3.27). Equation (3.27) is a spherical
harmonic of the second degree so that (3.13) gives

(3.28)

Q iP,,= ,'N(Fs -P,P„/—mN), (3.20) which leads, in parallel to (3.18), to

(3.29)

(3.30)

h. Gp=) pop)

X,=-',N((X;;&»)),

where, as in (3.20), the total momen. turn has been
taken to be zero in the equation

,'N(G, + (-P,/m) (Ii Q;p /m—N)
(3.21)(plF(~) lp) =F, exp(-~~.). +P (Q;p;p;, )/2nPN). (3.31)

because the total momentum is invariant to collisions
between molecules and expresses the uniform translation
of the whole system so that it is of no primary im-

portance to the discussion of the law of motion of F (/).
Equation (3.18) is inserted into (2.13) to lead to

Equation (3.18) shows that the viscosity Aux (2.1) is an
approximate eigenfunction of the master collision
operator and its eigenvalue is given by (3.19).According
to (3.21), the inverse of the eigenvalue, r„=1/X„,
turns out to be the relaxation time for the diagonal
elements of the viscosity Qux to decay in time. In the
case of the Maxwell molecules and the classical limit
A—4, since );,(" becomes independent of the relative
momentum, the assumption introduced before (3.18) is
exactly satisfied so that (3.18) and (3.21) become exact
and the exact eigenvalue is given by

Thus it turns out that the thermal conduction Aux

(3.23) is an approximate eigenfunction of the master
collision operator and Eq. (3.30) gives its eigenvalue,
which is different from that of the viscosity Aux;

),/) .=2/3. (3.32)

In order to calculate these eigenvalues it is necessary
to determine the average value ((X;;&'&)) introduced
before (3.18). This can be done in the following way.
When PWO, we have, from (3.20), as the extension
of (3.18),

X.= 3m.A (n/2m) i(N/V), (3.22) A Fs=X„(F» P~„/@AN), — (3.33)

G= p (ps/2m —h)p, ,/nz, (3.23)

h being the enthalpy for one molecule. This is the
s component of the Qux of thermal conduction, and the
thermal conductivity is given as"

where A =0.436 and the intermolecular force has been
taken to be n/r'. Equation (3.22) agrees with the in-

verse of the relaxation time computed by Maxwell. ""
We next show that the following quantity is also an

eigenfunction of the master collision operator:

( ,F,PP)/m=(F, ').

Therefore, (3.34) becomes

(3.36)

which means that Fs'=Fs PP„/AN is a—n eigen-
function of A.. By multiplying both sides of this equation
by Ii~ and taking the average of it over the canonical
ensemble with (2.3), we obtain

(FshF, )=X„((Fs')—(FsP&„)/mN). (3.34)

On the other hand, we have

(P'*P'.P'*P .)=(P'*)(P *)(P'.P")=o f &i (3 35)

which gives

.= (1/VkT') dl eg, &(f)

(1/1&.)(FsAF,)=(Fs') (1—1/N),

which leads, by taking N in6nite, to

(3.37)

In the same way as for (3.4), we obtain

(3.25)
2' J. C. Maxwell, The Sc~eltz6'c Papers of J. C. Manvell (Dover

Publications, New York, 1952), Vol. 2, p. 26.

X, =(F AF )/(F, '), (3.38)

which agrees with Eq. (2.15). Equation (3.38) de-
termines, with the aid of (3.19), the average value
((X;;&»)), whose explicit form will be given in next
section.
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By making use of the above results, we discuss the
time-dependence of the correlation function (2.14).The
average over the canonical ensemble, (2.3), extends
over systems with P@0 arising as fluctuations about
the average value (P)=0 due to the interaction with
the heat reservoir. For such systems, Eq. (3.21) should
be modified, with the aid of (3.33), as

expi —1A.) Fs= P,P„/mX
+ (F, PP„/—mÃ) exp( —k„). (3.39)

However, with the aid of (3.36), we have, corresponding
to (3.37),

0'p, s(t) =&Fs'&(1/X+(1 —1/Ã) exp( —0 „)) (3.40)

=(Fs'& exp( —9.„), as X—+~, (3.41)

which means that the contributions of the above
systems to the time-dependence of the correlation func-
tion can be neglected in the limit of E—+~ . Comparison
of (3.41) with (2.16) leads to the fact that p(1) is
exactly zero in the case of the Maxwell molecules and
the classical limit, since in this case the only assumption
necessary to derive (3.41), i.e., the assumption in-
troduced just before (3.18) is exactly satisfied. In other
cases, the magnitude of p(t), namely, the accuracy of
the approximation. (2.20) depends upon the magnitude
of the dispersion of X;;(" about its average value. The
magnitude of this dispersion can be determined by the
momentum dependence of the scattering cross section
and of the momentum distribution function. Therefore,
the accuracy of the approximation (2.20) depends upon
the type of intermolecular forces and the temperature
of the system. A typical example of the temperature
dependence is given by the fact that, when the tem-
perature becomes low so that the peak of the distribu-
tion moves to be at low energy requiring the quantum-
mechanical treatment of the scattering cross section,
we cannot expect the zero dispersion even for the
Maxwell molecules.

The spectrum of the master collision operator de-
scribes the relaxation processes in Inomenturn space.""
The eigenvalues are the decay constants of the diferent
modes of relaxation. To see the physical significance
of the eigenvalues ) „and Az in this aspect, we con-
sider a nonequilibrium isotropic gas of one component
whose attainment of uniformity in coordinate space
can be described by the hydrodynamical equations.
Take a uniform small portion of macroscopic size in the
gas, and cut oG the interaction with the neighboring
small portions. Then this uniform portion approaches
complete internal thermal equilibrium rapidly by re-
laxation in momentum space. The spectrum of this
relaxation consists of the lowest few eigenvalues of the
master collision operator, which did not die out due to
the inhuence of the neighboring portions, namely due
to the coupling with the hydrodynamical process of
attaining equilibrium between small portions. What
eigenvalues or what modes of relaxation are excited de-

pends upon the detailed behavior of the above coupling
between the relaxation in momentum space and the
hydrodynamical process. In our case, these eigenvalues
turn out to be X, and X&. This is a consequence of the
fact, as will be shown in a forthcoming paper, ' that
the coupling is characterized, in a certain manner, by
the Quxes of viscosity and thermal conduction. %e thus
arrive at the fact that there exist two modes of the
relaxation in momentum space in the previously-men-
tioned gas, and these modes can be given by the auto-
correlation functions of the equilibrium Quctuations of
the Quxes of viscosity and thermal conduction.

Ql'i (g) = 27r d8 sin8 o.(p,8)(1—Pi(cos8) ),
0

(4 2)

1/ ~ E''t" ( ~g'l,
«»&=4 -I

I
~ expl — Ig'dg «3)

s E2&T) ~ s 0 2kT)

where ((8)) means the average over the relative speed
g= p/p. Equation (4.2) is related to the eigenvalues of
the binary colhsion operator as

(4 4)

The Ql" (g) in (4.1) is —', times the Q"'(g) of Hirschfelder
et al. ,

" which is sometimes called the transport cross
section. It is interesting to note that the average value
((X;;l")) in (3.19) can be determined alternatively
from (4.1) to be

(4 3)

which has a form similar to (3.38).
Since the density-dependent symmetry e8ects due to

Bose-Einstein and Fermi-Dirac statistics can be
neglected, we obtain from (2.1)

(4.6)

Therefore, Eq. (2.21), resulting from (3.41) and (1.2),
leads to

ri= P/X„, (4 7)

2'Hirschfelder, Curtiss, and Bird, Molecular Theory of Gases
and Lr'quads (John Wiley and Sons, Inc. , New York, 1954), p. 675.

4. COMPARISON WITH ENSKOG AND
CHAPMAN'S THEORY

The calculation of the eigenvalues of the master
collision operator, (3.19) and (3.30), leads to explicit
expressions for the coefficients of viscosity and thermal
conductivity with the aid of (1.2) and (3.24). In this
section, this is shown and the results are compared with
Enskog and Chapman's theory of transport in dilute
gases.

The straightforward calculation of (3.38) leads to

&.= (1/30) (&/I') (~/&T')'(&a'Q"'(g)&&, (41)

with the notations
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where F=(1V/V)kT is the pressure. This relation
between the viscosity and the relaxation time has been
derived a long time ago by Maxwell on the basis of a
phenomenological consideration s' Equation (4.1) is
inserted into Maxwell's relation (4.7) to yield the
quantum-mechanical equation for the viscosity coe%-
cient, This expression differs from the classical one
only in the fact that the classical cross section has been
replaced by the quantum-mechanical counterpart. ' "

In the same way as for (4.6), we have from (3.23)

(Gy') =5K(kT)'/2m, (4.8)

where use has been made of the relation k=5kT/2 for
nondegenerate gases. It is interesting to note that
although the second term of (3.23) is invariant to
collisions between molecules so that it gives no con-
tribution to the eigenvalue Xr, (3.30), this term gives
an important contribution to (4.8) as a result of its
fluctuations due to the interaction with the heat
reservoir; if we neglect that, then (Gy') becomes rs times
as large as (4.8).' The thermal conductivity is obtained
by inserting the equation,

@g,g(t) =(Gy') exp( —the), (4.9)

into Eq. (3.24). Thus we have

((G,')/VkT')
(4.10)

=5C„F/3Xr, (4.11)

lr = (5/2) C.g, (4.12)

which agrees with Chapman's relation between the
coeKcients of viscosity and thermal conductivity. '

The mean time between collisions, i.e., the mean free
time, is well defined only for the hard-core molecules.
To obtain the physical picture of the transport processes
in gases, it is convenient, however, to define the corre-
sponding quantity for other short-range forces. It may
be defined as'

rf= 1/2&(1V/V)Q(T)8, (4.13)

where 8 is the mean speed of molecules and Q(T) is the
"e6'ective" total cross section de6ned by

Q(T) =~a'0&"&*, (4.14)

where 0&"'* is the quantity de6ned by Eq. (8.2—8) of
reference 21 and becomes unity for the hard-core model
with the diameter a. Then, we obtain from (4.1)

(4.15)

Thus it turns out that the relaxation times of the Quxes

where C„=3k/2m is the heat capacity per unit mass.
Equation (4.11) gives the relation between the thermal
conductivity and the corresponding relaxation time in
momentum space. The relation between the two relaxa-
tion times, (3.32), leads to

5. TEMPORAL DEVELOPMENT OF THE
HEISENBERG OPERATOR

In order to proceed to the problem (II) stated in the
end of Sec. 2, we investigate some important properties
of the canonical transformation governing the temporal
development of the Heisenberg operator.

Equation (2.4) may be written as

F(t) = T(t, t,)F(t,),

T(t, ts) =exp[(t —ts)L],

(5.1)

(5 2)

where L is the commutator operator generated from the
Hamiltonian as'

LF= {F,H) = (FH HF)/ik. ——(5.3)

This is seen from the fact that Eq. (5.1) satisfies the
Heisenberg equation of motion. In the classical limit, L
becomes the Poisson bracket,

N

limL= P [(V'y;H) V'r; —(V'r;H) Vy;j. (5.4)

The algebraic properties of the L operator are parallel
to those of the commutator bracket. " In Eq. (5.3),
replace H by observables H~ and H2, and denote the
L operators thus obtained by L& and L&, respectively.
If {H~,Hs) =0, then we obtain

L1L2 L2L1)
(5.5)

exp(Lr) exp(Ls) =exp(Lr+Ls).
"R.Dean Taylor and J. G. Dash, Phys. Rev. 106, 398 (1957)."S.Tomonaga, Z. Physik 110, 573 (1938).

of viscosity and thermal conduction are of the same
order of magnitude as the mean free time.

So far we have neglected the density-dependent
symmetry eGects which come from the overlapping of
the wave packets of more than three molecules. This
leads to remarkable modi6cations of the average value
of the square of Auxes and the relaxation times. The
inQuence of Bose-Einstein or Fermi-Dirac statistics on
the average value of the square of the Quxes can be
evaluated straightforwardly and yields a qualitative
analysis of the recent experiments of the viscosity of
He'."The results of the consideration of both effects
for extremely degenerate Fermi gases can be shown to
agree with Tomonaga's work. "Details of these studies
will be presented in a subsequent article.

Our investigation of the transport properties of
gases, as Maxwell and Boltzmann's theory, ""was
based on the detailed analysis of the relaxation processes
in momentum space. The macroscopic transport coeffi-
cients were connected with the corresponding relaxation
times by simple relations, such as Maxwell's relation
and Eq. (4.11), which were derived from the relations
(1.2) and (3.24). Thus, our theory may be regarded as
a generalization of Maxwell and Boltzmann's theory.
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T(t, to) gives the Heisenberg operator at time t from
that at time tp, so that it should satisfy

T(t, fp) = T(f,f )T(f,t ). (5.6)

The motion of the system consists of the free motion of
molecules and the interaction between molecules. Let
us denote the interaction part of the Hamiltonian by H~.'

H =H'0(t)+Hi(t). (5.7)

E(t, t) =1,
E(i,t,) =E(&,t')E(t', t,).

(5.10)

The physical picture of the E operator can be made clear
by the following argument for its classical analog.
Consider a classical system and denote its phase point
at time t by X(t). There is a unique phase Xi which
goes over into the phase X(t) after time t by a free
motion of the system obtained by cutting off the mole-
cular interaction. This point is called a hypothetical
initial phase in contrast with the initial phase X(0).
The E(t,to) operates on a hypothetical initial phase Xio
and expresses a free motion from X~0 to X(to), a sub-
sequent actual motion from X(to) to X(t) and then a
free backward motion from X(t) to Xi.

If there is no interaction between molecules in a time
interval tp to t~, then we have

The total Hamiltonian is a constant of the motion, but
its parts change in time according to Eq. (5.1).Let us
now define

Lp(t)G=—{G,HO(t) }, (5.8)

and, in order to separate the free motion from the eGect
due to the molecular interaction which is responsible
for irreversible processes, let us introduce a new operator,

E(f,fp) —=exp[ —HALO(/))T(f, fp) exp[/&0(/p) j, (5.9)

which satisfies

corresponding to the fact that the temporal develop-
ment of the system can be described by the Hamiltonian
H =HA+HB {Hg,H~}=0, in that time interval.
Substitution of (5.15) into (5.9) yields

E(t,to) =Eg(t, to)E, (t, fQ), (~o&t&t,). (5.16)

Equation (5.16) is an operator form of the decomposi-
tion condition of the phase-space transformation func-
tion which has been used in a quantum-mechanical
derivation of the Maxwell-Boltzmann equation by
Mori and Ross '4

By making use of Eqs. (5.11) and (5.16), we derive
a simple expansion formula of E(t,O) for dilute gases
whose molecular motion can be analyzed in terms of
binary collisions. For this purpose, let us suppose, for a
while, a dilute gas in which, on the average, one pair of
molecules at most makes a collision in a short time
interval r. If, in. a time interval t to t+r, there is a
collision between molecules i and j, then Eqs. (5.16)
and (5.11) lead to

E(t+~, t) =1+bW;;(&), (5.17)

where we have de6ned

8W;; (t) =E;;(t+7, t) ——1 (5.18)

with the E operator of the subgroup of molecules i and j.
Therefore, by taking into consideration all possible
encounters, we obtain

E(t+~, t)=1++ P 5W;, (t). (5.19)

the T operator for this motion. The E operator for this
isolated motion of the subgroup A is denoted by E&(t,to).
If there is no interaction between A and 8 in a time
interval $p to fy, then we obtain

T(t, to) = Tg(t, to)Tii(t, tp), (to&/&fi), (5.15)

E(t,~,) =1, (t, &t«,). (5.11)
Let us write

i 1 j=i+1

Therefore, the deviation of E from unity expresses
efkcts due to the molecular interaction.

Now we divide the system into two groups of mole-
cules, A and 8;

8E (3,0)=—E(/+ 7, 0)—E(t,0).

Then, with the aid of (5.10), Eq. (5.19) leads to

(5.20)

H HQ (t)+H ii (t)+H~ p (t—), (5.12) SE(r,o) =[+ SW;;(t)gE(t,o). (5.21)

L&(t)G—={G,H, (&)}, (5.13)

where II~ is the Hamiltonian of the subgroup A sepa-
rated from the subgroup 8, and H~~ the interaction
energy between the subgroups. With the aid of the
operator

We let 7 become infinitesimally small (but 7»ro,
~0= mean collision time)" so that the 8W's and 5E may
be regarded as differentials. Thus, by integrating (5.21),
we obtain

we de6ne

T~ (t, tp) —=exp[(t —to) L~ (to)]. (5.14)

E(t,O) =1+g 6W;, (t') E(t',0),
i&j &p

(5.22)

If we cut oG the interaction between A and 8 at time tp,

then we have a hypothetical motion of the subgroup
2 governed by the Hamjltonian H~. Equation (5.14) is

'4 H. Mori and J. Ross, Phys. Rev. 109, 187/ (1958)."It has been assumed, as in Sec. 2, that the duration of a colli-
sion is instantaneous relative to the mean free time. Thus, the v.

may be treated as an ordinary differential as far as, for example,
time

interval,

ls comparable to the mean free time are concerned.
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which can be solved, by iteration, to yield

K(/&0) = 1+P P ' ' P N'izji(ti)
s iiz&jt i~&i~ Jp

p &n-1

Jp
SW'„&„(t„), (5.23)

=exp(+) Z
i&j Wp

bW;;(t') . (5.24)

K(t+r, t) = g K,,(t+r, t), (5.25)

for time intervals r«r„where g&;j& means the product
over all pairs of molecules which interact with each
other in the time intervals. Therefore, by taking into
consideration all possible combinations of disjoint
pairs, we obtain, with the use of (5.18),

~zN& 1
E(t+r, t)= 1+ P —P'

n=& gI st&A 4&in

The notation of Eq. (5.24) is a kind of ordered
exponential. " It should be noted, however, that
tt) ts) .& t in Eq. (5.23)."Namely, Equation (5.23)
does not include those products which contain more
than two 6$" factors defined at the same time, such
as HV;, (t')QVH(t'), and 8Wi,jt(tt)bWisjs(t')8Wisjs(t'),
etc. This is a consequence of the fact that more than
two collisions do not occur simultaneously in the above
hypothetical gas.

To generalize Eq. (5.23) for the description of an
actual dilute gas, we require, however, that Eq. (5.23)
includes these products except those in which two
8$' factors defined at the same time have the subscripts
of the same molecule, such as

l
6W;j(t')]", it~2, and

8W;j(t')5Wst(t')5W, (t'), etc. Then, it can be shown,
with this requirement, that Eqs. (5.23) and (5.24) hold
for the dilute gas, in which any molecule collides with
at most one other molecule in a short time interval
(namely, the binary collision approximation is valid),
but the simultaneous occurrence of any number of
disjoint binary collisions is possible. We prove this in
the following. The binary collision approximation
leads to'4

(iiji) . . (i„j„) .Equation (5.26) is an extension of
Eq. (5.19). With the aid of the assumption of instan-
taneous collisions, it is shown in the Appendix that
Eq. (5.23) with previously-mentioned requirement
yields Eq. (5.26) for short time intervals in which no
succession of binary coIlisions occurs. This guarantees,
according to Eq. (5.10), that Eq. (5.23) can be obtained
alternatively from Eq. (5.26) as an infinite product of
the K operators for time intervals infinitesimally small
(but larger than the mean collision time") (see ref-
erence 27). Thus it turns out that Eq. (5.23) with the
requirement stated before Eq. (5.25) is valid for the
description of collisions in a dilute gas. It is interesting
to note that the above expansion has some resemblance
to Mayer's expansion of the Boltzmann factor in the
equilibrium theory of gases."

We designate a binary collision between i and j as
(ij). The ttth order term of Eq. (5.23), 8WiU'&(t&)

XhWi„~ (t„),'(ti~ts~ ~t„), arises from all succes-
sive and disjoint binary collisions which contain (i„j„)
at time t„, , (is j&) at ts, and (s&j&) at t&, and which
will be called, for convenience, the associated successive
and disjoint collisions, respectively. Furthermore, it
should be noticed that the ordered exponential (5.24)
cannot be reduced to the exponential even in the
classical limit.

F(t) = expLtLp(t) jK (t,0)F. (6.1)

In accordance with the relaxation times of the viscosity
and thermal conduction Quxes, our main interest is in
the temporal behavior of Eq. (6.1) for time intervals of
the order of magnitude of the mean free time. With the
aid of the assumption of instantaneous collisions, there-
fore, we may neglect sects due to pairs of molecules
in collision at instants 0 and t Since, there. fore, Hp(t)
=Hp(0), the diagonal elements of the Heisenberg
operator can be written, . with the aid of the relation

(pl (G,Hp} l p) =0 for an arbitrary quantity G, as

(plF(t) lp&=(pIE(t, 0)F lp) (6 2)

6. KINETIC EQUATION FOR THE
DIAGONAL ELEMENTS

The Heisenberg operator for the dynamical variable
P can be written as

XhWiyjt(t) ' ' ' 8Wi j (t) (5.26)

where P"t&ji means the summation. over all pairs
under the condition that i j, j&, i 2, ~ ~ ~, and j„represent
molecules diR'erent from each other corresponding to n
disjoint binary collisions. The factor 1/n. removes the
repetition arising from the e. permutations of the pairs

s' M. L. Goldberger and E. N. Adams II, I. Chem. Phys. 20,
240 (1952).

~'This can be seen clearly from the fact that the above pro-
cedure is a mathematical technique of inserting Eq. (5.19) into
the equation X(t,0) =K(t, t r)K(t r, t —2r) E(—r,0), a—nd
arranging the terms thus obtained in the form of (5.23).

~ ~ ~

n-p ig&jg ia&je J p

~ ~ ~

X(p l 8W'Ut(tt) 6W'„j„(4)Fl p)) (6.3)

where Eq. (5.23) has been inserted. We discuss in this
section how we can derive the kinetic equation (2.13)
from Eq. (6.3), to clarify the problem of the use of
the random phase assumption.

As has been pointed out in Sec. 2, the random phase

~ J. E. Mayer and M. G. Mayer, Statistical Mechanics (John
Wiley and Sons, Inc. , New York, 1940), Chaps. 12, i3.
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Iy&=lpr& Ips& " IPN).

If k is different from i and j, then we obtain

(6.5)

~W';LIP ) ~ &P I
j= IP &Lt'W';~j&p

I
(66)

assumption introduced before Eq. (2.5) is related to
successions of the binary collisions, which appear in the
higher order terms of Eq. (6.3). To analyze the higher
order terms, it is convenient to classify the terms into
the following three types; the type A, in which both of
two molecules of a 6W;; are not contained in any other
6W factor appearing to the right of the QV,;, and the
other type 8, in which one of two molecules of each
8W;; is contained in at least one other 8W factor
appearing to the right of the bS';;. The type 8 is divided
into BI, in which one of two molecules of each BV;; is
not contained in any BV factor to the right, and BII, in
which both of two molecules of a 6W;; are contained
to the right.

As an example of the type BI, we consider

- &pjbws4(ts)bwrs(ts)bwrs(tr)F I y), (6 4)

where t3) t2) f1. Let us write down Ii as

~=Re lp) ~, (pl

with the use of Dirac's ket and bra vectors
I p) and (pl,"

representing the eigenvectors of the total momentum of
the system. The products jp) (pj are the projection
operators of the set of eigenvectors. Denoting the
eigenvector of the momentum of molecule i by jp,),
we have

namely, denoting the E opera, tor for the relative motion
by E„we have

8W;, (t) =K„(t+r, t)—1. (6.13)

Z ~(y', ',y';; r)g(p' ') —g(y'),
p

woe

(6.15)

where we have dehned

(6.16)

With the aid of the equation for ro(p;, p,;; t) corre-
sponding to Eq. (2.7), Eq. (6.15) can be written as

Equation (6.12) can be expressed in terms of the
binary collision operator. defined by Eq. (2.12) with
the aid of the equation,

2 &p* l~w' (t)LIP' '& g(y' ') (y"'lh lp')
Psi

rA;tg—(p;~), (6.14)

where r)&re, and g(p;;) is an arbitrary function of p;;.
Equation (6.14) can be shown as follows. The 6W;;(t)
is nonvanishing only when the collision (ij) occurs in
the time interval t to t+r And . in that case the mole-
cules i and j are isolated from other molecules in that
time interval r (r,))r&)rs). Accordingly, we may con-
sider a two-particle system which makes a collision in
the time interval t to t+r in the same way as the mole-
cules i and j.Denoting the U operator for the relative
motion of that system by U„(t), the left-hand side of
(6.14) becomes, with the aid of (6.13).

Therefore, since the subscript 4 is not contained in
any 8W factor to the right of hWs4, Eq. (6.4) may
be written as

ps''(Wp'g)
~(y' ',y*t; )(g(y' ') —g(y';)) (6»)

where
&yrys I f I yrys&, (6.7)

f=& &ysy41 ~Ws4CIP4 &Ge4'&P4'I)
I P2P4&, (68)

p4

Gt4 =2 2 2 &Wrej I ps')(~Wrsjyr'ys'&
Pl P2 P3

~Pl P2 P3 P4 ~Pl P2 P3 P4 P5' ' 'PN (6.10)

Denoting the eigenvectors of the relative and center-of-
mass momenta of rnolecules i and j by jp;;) and jy„;),
we obtain

I p,p &=
I p- ) I p"),

I p &=
I p- & I p; & &y'I (6.11)

where y, 24' ——y, 24. Here use has been made of the fact that
8$';, is independent of the center-of-mass motion;

s' P. A. M. Dirac, The Principles of Qnantgm Mechanics (Claren-
don Press, Oxford, 1947).

Therefore, Eq. (6.8) becomes

/ =2 &»e I
t'WseL

I
yse'& &ys'

I
Gee'I»'& &»4'I 3 I yse), (6»)

p24

According to the Lippmann-Schwinger theory of
scattering, 's Eq. (6.16) can be expressed in terms of the
scattering cross section with the aid of the adiabatic
approximation, and can be shown to satisfy the second
equation of (2.10).'4 Thus we arrive at Eq. (6.14). It
should be noted here that the adiabatic approximation
is responsible for the inequality of the direction of time
axis of Eq. (2.13)."

Applying Eq. (6.14) to Eq. (6.12), Eq. (6.8) becomes

f= —rAs4&ysl Gn41 ys) (6.18)

In the same way, we obtain

&prpspe I Gn41prpspe)

= —rArs&yrys I &WrsLZ 2 I
pr'ps'&~~i'us'&yr'ys'I j I yrys&

Pl P2

rA13( rA12+ela2' ' 'QN) ~

Thus, Eq. (6.7) or Eq. (6.4) becomes

( rAs4) ( rAls) ( rA12)Py. (6.19)

Terms of the type BI can be calculated by the iterative
n B.A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
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&pl~(&) lp)=exp( —
& E A*) ~. (6.20)

As has been pointed out by Brout, " the number of
terms of the type BII is, in a given finite order, negli-
gible compared to that of terms of the type BI in the
limit of large numbers of molecules. Accordingly, Eq.
(6.20) can be considered to be a good approximation in
the thermodynamic system. Thus, the kinetic equation
for the diagonal elements has been derived with the
assumptions of binary and instantaneous collisions and
with the adiabatic approximation for binary collisions.

The successive collisions associated with the terms
of the type BII propagate correlations in the sense that
the occurrence of the last binary collision of any closed
collision cycle depends upon the detailed behavior of
the previous collisions, whereas any collision of the
successive collisions of the type BI can occur, by

use of the procedure from Eqs. (6.4) to (6.18) so that
the collision operators A.;, appear instead of 8W;, 's.

On the contrary, terms of the type BII cannot be
expressed in terms only of the collision operator. Any
term of BII is such that the every associated successive
collision has the closed collision cycles. For brevity,
consider b8 ~3 8$'~4 88 23 6W~2 and its associated succes-
sive collision of the smallest size (12) (23) (14) (13).For
example, the two 8$' factors corresponding to the first
and last binary collisions of the closed collision cycle
cannot be replaced by the collision operator, because
the term cannot be reduced to the form of (6.8) nor
(P~lbli'»[Z» 2» IP~'P2') G(1 ~ P21jIP~)

Terms of the type 3 and the equation obtained by
replacing their bS"'s by A; s become zero for any
observable Ii which is a simple sum of quantities of
molecules like Eq. (2.1).

According to the requirement stated before Eq.
(5.25), Eq. (6.3) does not include those products in
which two 8$' factors defined at the same time have
the same molecule. However, we may include these
products except those which contain the same 6W;;(/)
more than two times, because the added terms arising
from multiple collisions vanish automatically due to the
binary collision approximation. The excluded products
belong to the type BII.If the b8' factors of those of the
added terms which belong to the type BI are replaced
by the collision operators, then the equations thus
obtained do not vanish as a consequence of the separate
integration of each factor over all its configuration;
(the separate integration is incompatible with the con-
6guration of multiple collisions). However, the con-
tributions of these equations to the time integral of
Eq. (6.3) can be neglected compared to those of other
terms.

Thus, if the terms of the type BII and the equations
obtained by replacing their hats by the collision
operators are negligible compared to the contributions
due to the terms of the type BI, then Eq. (6.3) becomes

adjusting the path of the new partner, even if any
change in the behavior of the previous collisions has
been made. Equation (6.20) was derived without the
use of the usual formulation of the random phase
assumption by recognizing the negligible inQuence of
closed collision cycles explicitly. This shows that the
physical significance of the random phase assumption
may be considered to be the discarding of correlations
introduced by collisions by severing closed collision
cycles, and this assumption can be justified in the limit
of an infinite system.

It is interesting to note that, as can be seen from
Eq. (2.2), the classical counterpart of the diagonal
elements of the Heisenberg operator is the average
over configuration space,

&pl p(&) Ip) =
1

~ ~ dr~ dry F(t), (6.21)

p(o) =Kelp»(p)(pl, (6.23)

which corresponds to the initial preparation of the
ensemble for a macroscopically homogeneous gas of low
density. The alteration is only to change the sign of
the I. operator. Then, to obtain Eq. (6.14) with the
corresponding 88';; function, it is necessary to use the
concept of microscopic reversibility,

~(p' p" ~)=~(p" p'", ~), (624)

in deriving Eq. (6.17). In this case, terms of the type A
do not vanish, but their 8TV's can be replaced by the
binary collision operators except those terms whose
associated successive collisions have closed collision
cycles and which can be neglected according to the
above discussion. Thus, we arrive at Eq. (6.22). Since
the dependence of the quantum-mechanical phase-space
distribution function on configuration space coordinates
comes from the o6-diagonal elements of the density
matrix, the random phase assumption is equivalent to
the neglect of the configuration dependence of the
distribution function. '4 Therefore, Eq. (6.22) is the
quantum-mechanical counterpart of the master equa-
tion established by Kac" and Brout."
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where (p,r) is the phase point at the initial time. On
the basis of this equation, the classical formulation
parallel to the above follows.

The above method can be applied to the density
matrix p(() to lead to the master equation,

&pip(&) I p)=exp( —
& 2'& A') (pip(0) I p) (622)

under the initial condition
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(A.4)

dtt
0

This can be shown, with the aid of the assumption of
instantaneous collisions, as follows. We recall that
K;j(t, jp) is a K operator for the hypothetical motion of
the subgroup of molecules i and j obtained by cutting
o8 the interaction with the other part at time tp. How-
ever, since i and j are isolated from the other molecules
in the time interval Ip to I Las far as (A.4) does not
vanish], the K,j(j,tp) describes the actual motion of i
and j in the gas. Therefore, with the aid of Eq. (5.10),
we obtain

$Nh

K(I,jp) =1+ P
n 1 i1&i1 in&its

p&n —1

X f)W'~g t(tt) . '. &W'~j~(t„), (A.1)
~tp tp

where g'tt &jt means the same summation as in Eq.
(5.26). It should be noted here that such products as
5W;, (t')j)W;;(I"), t'Wt", have been taken to be zero

with the assumption of instantaneous collisions so that
we have neglected, for example, long time orbiting in

collisions. "With the aid of the commutativity,

K;,(t,jp) =K;, (t, t')K;;(t', to). (A.6)

H i and j do not interact with each other at an instant
t', then

(A.7)
which leads to

APPENDIX. DERIVATION OF EQ. (5.26)
FROM E . (5.23)

This is similar to the relation
We take a time interval tp to t in which no succession

of binary collisions occurs. 'Equation (5.23) does not
include those products in which two blV factors de6ned
at the same time have the subscripts of the same
molecule. And, corresponding to no succession of binary The W;;(t, tp) is identical with that defined by
collisions, those terms in which two 58"'s have the sub-
scripts of the same molecule vanish. Therefore, we
obtain

!)W;j(jt)bWt, t(tp) —5WJgt(jp) 8W;j(jg), (A.2)
W;, (t,tp) =W;;(I,t')+W;, (t', tp). (A.g)

for i, jAk, l, the ttth order term of (A.1) becomes

1
Wtyjt(j, jp) ' ' ' Wi j (( Ip)

g! i1&ii in&in

According to the assumption of instantaneous collisions,
the collision between i and j starts and ends in a short

(A3) time interval I to I+r, so that (A.S) leads to (A.4).
Thus, Eqs. (A.3) and (A.4) give Eq. (5.26).


