
SOLUTION OP SCHRODINGER EQUATION

only the first term in the series in (12), i.e., by taking
the average value of potential II into account in region
I, and vice versa, we are left with a soluble Schrodinger
equation: the potential in I remains spherically sym-
metric and the extra constant term 1/rs makes for no
difhculty in its solution. With this, the approximate
potential is 3/re at point A instead of the correct value
of 4/re, and at point 8 the approximate potential is
3/rs instead of the correct value of 8/3rs Th. ese are
the worst cases, in the sense that the approximate po-
tential is much less accurate at these points near the
boundary of region I where r1 is large than it is for r1
small.

Similarly we still have an exactly soluble problem if

we take into account the average value of the potential
in region III, and neglect the tails of the potentials
completely in region IV. For if we write the wave func-
tion in III as the sum of two wave functions, one in r,
coordinates and the other in r2 coordinates, we can
always express this wave function in (r,8) coordinates
and match this to the free-space wave function in
region IV. One sees from this point of view that although
potentials like the Coulomb potential which are slowly
varying have the disadvantage that they cannot be
solved exactly by the method of the previous section,
they have the advantage that they can be well approxi-
mated by their average values over appreciable regions
of space.
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Poincare cycles of a many-particle system are exemplified by the motion of a linear chain. It is shown that
the recurrence time increases in an approximately exponential way with the number of degrees of freedom,
and as a power of the sharpness with which the recurrent state is specified. An explicit formula is given
which is applicable to other separable dynamical systems as well.

INTRODUCTION

" 'N an interesting paper by Frisch, ' the old questions
~ - of Poincare cycles have been reconsidered. Besides
Liouville s theorem, with which it is intimately con-
nected, there is probably no other theorem of general
dynamics so simple and so well founded as Poincare's
about the recurrence of all bounded mechanical motions.
Far from creating a paradox to the mechanical theory of
heat —as held by Zermelo in the famous discussion with
Boltzmann —it can on the contrary be made a pillar in
the foundation of statistical mechanics.

Corresponding recurrence theorems in quantum
mechanics were given in a recent paper by Bocchieri
and Loinger. ' However, as was pointed out by Frisch, '
very little is known about the actual magnitude of the
recurrence times. It is the purpose of the present paper
to supply an explicit calculation, albeit for a very
special system, vis. , a linear chain. To be sure, the
linear chain, like any separable mechanical system, is
ergodic only in the space of the angle variables, but that
does not detract from the meaning of a recurrence. For
the calculation one needs only those dynamical features
which are common to all separable systems, but for

*On leave from Brown University, Providence, Rhode Island.
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versity, Manchester, England.' H. L. Frisch, Phys. Rev. 104, 1 (1956).' P. Bocchieri and A. Loinger, Phys. Rev. 107, 337 (1957).

definiteness we shall write down the formulas appro-
priate to the linear chain.

q;=P &,~~s,
k

are given by

(j=0, 1, " jlI-1)

2, j&0
(2)

1, j=0,
where the mode j=0, representing a free translation of
the whole chain, is of no interest for our problem. The
corresponding frequencies are

(u, =(us sin(n j/2E), (3)

where coo is a maximum frequency related to the spring
constant and mass of the particles. Compounding
momenta and coordinates in the complex vectors

Z; =P,+sma), q;, (4)

the entire motion is expressed by

Z =a e'"'

1. DYNAMICAL STARTING POINT

Let the chain consist of X equal mass points, har-
monically coupled neighbor to neighbor, and consider
their longitudinal displacements uq (k =0,1,2, . 1V—1).
If we assume the end points of the chain to be free, the
normal coordinates,
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F»G. 1. Motion of the normal coordinates.

where the amplitude constant a; determines the phase
and the (immutable) energy of the jth normal vibration.

2. RECURRENCE

Thus the mechanical state is naturally depicted by a
set of vectors Z», Z~ - .Z~ » rotating with uniform
angular velocities toico2 «sinai i (see Fig. 1).

Now in the theory of numbers a famous theorem due
to Kronecker' can be stated as follows: Given such a
set of rotating vectors, it is always possible by choice of
the time parameter t to restore any situation within finite
latitudes:

&p, &argZ;& q,+hqr;, (j=1, 2, E 1) (6)—

provided that the frequencies are rationally inde-
pendent, that is, that the equation

rileil+'+2ei2+ +riN 1&N 1=0— —(7)

is insoluble in integers e, (not all zero).
Clearly, re-entrance into some specified vicinity of

the angles y; =a&,t+8; means recurrence of mechanical
state within some latitude, whatever are the coordinates
used for its description. But it should be noted that
although the recurrence time is independent of position
in the space of the angles, it is not independent
of the state in general. The concept of recurrence is
relative to the specification of state. We shall here
be concerned only with the simplest type pertaining
to the linear chain, vis. , the average duration be-
tween two consecutive passages through an angular
interval (&pi, &q2, , hp~ i}.

Let us define the recurrence time by

TR„——lim (t„/r),r~

Look especially at the delay: nT» —mT&, between the
eth passage of Z» and the next preceding one of Z~,
which we denote as the neth. This delay is then cer-
tainly (T2..

BT»—mT2 = 6T2

where 0& «&1; or, by definition (9),

e(~2/~, )—m = «.

(10)

4. RECURRENCE TIME

According to the aforementioned feature of inde-
pendence and uniform distribution of the angles q;, we
may now proceed as follows: The probability to find a
specified situation at an arbitrary time is

N i—
P-b ( -gZ;C~; )= II! !, (»)

=i E 2~)'

From Eq. (11) it follows that ei is the integer part
[riid2/idi j of the number riei2/Mt .'

tlG02 Go» ÃG02 co» = 6 S . (12)

In the course of e revolutions the angle between Z» and
Z2, when Z» is in the specified position, will assume
values between 0 and 2s proportional to «(e). Ac-
cording to a theorem of Weyl, ' the remainder «(e),
v=1, 2, -, will be uniformly distributed in the in-
terval (0,1) if ««2/~t is irrational. Under this condition,
then, we see that all relative angles, y;—pl„are equally
probable over long times.

The question remains as to whether every two proper
frequencies id;, a» as given by (3) are incommensurable.
This is so far already implied by the rational inde-
pendence (7) which we have assumed. Whether, for a
given E, the frequencies given by (3) really are ration-
ally independent is not directly evident. It has been
pointed out to us by Professor Ernst Jacobsthal that
there are certain, though rare cases, e.g. , X=105, for
which there is indeed dependence. This mathematical
question will be analyzed by Professor Jacobsthal in a
forthcoming paper in the Proceedings of the Eoegelige
Ãorske Videeskabers Selskab in Trondheim.

where t, =time of the rth recurrence. Kronecker's
theorem asserts that there will be recurrences. It does
not, however, tell us how long one must wait for such an
event, and this we are now to determine.

3. LEMMA

Consider two of the vectors (4), Zi and Z2 say, with
the periods

Ti —2~/nit& T2 2~/ni2, — ——(9)

and the times when they pass given initial positions.

3A proof of the theorem in the form which is suited for our
purpose is given by H. Bohr, Proc. Math. Soc. (London) 21, 315
(1923).This proof as well as several others may also be found in
Collected 3fathematical 5"orks of Harald Bohr (Matematisk Foren-
ing, Copenhagen, 1952), Vol. 3.

and this is again equal to the fraction of a long time
during which the vectors Z; are simultaneously inside
their prescribed latitudes Ap, , or as we shall say in
"coincidence":

)time in co ncidence
~Prob = lim!

gazoo total time
(14)

Taoina (~pj t

=II!
TR., E 2~)

4 H. Weyl, Math. Ann. 77, 313 (1916).

Dividing now numerator and denominator of the right-
hand side of (14) by the number r of coincidences and
remembering the definition (8), we obtain
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1 1

~coine "1

1
~ ~ ~

t2 tN—1

(16)

Accordingly we find by (15) and (16) for the recurrence
time

where T„;„,is the mean life of the recurrent state. The
trick is that it is easier to find T,.;„„whereby our
problem is solved. It turns out that the reciprocal mean
life is equal to the sum of the reciprocal passage times,
1/t;=~;/&y;, of each vector through its interval:

2z

2

y (g) p-~ i'I+2'a.

EI-t~ ~~ ~ t~-z,'

r„(F) - t,

ZI g g~g 81

?
~z -Zr z', +/z

2
di ~A& zc

It was here presumed that all the normal vibrations
were excited; if not, the sum and product should only FIG. 2. Lifetime of coincidence t12 as function of r.
be extended over those modes which are excited in the
motion. In the extreme case where only one normal from (12), we have then for the mean life of a binary
vibration is excited, the formula (17) reduces to coincidence

Taco= 27I/M jq

the recurrence time degenerates to the period T, as
it must. Likewise if the chain degenerates to a simple
oscillator o: 1V =2.

Of particular interest is the rate at which the recur-
rence time increases with the number of degrees of
freedom and the sharpness in the definition of the state.
Formula (17) illustrates quantitatively what was con-
cluded on general grounds by Frisch, ' that Tz„
(more accurately E ' Aq' ~). A numerical example
will indicate how enormous the recurrence times of this
type are, even for quite small systems and a state of
relatively broad latitude: For a chain of /=10 atoms,
a maximum frequency of coo

——10/sec, and a common
angular latitude h&p=~/100, one finds Tn„10"years.

APPENDIX

I. Calculation of the Mean Life of the
Recurrent State

Let us 6rst consider the simpler problem of coin-
cidence between only two vectors Z1 and Z2. The times
of transit through their intervals are ti=hyi/&ui and
t2 hp2/co2, res——pectively. We shall then show that the
mean duration of a coincidence: argZig&q i and
argZ~+d yg, is

tie tlt2/ (tl+ t2).

Assuming that Z1 passes the midpoint of its interval
a time r before Z2 passes the midpoint of Aq2, coin-
cidence will take place if, and only if

(20)

In order to determine the coincidence time t12 as a
function of r we distinguish the three situations indi-
cated in Fig. 2.

According to the uniform distribution of r following

or

$12
I, (&i+4) /2

ti+t2 ~ ol+52)I2
ti2(r)dr =

ti+t2
(21)

1 1 1

$12 tl t2

The corresponding procedure is still manageable for
the triple coincidences, giving

1 1
+ +

$123 tl t2 t3
(22)

and indeed the general formula is

1
~ ~ ~

t.
(23)

+
t12...„ f12...„1 t„

(24)

However, because of the distribution of the times this
argument is not complete. We shall therefore prove (23)
by two independent methods. The first one of these can
even give some information about the distributions
instead of just mean values. The second method is more
special but has the merit of simplicity.

II. First Proof

The proof desired in the preceding Appendix I is
clearly contained in the solution of the following

But a proof by induction does not seem quite easy.
It is tempting to argue as follows: The coincidence of
e—1 vectors is equivalent to a simple evident of dura-
tion t12... 1 which is to coincide with vector Z„being
within its interval (passage time t„). Thus we should
have for the m-fold coincidence
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problem: On a line segment, of length L, we place at
random e line segments of lengths t&&t2&t3& &t„.
By "at random" we mean that the line segments are
placed independently, and that all positions of any
line segment are equally probable. We shall make L
large, but it is convenient to have it finite. We want
to calculate the mean length of intersection of all line
segments,

or
P(t,t, ; x) =l 2+(t —t,)8(x—t,)]/L, x(t, .

The 3 function is defined so tha, t J 15(x t—,)dx=1
With only two segments we find

I

tt P(t,t„x)
s ds—

P(tit2 int) ti+t2

t». ..„—,"xp(t, t2 t„;xl t,t, t„ intersect)dx,
J

The (zz—2)-fold integral in. (27) is evaluated by
(2g) induction. Denoting the integral up to an including

that over y;+~ by I,, we have

where P(tit2 t„;xltit, in, t) is the probability that
the segments have a common interval of length between
x and x+dx, given that all of them intersect.

We have then

p tin —2

In—o (y„ 1+t„)

XL2+(t -1—yn 2)&(yn 2
—yn 1)/dy. 1

P(t,t, . t„;x)
P(t14 . .tn& xltit2 t„ int) = —. (26)

P(tit2 t„ int)

tnt~i ( 1
1+y=2l —+

L2 . Et. t. , )

Here P(tit2. t„; x)dx=the probability that all the
segments overlap over an interval of length between x
and x+dx and P(tit2 t„int)=the probability that
all m segments intersect. It may be noted that

P(ti t.; x)

t']

P(tl' ' 't —1 y. i)dy. iP(y. 1 t x)—
Jp

Assuming

then
lt33 /In- j—j.

In—j—1=
Jo

t1 1
x 1+y;l —+

tn

+" +t„,„) '

p t].
p

t&2

P(tit2 y2)dy2 ~ P(yzt3& y3)dy3
~3

'
~3

p
g/3 pWn

—2

X P(yzt4; y4)dy4 P(y. 2, t~i; yn 1)—
Jp 0

Xdy. iP(y„ it. ; x).

dyn
xL2+ (t= —y= -1)~(y= —y=;-1)7

L
t„t

I j+1

)1 1 1'-
x 1+y. ;il —+ + +

tn tn—1 t=, -

The upper limits are obtained from the observation that
P(y„t„+,, y„+1)=0 for y„+1)y„. In similar fashion we
have

Thus the expression for I; is valid in general. There-
fore, (with yi=ti),

P(tit2 t int)

p
tt pg2

P(tit2 y2)dy2 J P(y2t3 y3)dy3
0 0

p 'f/n —2

P(tit2 t„ int)

t~f~ t 1
~ ~ ~

4 $n-

tntn i. . .4
1+til —+.

L" ' Et t )

(28)

X P(yn 2& tn —1 & y—n 1)—
Finally, to obtain t~2. .. , we need also

Xdyn 1P(yn 1, t„ int). (27)

All the probabilities on the right-hand side are now of
the form P(tit2, x) or P(tit2 int); and by considering a
figure one easily finds (L))ti+t2)

~tI
xP(ti .t„;x)dx

0
ptI p52

P(tlt2, y2)dy2 P(y2t3, y3)dy3
Jp "0

and
P(t,t, int) = (t,Pt, )/L,

0&x&tg
S
$% Iy

2/L,
P(t,t„x)= (t,—t,)/L,

0,

)
t&n —2

X ' ' '
J

P(yn 2 tn—1& yn—-i)dyn i
0

~
t&n—t

X xP(y, , t; x)dx.
dp
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The last integral is simply equal to

E(y„ I, t„ int) Xt12(y„1, t„).

The integral over y ~ is thus exactly of the same form
as the integral over x, apart from a constant factor
t„/L, and the same holds for all the remaining integrals,
giving

variables are defined mod 2m. The situation of the N —1
normal coordinates Z, is thus uniquely specified by a
point P on the unit sphere in N dimensions.

The velocity of the point P is the time derivative of
the line element. It has the components

ptI

j xa(tl. t„;x)dr= t,t, t.P" '.
0

(29)
'v~ =slay sln62

'vN y
=sin@i sln82

~ sin6; ~6,,

SinN —24 j

Thus, the combination of this with (26) and (28) gives where
the desired result

1 1 1 1
8,= ~M, &

@=CON
'.=1

~12 ~ n ~1 ~1 ~n

By a similar iteration procedure one can also obtain
the higher moments of the distribution function.

X2 = r Sin8'] COS82,

xN ~ =r sin6~ sin@2 . sinN —2 cosc,

xN =r sin~ sin62. Sin8N 2 sin@.

(30)

We have then Pxg=r' and the surface r=const. is
covered once when the angles describe the intervals
0(8,&m and 0&C & 2m . For the line element, one has

ds'= dr' jr'[d61+sin 8 d82+
+(Sln81 Sln82 Sin@" 3) d8~ I

+ (sill sin82 sinPN q)'dC'), (31)

all cross terms cancelling by orthogonality. Accordingly
the volume element is the product of the components

ds„=dr,

ds~ =re~,

ds; =r sind~ sin82 sin8; ~d8, ,

de =r sing sin82. Sin8N 2dc.

(32)

For the present purpose we need only the surface ele-
ment on the unit sphere,

dQ=(sinful)~ ' (sin82)~ '

Xsln8$7 —2dgld62' ' 'd8~ gdC. (33)

Identifying now 81, 6', 8& 2, C with &pl/2, y&/2,

pz 2/2, pz I/2, respectively, the polar angles will

be defined modulo m when the corresponding angle

III. Second Proof

Instead of looking at the E 1vect—ors Z; (Fig. 1)
separately rotating in their circles, we can map the
complete motion pl(t) y2(t) &p~ 1(t) on an iV-dimen-
sional sphere. Let N-dimensional polar coordinates be
defined by

x~ =r cos8~,

where
r, ,„,= i/I v

P P 0 ~ oPN

(35)

Because of the complete symmetry it will now sufhce
to illustrate the calculation by means of the case N =2.
Then ~Q is just the 2-dimensional surface element
sinO'dO~dC on an ordinary sphere (Fig. 3).

Over long times, all positions O', C are equally
probable and independent according to the auxiliary
theorem of Sec. 3. The passages of P's orbit will there-
fore fill up AQ with uniform density when the number
of recurrences gets large. Hence the mean segment
must be equal to the area AQ divided by the projection
of AD in the direction of the velocity upon the (E—2)-
dimensional subspace perpendicular to it:

t=hD/Projection of EQ along v. (36)

FIG, 3, Passage of orbit through AO.

We have in this way a velocity field (34) over the
sphere, which is determined both in direction and mag-
nitude everywhere (except at the poles', =0).The sec-
tors rM, , corresponding to the latitudes //t y; =co,t; of
the mechanical state, will delineate a surface element
AQ on the unit sphere with mutually orthogonal edges:

s, = v t, (j=12 X—1).

Ke are now prepared to compute the coincidence
time. A coincidence, &p, &argZ, & y,+Dp; for every j,
is equivalent to the event E&AQ, and the mean lifetime
of a coincidence is equal to the mean time of transit of
P through AQ. This mean time of transit is equal to the
mean segment l of the reentrant orbit inside AQ,

divided by the absolute velocity:
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This projection will be (Fig. 3)

Proj(AQ) = AS&+ AS&, (37)

where the denominator is just the sum of the reciprocal
passage times 1/tt=et/$t, and 1/ts ——ns/$s. The exten-
sion to more dimensions is now immediate, and so we
have generally

where hS; is the surface element whose normal points
in the direction of ~;. But because of the orthogonality
we have AQ=s;hS; for any j, so that we may replace
ESt and ESs in the denominator of (36) by AQ/$t and
BQ/ss, respectively.

The expression (36) for the mean segment will then
take the form

(39)
~coInc
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A kinetic equation governing the time dependence of the cor-
relation function of flux is established for dilute gases and is in-
tegrated to yield a relation between the correlation time and the
transport cross section. The spectrum of the binary collision
operator is determined for spherically symmetric forces between
molecules, which, for the hard-core model, consists of two discrete
values in the classical limit; hence it is shown that the question
of validity of approximating the correlation function by an
exponential decay depends upon the type of intermolecular force
and the temperature of the system, Approximate eigenvalues of
the master collision operator are obtained corresponding to the

Quxes of viscosity and thermal conduction, and their relations
to the macroscopic transport coefhcients are derived. These
relations lead to a new approach to the transport properties of
dilute gases, which is different from Enskog-Chapman's method,
but yields the same results in the classical limit. An expansion
formula for the canonical transformation describing the motion
of dilute gases is obtained and is employed to clarify the assump-
tion of random u priori phases in the momentum representation
for spatially uniform gases; this is done by formulating the
quantum-mechanical equivalent of Brout's idea in the classical
derivation of the master equation.

1. INTRODUCTION

'HE typical examples of the molecular theory of
transport phenomena, such as the viscosity of

dilute gases and the electrical conductivity of metals,
are usually based on the Maxwell-Boltzmann integro-
diBerential equation for the velocity distribution func-
tion of molecules' or its modification. The extension of
the kinetic method to the treatment of transport phe-
nomena in dense gases and degenerate quantum gases
has not been made in the general case.

On the other hand, according to the recent theories
of transport processes, "we.can obtain molecular ex-
pressions for transport coeKcients or kinetic coef6cients
which are valid over the same region as the thermo-

*This work was supported in part by the U. S. Air Force
through the Air Force Ofhce of Scientific Research of the Air
Research Development Command.' S.Chapman and T. G. Cowling, The Mathernaticat Theory of
Iionnniforrn Gases (Cambridge University Press, Cambridge,
1939).' R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).' H,.Mori, J. Phys. Soc.ItJapan'll, 1029 (1956).

rt = (1/Vk2') dl +r, t (t),
0

(1.2)

4 S. R. de Groot, Thermodynamics of Irreversible Processes
(North-Holland Publishing Company, Amsterdam, 1951).

~ M. S. Green, J. Chem. Phys. 22, 398 (1954).' In the classical limit, Eq. (1.2) agrees with Green's expression'
except that the average in (1.1) is made with the canonical en-
semble whereas, in his expression, with the micro-canonical
ensemble. The latter situation causes a serious difference in the

dynamics of irreversible processes. ' The most remark-
able feature of the theories is the formulation of the
transport coefficients in terms of the correlation func-
tions of the equilibrium fluctuations of the corresponding
dynamical cruxes P,

(t) =-',(FF(l)+F(t)F), (1.1)

where the angular brackets mean the average over the
canonical ensemble of the system, and F(t) is the value
of F after time t and should, in the quantum-mechanical
case, be read as the Heisenberg operator. For example,
the coefFicient of shear viscosity of isotropic fluids can
be expressed as' "


