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We consider the quantum-mechanical problem of a particle bound to a conaguration of spherical poten-
tials, each of 6nite range. If the Schrodinger equation can be solved for each potential by itself, then it is
shown how to solve it for the con6guration, provided the potentials do not overlap. The energy levels are the
zeros of a determinant of formally in6nite order, but in practice this is always well approximated by a Gnite
determinant and often by one of small order. As illustrative examples we consider some states of a particle
bound to three square wells with the con6guration of an equilateral triangle, and to two truncated Coulomb
potentials. The possibility of extending an approximate version of the method to overlapping potentials is
pointed out.

I. DTTRODUCTION
" 'N a recent paper' we have treated the problem of the
~ ~ scattering of a wave from several scatterers, under
the assumption that one could solve the problem of the
scattering from each taken separately. It is more or less
obvious from this work that the same point of view can
be used to solve the problem of a particle bound to more
than one potential, providing that the potentials do
not overlap and that one can solve the bound-state
problem for each of the potentials taken separately.
In the present paper we spell this out in some detail.

II. THE GENERAL FORMULAS

In this section we write down an infinite secular de-
terminant, whose roots give the energy levels of the
particle.

To begin, we suppose that we have S spherically
symmetric potentials fixed in space, in some definite
configuration. The potentials need not all have the same
shape, i.e., some may be square wells, and others cutoG
Coulomb potentials, etc., but we assume that they all
have 6nite radius, the ith potential having radius a;,
and that they do not overlap. For each potential we set
up a spherical coordinate system with origin at the
center of the potential and for the ith potential, coordi-
nates r;, 8;, P;. These coordinate systems need not have
the same orientation; in general, the most convenient
orientation will be dictated by the speci6c problem.

We then write the general solution to the Schrodinger
equation inside each of the spherical regions 1,2, E
as follows':

+0) =Q g 0)@ 0)(r)F t(e y)
m, l

+'~'= p & t'"'@ ''(rt)I' )vt(eN O'N)
m, l

*This work was done while the author was on leave from
Lincoln Laboratory as a National Science Foundation Senior
Post Doctoral Fellow.

~ L. Eyges, Ann. phys. 2, 101 (1957).
~ Ke use the notation of P. Morse and H. Feshbach, Methods

of Theoretica/ I'hysics (McGraw-Hill Book Company, Inc. , New
York, 1953). The real spherical harmonics they de6ne are di-
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In these equations the A l&'& are arbitrary constants.
The functions Ct&')(r) are assumed to be known. They
depend, of course, on the energy 8 which we are trying
to find. For a square well, for example, C i is just jt()tr)
where «=L(2nt/h')(Ve —lEl)]', and jt is a spherical
Bessel function.

Now we write a general solution of the wave equation
for the region of space outside all the potentials, i.e.,
for r;& c;, for all i. Exactly as in the problem of multiple
scattering, ' we can take the field 4, (subscript e for
external), in the region external to all the potentials, to
be the sum of the fields produced by the individual
potentials, i.e.,

@ —+ 0)+. . .+ i)v)

where
%,t')=Q 8 t")ht(ihrr)Y t(Hr, gr),

m, l

(2)
@,t~) = Q B„t&~)ht(ihr)v) V t(0)v,y)v).

m, l

This expression for 4, is certainly a possible solution of
the free space wave equation, since it is simply a linear
combination of such solutions. In these equations the
8 l are arbitrary coeKcients, the functions hl are
spherical Hankel functions of imaginary argument, and
h= (2ntl~l/h')'.

Now we require that the wave function and its radial
derivative be continuous at each of the boundaries
r&=u&, r&=a&. For matching at r;=a;, say, the
internal solution 4&') is in suitable r;, 8;, p; coordinates.
But of the total exterior wave function%'„only +,&'~ is
in r;, 8;, g; coordinates, so to apply the matching condi-
tions we must express all the other +,&&', jWi, in these
coordinates. The basic formula for these transforma-
tions is, referring to Fig. 1, that for expressing the
solution ht(ihr')F t(0',P) in terms of new variables
r, 8, p, which are spherical coordinates in a coordinate
system with the origin a distance d from the first but

vided into two classes, the even ones F le and the odd ones I' p.
For the general development it is convenient not to put in the
superscripts and to leave it understood that F' l refers to either
an even or odd harmonic to which there corresponds coefBcients
~ml{i)e and grN&(s)o
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too clumsy to be instructive. In any particular case
they can be worked out.

Now, the condition that the wave function be con-
tinuous at r;= a; can be written

FIG. 1.Illustrating the geom-
etry involved in expressing
solutions of the wave equation
hi(zkr') 7' i(e',oo) in terms of
functions of the unprimed vari-
ables r, 8, and @.

m, l

=P B i&'~hr(iku, )Y„i(8,,rt;)
m Z

+ Z B- "'F-,- .'( ',R'j)1'- (8'A'). (6 )
m, l,m', V,jj wi

The condition that the radial derivative be con-
tinuous is

(8
with the same orientation as the first. This formula is, ' P A i&'&I —Ci&'&(a;)

I

I' i(8;,P;)
for r&d: &ar; )
hi(ikr') V„i(8',g)

=D(i) Z Z (~+i+l)
n 0 8=0

j i+.(ikr)
C„'+'*(cos8) hi+„(ikd)

(ikr) '
)& I" i(8;,Q,), (6b)

( ) '(™)t (j'l '
where, e.g. , (8/8r;)C i(a;) means, of course,

(i—s)!(m+s)!Ed)

where D(l) = 2'+** (2/or) &I'(l+-', ), I'(i) is the gamma func-
tion, and C„'+& is a Gegenbauer' polynomial. This is
expressible completely in terms of spherical harmonicsI', (8,&) if we write

C„'+l(cos8)I', (8,$)=P, D„i .. .F', (8,&), (4)

and get the coeKcients D l, , by the orthogonality
of the V, . By the addition theorem for spherical
harmonics, we can always reduce the problem of trans-
formation for two arbitrary coordinate systems to that
for two coordinate systems with the same orientation,
and for which Eq. (3) applies. Thus we can always
transform from the jth to the ith coordinate system in
a way which we can write symbolically as

hi (ik~j) I'- i (8jA»)
=Pmi Fml, m'i', i j(~iyRij) &mi(8iy4 i) y ri&Rijy (3)

where E;; is the distance between potentials i and j,
and where the F~$ ~ $ 'j are functions of the relative
orientations and separations of the two coordinate
systems, and are calculable once these are prescribed.
Although one could write a specific expression in the
general case of E potentials for these functions, it is

'These are defined in different ways by different authors. We
use the definition given by A. Erdelyi in Higher Transcendental
Functions, edited by Bateman Project (McGraw-Hill Book
Company, Inc. , New York, 1954), Vol. 2.
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(7b)

We then equate the determinant of this set of equations
to zero and the energy levels we seek are the roots of
this secular equation. The rows of this determinant are
labeled by the sequence'

Voo(1), I'oo(1') ' ' I'oo(Ã), Foo(1P);
F'pr (1) ' ' I or (g ) ' I oi (1) ' ' Fpr (X ) '

For each of the E potentials we have an equation like
(6a) and one like (6b), 2E equations in all. In each of
these 2' equations we equate to zero the coeKcients of
spherical harmonics. This gives the following infinite
set of homogeneous linear equations which hold for all
i, m, and /, for the amplitudes A l~'& and 8 l&'):
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where Y &(i) refers to the equation got by equating to
zero the coefficients of V & in the ith one of Eqs. (6a)
(function continuous) and Y ~(i') to the corresponding
equation of Eqs. (6b) (derivative continuous). The
columns of the determinant are labelled by the sequence

~ oo"' &oo"' ~ oo( ', &oo'~',
(1)e. . .g (N) e ~ g (1)0. . .g (N)0.

This labeling is arbitrary, of course. One can inter-
change the rows and columns of the determinant at will.
The most advantageous labeling will be determined by
the properties of the state functions that one is looking
for. If in particular examples, one knows something
about these properties in advance, e.g. , from group
theory, then one can use this information to advantage
in labelling the determinant. It is hard to indicate how
this is to be done in general. But this question is closely
connected with the question of how in practice the
infinite determinant breaks down to a finite one, and
this is discussed in the next section.

III. QUESTIONS OF CONVERGENCE

The infinite secular determinant we have described
is not useful unless it is accurately approximated by a
reasonably small finite determinant. This is so, in
many practical examples. The basic reason is the be-
havior for large order I+n of the IIessel functions

j&+„ that occur in the transformation equation (3).
In the argument ikr of these functions, k is real and r is
always set equal to some radius a, so we have to deal
with functions j~+ (ika) Now .these functions become
very small for I+n))ku, and hence the terms in (3) for
which this condition is satisfied can be neglected. This
has a consequence that the determinantal equation
does not involve spherical harmonics of high order, and
is to a good approximation a finite one. The question of
just how much greater I+n must be than ka in order
to make the approximation we have indicated is one
that cannot .be answered in general. It depends of
course not only on the value of ka but on the accuracy
that one seeks and on the value of kd. The dependence
on kd is usually weak, however, and it is the numerical
value of ka that dominates the series.

The fact that only a finite number of Bessel functions
need be taken into account is closely related to the fact
that the scattering of plane waves of wave number k
from an object of size u involves to good accuracy only
the first ka partial waves. The reason for this is, of
course, that the transformation formula we use is very
similar to the formula for expanding a plane wave in
spherical coordinates. For example, Eq. (3) for l=o
is the expansion of a point source in a spherical coordi-
nate system a distance d from the source, and it is easy
to see that when d approaches infinity it becomes the
expansion for a plane wave. Of course, for the scattering
problem the argument of the Hessel functions is real,

TABLE I. Illustration of the convergence of the expansion of
Eq. (3) for I =O. ho(iver') =Z„o A~„(costt), where A„= (2m+1)
Xj„~iur~ h„(iud).

An/A 0, kI' =0.5

1.000
0.478
0.138
0.0308
0.00651
0.00114

kd =3.0
An/Ap, kr =1,0

1.000
1.252
0.710
0.313
0.123
0.0454
0.00164

An/Ap, kr =1.5

1.000
1.168
1.441
0.980
0.546
0.300
0.161

and for the bound-state problem it is imaginary, but
this does not make an essential diGerence.

The size of the secular determinant is determined
then by the convergence of the series in Eq. (3). To
illustrate the kind of convergence to be expected in
practical problems we give in Table I the coeKcients
in the expansion of ke(ikr') for some representative
values of the parameters. ku is often of the order of
unity for practical problems.

Even though one has an idea of the convergence of (3)
for various values of the parameters, an important
question remains: how can one determine ie advance
where to cut off the secular equation? There is a circu-
larity that must be cut through. That is, the eGective
size of the secular equation is determined by the energy,
that is to say by ka. On the other hand, the energy
is not given a priori but is determined by the secular
equation. Where does one starts

KGectively, the answer is that one must make a guess
from the physics of the specific situation and then see
if this guess is consistent. It is, of course, impossible to
describe how to do this in general; each case is different.
Some light is thrown on this question in Sec. IV, where
we treat some specific examples. It is worth noting that
this method is in some respects easier to apply in finding
excited states of the system since ka gets smaller and
smaller for higher and higher excited states. This is an
unusual result in that ordinarily the ground state is
easiest to treat in most approximation methods.

IV. SOME ILLUSTRATIVE EXAMPLES

a. Three Square Wells: 8 Waves Only

We now consider some illustrative examples. We
begin by considering some states of a particle bound to
three identical square wells whose centers form an
equilaterial triangle of side d. The potential energy V
in each well is V= —Vo for r(a, and is zero for r)a.
We assume d&2u.

For comparison, we first state the well-known results

for a single square well. For this we define the internal

wave number k, =t (2m/k')(Ve —~E~)$& and the ex-

ternal wave number k, =L(2m/k') ~E~]&, where E is,
of course, negative for a bound state. We also define

the parameters $=k,u, r)=k,a. Then the internal solu-
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$ cot)= —ri, (Sa)

tion for a spherically symmetric state is jp(k, r) and the
external solution is kp(ik, r). The condition that the wave
function and its derivative be continuous at r= u leads
to the pair of equations

With these simplifying assumptions the in6nite de-
terminant becomes the following transcendental equa-
tion determining the energy

Pj p'($) kp'(i') 1+2jp'(i')kp(sk, d)/hp'(i')
=Zn

jp($) hp(i') 1+2jp(i')hp(ik+)/kp(i')

where
X'= Vpa'2tis/5'.

(Sb)
If we express the Bessel functions in terms of trigonom-
etric functions and exponentials we get

The properties of the solutions of this set of equations
depend of course on the value of A.

Now we come back to the three square wells. For the
sake of a simple example, let us suppose that A, is such
that for a single well there is a spherically symmetric
state which is very weakly bound, i.e., one for which q
is small compared to unity. This is always possible for
an appropriate choice of X. If the three potentials are
very far apart there are states of this kind corresponding
to a particle localized around, i.e., bound to, any of
these three wells. And there is, of course, a state of the
same energy which corresponds to a linear combination
of these localized states. If now the wells are brought
together the energy of this state will become lower,
and it is this we shall calculate. We also expect that if
the energy remains suKciently small, the wave function
remains spherically symmetric inside each of the three
potentials.

As a consequence of the symmetrical geometry, and
the assumed symmetry of the state, we can con6ne
ourselves to matching the wave function at only one
boundary, say r&= u&. Hence we write, with the assump-
tion of S waves only,

$ cot/= 1—(1+re)

(9)

where y is the ratio of the separation of the potential
wells to their radius, i.e., y=d/a. For y~eo, we see
that the expression in the curly brackets in (9) becomes
unity and we get back the transcendental equation (Sa)
corresponding to a particle bound to a single well.

Since we have assumed g small, we can consistently
expand the expression in the curly bracket in (9) in
powers of it; in lowest order this expression is inde-
pendent of ri and is just equal to (1+2/y) '. In this
approximation the transcendental equation becomes

n+(2/7—)
$ cot)=

1+(2h)

We can get a specific expression for the new energy by
expanding this equation about its value when p is
infinite. That is, we assume g= gp+t', ti=tip+ti', where
now we use $p and rip to mean the solution of Eq. (8).
We get to erst order in go

4'"i=A jp(k;r&). 2
ri = tip+ —(1+tip).

7This is of course a special case of the general Eqs. (1);
Eqs. (2), for the solution in the region of space outside
all the potentials become, using only the lowest order
spherical harmonic,

+,=BLkp(ik, rt)+hp(ik, rs)+kp(skis) j.
For satisying the continuity conditions at r~ ——a we put
hp(ikrs) and hp(ikt s) into ri coordinates, using only the
first term in the expansion (3) for f =0; i.e., near ri ——a
we use hp(sk, rs)= jp(sk, rt) hp(ik. d), and similarly for
hp(ikr p) .

Pro. 2. Geometry
for a particle bound
to two truncated
Coulomb potentials.
In region I the po-
tential is e'/r~. ,in-
region II it is —p'/rs,
and in region III it
is zero.

This result shows that ri (which is proportional to the
square root of the energy) remains small only if p is very
large. Thus, even though qo is small, i.e., even though a
single well has a very weakly bound level, this will not
be the case for three wells when they are at all close
together. Physically this is not surprising. If a particle
is bound to a well with very small binding energy, this
energy is small because the mean kinetic energy is very
nearly equal to the mean potential energy; there is
almost an exact balance. If now the shape of the poten-
tial energy contour is changed, e.g., by bringing up a
second (and third) well from infinity there is no reason
in general why this balance should not be upset and
why the binding energy should not become appreciable.

It goes without saying that this simple example far
from exhausts a complete description of the states of
this system. In general, however, calculation of the
energies can only be done numerically, for de6nite
prescribed values of the parameters P and d. This is true
even for a particle bound to a single well, and the system



SOLUTION OF SCHRODINGER EQUATION

we discuss is very much more complicated. This example
is meant only to be pedagogical and to illustrate the
general result of Sec. II in a simple way.

b. Two Truncated Coulomb Potentials:
8 and P Waves

As a second illustrative example we take the problem
of a particle bound to two truncated Coulomb poten-
tials. We refer to Fig. 2. The potential within region I
is proportional to —1/rl for rl&rp. It is convenient to
get into familiar units by taking the constant of pro-
portionality to be e', where e is the electron charge.
Thus, within I the potential is —e'/rl for rl(rp, and
similarly within II. The potential in region III is zero.
To begin, we write down the known results for the
solution of the Schrodinger equation for a region of space
in which there is a Coulomb potential. We use atomic
units: radial distances r are measured in units of the
Bohr radius ap, energies Z in units of rydbergs, e'/280.
Then the solution C&(e,x) of the radial Schrodinger equa-
tion for an attractive Coulomb potential, for Enegative,
and for angular momentum /, is4

where a prime means di6'erentiation with respect to the
variable x and then setting x equal to xp.

Now we return to the problem of the ground state of
a particle bound to two truncated Coulomb wells. We
assume that it is sufhcient to take only the 6rst two
spherical harmonics in the expansion of the wave
function inside region I; this will be adequate if rp is not
too large, since the parameter that determines the con-
vergence is xp= 2 (~ F!)'r 0 and when rp decreases, E also

decreases, and as a consequence so does xp. Of course,
this is not the way that problems usually present them-
selves in practice. Ordinarily a quantity such as rp would
be prescribed in advance, and then we would be faced
with the problem mentioned before, of determining
where to cut o6 the secular equation. But for the sake of
illustration we can invert this procedure and assume
that we know that rp is small enough to justify our
keeping only S and I' waves. With this simplification
the solution inside region I is

=Ape Fp(e xl)+Ale xlFl(6 xl)P1(COSHl)

where

C, (e,X) =X'e-*"Fl (e,X),

0= 1—1/(
~

8
~ )&, x=2 ( [ 8 ~ )&r,

and because of the symmetry of the ground state we
can take a similar solution, with x~ and 8~ replaced by
x2 and 82, inside region II.

We then take for the solution in region III

and Fl (0 x) is a hypergeometric function defined by the
series +80&0(Zx2/2) +8lkl (oxp/2) Pl (CO S8 0) &

21+0 (2l+ 0) (21+0+1)x'
F,(e,x) =1+ x+

21+2 2!(2l+2)(21+3)

(21+0) (2l+ 0+1)(21+0+2)
xa+

3!(21+2)(21+3)(2l+4)

For reference in what follows we write the trans-
cendental equation determining the ground-state energy
for a "cutoG hydrogen atom, " i.e., one for which the
potential is Coulomb for r&rp and zero for r&rp. For
such a system the interior solution for 1=0 is

e;.=e-*I'Fp(e,x),

and the exterior solution is

and it suffices, by the symmetry of the problem to
match the wave function and its derivative at r~= rp.

To do this, we express%', completely in x& coordinates
using Eq. (3). Since we have taken only S and P waves
inside region I, we need include only terms through
Pl(cos81) in these formulas. We get for r(d, with

yp= kd,

le =&ohio(ixl/2)+jp(ixl/2)ho(iyo)

+3 jr (ixl/2) hl (iyo) Pl(cos81)j
3j,(ix,/2)

+Br hl(ixl/2)P1(cos81)+ — hl(iyo)
ixl/2

15 jp (ixl/2)
+ hp(iyp) Pl(cos81)

zxg 2
kl (iyP)—3jl(ixl/2) Pl(cos81) .

iypContinuity of the logarithmic derivative at xp ——2 ( ~

8
~ )&r0

gives an equation for the energy,
The determinantal equation is then as follows. Note

Fp'(p, xp)/Fp(e, xo) =—1/xp, (1O) that a prime on a function means differentiation with

p M Q H p gb Q ~ th d ph t al ph respect to xp, and not with respect to the argument4P. Morse and H. Feshbach, 3IIethods of Theoretical Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), p. 632. which may be ixp/2 This con.vention simplifies the
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formula a bit.

e- o 'Fo(p, xo) —hp(ixp/2)
j—o(ixo/2) ho(iyo)

3jz (ixo/2)
h&(iyp)

ixo/2

e
—*o&'LFo'(p, x,)——,'Fp(p, xp)$

—hp'(ixp/2)
—jp'(ixp/2) hp(iyp)

3jz(ixo) )
—.

I

—3j~'(ixo/»+ lh~(iyo)
imp E x, ).

3jg(ixp/2) h&(iyp) —e-*o"xpFg(p, xp) 3jg (ixo/2)
h&(iyp)

ixp/2

15j p(ixo/2)
+ hp(iyp)+hg(ixp/2)

ixp/2

=0

3'�(ixo/2) hi (iyp) —e *'"(xo/2)F&'(p, xp)—Fq(p, xo) e *'~P(1—p'xo)

6 ( ji(ixo/2) )
—.

I

—j~'(ixo/2)+ — lh~(iyo)
iso ~ xo )

30 (' jp(ixp/2) )+—
I jp'(ixo/2) — lhp(iyo)

ixo& x,

+hg'(ixp/2)

We can write this in a form that resembles Eq. (10)
if we expand the determinant in minors of the first
column. This gives

Fp'(p, xp)
=-,'+

Fp(p, xo) Mpy(p~xo)

Mgg(p, xp)

where M~~ and M2~ are the minors of the 11 and 21
elements of the determinant. When d becomes infinite,
this equation becomes identical with Eq. (10). As for
the preceding example this equation can only be solved
numerically, once ro and d are prescribed. We shall not
do this here. SuKce it to say that for e small the right-
hand side of (11) is weakly dependent on p, and it is
then not much more dificult to solve (11) than to
solve (10).

V. OVERLAPPING POTENTIALS

One can apply an approximate version of this method
to overlapping potentials, if it is possible to break space
up into spherical regions, inside of each of which one
can approximate the overlapping tails of the potentials
by their average values. To illustrate this, consider
the problem of a particle moving in two Coulomb fields,
e.g. , the problem of the hydrogen molecule-ion, where
an electron moves in the Coulomb potentials due to
two protons. We refer to Fig. 3. The potential energy
for an electron moving in the held of two protons is,
in atomic units, —2(1/r~+1/rp). Now we divide space
into four regions I, II, III, IV by drawing two spheres
of radius ro, one centered at each proton, and a third
sphere of radius 2ro with center at the origin. A possible
procedure is to approximate the potentials in each of
these regions, to solve this approximate problem
"exactly" (in the sense of the previous sections), and
then to take the diBerence of the true and approximate
potentials into account by first-order perturbation
theory.

We discuss some possibilities. The correct potential
in region I, say, is just

2 1 ~

(reap

+—& I

—
I ag(cosa~) .

r~ rp &-o 42rp)
(12)

Fro. 3. Illustrating the division of space into regions appropriate
for an approximate treatment of overlapping potentials. H we can approximate the potential in I by taking



SOLUTION OP SCHRODINGER EQUATION

only the first term in the series in (12), i.e., by taking
the average value of potential II into account in region
I, and vice versa, we are left with a soluble Schrodinger
equation: the potential in I remains spherically sym-
metric and the extra constant term 1/rs makes for no
difhculty in its solution. With this, the approximate
potential is 3/re at point A instead of the correct value
of 4/re, and at point 8 the approximate potential is
3/rs instead of the correct value of 8/3rs Th. ese are
the worst cases, in the sense that the approximate po-
tential is much less accurate at these points near the
boundary of region I where r1 is large than it is for r1
small.

Similarly we still have an exactly soluble problem if

we take into account the average value of the potential
in region III, and neglect the tails of the potentials
completely in region IV. For if we write the wave func-
tion in III as the sum of two wave functions, one in r,
coordinates and the other in r2 coordinates, we can
always express this wave function in (r,8) coordinates
and match this to the free-space wave function in
region IV. One sees from this point of view that although
potentials like the Coulomb potential which are slowly
varying have the disadvantage that they cannot be
solved exactly by the method of the previous section,
they have the advantage that they can be well approxi-
mated by their average values over appreciable regions
of space.
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Recurrence Time of a Dynamical System
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Poincare cycles of a many-particle system are exemplified by the motion of a linear chain. It is shown that
the recurrence time increases in an approximately exponential way with the number of degrees of freedom,
and as a power of the sharpness with which the recurrent state is specified. An explicit formula is given
which is applicable to other separable dynamical systems as well.

INTRODUCTION

" 'N an interesting paper by Frisch, ' the old questions
~ - of Poincare cycles have been reconsidered. Besides
Liouville s theorem, with which it is intimately con-
nected, there is probably no other theorem of general
dynamics so simple and so well founded as Poincare's
about the recurrence of all bounded mechanical motions.
Far from creating a paradox to the mechanical theory of
heat —as held by Zermelo in the famous discussion with
Boltzmann —it can on the contrary be made a pillar in
the foundation of statistical mechanics.

Corresponding recurrence theorems in quantum
mechanics were given in a recent paper by Bocchieri
and Loinger. ' However, as was pointed out by Frisch, '
very little is known about the actual magnitude of the
recurrence times. It is the purpose of the present paper
to supply an explicit calculation, albeit for a very
special system, vis. , a linear chain. To be sure, the
linear chain, like any separable mechanical system, is
ergodic only in the space of the angle variables, but that
does not detract from the meaning of a recurrence. For
the calculation one needs only those dynamical features
which are common to all separable systems, but for
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definiteness we shall write down the formulas appro-
priate to the linear chain.
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where the mode j=0, representing a free translation of
the whole chain, is of no interest for our problem. The
corresponding frequencies are

(u, =(us sin(n j/2E), (3)

where coo is a maximum frequency related to the spring
constant and mass of the particles. Compounding
momenta and coordinates in the complex vectors
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the entire motion is expressed by
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1. DYNAMICAL STARTING POINT

Let the chain consist of X equal mass points, har-
monically coupled neighbor to neighbor, and consider
their longitudinal displacements uq (k =0,1,2, . 1V—1).
If we assume the end points of the chain to be free, the
normal coordinates,


