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Transient Analysis of the Townsend Discharge
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General Electric Research Laboratory, Schenectady, Rem cwork

(Received March 26, 1958)

The transient growth of currents in a one-dimensional Townsend gas discharge system under uniform dc
field conditions is examined. It is shown that a general solution for arbitrary external conditions can be given
in terms of a "unit pulse" solution. Two cases are examined in detail; in one case the discharge is initiated by
a single pulse from the cathode, in the second case the discharge develops under constant external illumina-
tion of the cathode. Expressions are derived which permit reasonably rapid calculation of quantities pertinent
to the transient characterization of the discharge. For the two cases considered in detail, numerical illustra-
tions are given and comparison is made with the results of other investigators.

I. INTRODUCTION
'

N the past five years there has been a considerable
~- revival of interest in the theoretical analysis of
transient phenomena in an idealized Townsend dis-
charge. ' 4 Reference to the earlier literature may be
found in the references cited. The current interest in the
Townsend model seems to be twofold in origin. The
idealized Townsend model is certainly the simplest
model of a dc gas discharge amenable to reasonably
rigorous analysis. Furthermore, recent improvements in
experimental techniques have shown that the predic-
tions of the Townsend model at steady state, below
breakdown voltages, is in very good agreement with
observation. It is therefore of considerable interest to
examine experimentally whether transient behavior in a
carefully controlled discharge can be approximated by
the predictions of the Townsend model.

Unfortunately, the transient analysis of the idealized
Townsend model turns out to be fairly complicated in
comparison with the steady-state analysis. Although the
authors cited below all treat essentially the same model,
they have used somewhat diferent approaches in ob-
taining the solution, and their results are not readily
comparable. The principal objection which may be
raised, however, to previously published results is that
they have invariably been presented in a form that is
not particularly transparent to the experimentalist
desiring to compare his observed results with those
calculated from theory.

In the present paper we shall attempt to present a
systematic development of certain transient phenomena
encountered in the Townsend model. Most of the results
to be presented have already appeared in one form or
another; however, it is hoped that by collecting these
results in one place it will be possible to achieve suS.—

cient mathematical transparency to aid the experi-
mentalist.

After a description of the model we present a brief

' Dutton, Haydon, Jones, and Davidson, British J. Appl. Phys.
4, 170 (1953).P. M. Davidson, Phys. Rev. 99, 1072 (1955); 103,
1897 (1956).

~ H. W. Bandel, Phys. Rev. 95, 1117 (1954).' P. L. Auer, Phys. Rev. 98, 320 (1955); 101, 1243 (1956).
4 Y. Miyoshi, Phys. Rev. 103, 1609 (1956).

description of the formal solution. It will be shown that
in principle, the general transient characterization of the
idealized Townsend model can be constructed from the
solutions of the "unit pulse" case; we term unit pulse
the situation where the avalanche process starts oG
with a unit pulse of charge and no other charge enters
the system from external sources after inception. In the
following section we shall develop in considerable detail
the solution of the unit pulse case. For purposes of
mathematical tractability, we shall consider in detail
only situations where a single secondary mechanism is
operative. It will be shown that for short times the
rigorous solutions may be obtained from a rapidly con-
vergent infinite series. For long times the solutions may
be obtained from a formula equivalent to the one
originally proposed by Davidson; the time variation
here is given by a single exponential term.

In addition to the unit-pulse case, we shall also in-
vestigate in some detail the case of constant illumina-
tion. The last section will discuss the results of numerical
computations. The application of the present analysis to
experimental results will be postponed for a subsequent
publication.

II. IDEALIZED TO'WNSEND MODEL

We shall consider a discharge gap bounded by infinite
plane parallel electrodes, such that the discharge may be
considered unidimensional. The origin of the coordinate
x is placed at the cathode and the anode is at 5 cm from
the cathode. At some time to, a constant dc voltage is
placed across the electrodes and it is assumed that a
spatially uniform field develops throughout the gap.
The field remains constant and uniform during the
current buildup; space-charge distortions are neglected.
At the same time that the voltage is applied, an elec-
tronic current is made to appear at the cathode. This
current may be induced by any external agency, such as
ultraviolet irradiation of the cathode, cosmic rays, etc.
The externally induced current density is denoted by
is(t) and may be an arbitrary but specified function of
time, t, after inception at to.

In the idealized Townsend model, the secondary
mechanisms which regenerate electrons in the discharge
gap are restricted to the cathode. Ordinarily two mech-
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anisms are considered important, one due to positive
ions impinging on the cathode, another due to photo-
electron emission due to photons generated in the gap
by molecular excitation, ionization, or recombination.
Still another mechanism important in certain gases is
secondary production by energetic neutrals reaching the
cathode. We shall consider the first two only, in general,
and restrict the detailed analysis to one, in particular.

The following notation will be used:

i(x, t) =electron current density in gap,
j(x,t) =positive ion current density in gap,

ip(t) =externally induced electron current density
at cathode,

~=electron velocity,
—m =positive-ion velocity,

I=we/(w+e) =mean velocity.

According to the Townsend model the equations of
continuity become

1 82 81

to the electron current in (4), and

to the positive-ion current in (4), with the requirement

tt(x) =0=p(x), x(0 or x) ll. (5c)

rt=tt/e=electron transit time,

r p
=it/w =positive-ion transit time,

rp=5/S= rt+rp.
(6)

The expression in (4) for the positive-ion current
density may be rewritten

The inclusion of initial charge in the gap complicates the
analysis of the secondary process to some extent and
will not be included in the present discussion. It could be
included, however, by an obvious generalization of what
will follow.

In order to discuss the secondary process, it is useful
to introduce the definitions of the electron and ion
transit times:

i Bj Bj
(2)

(7)

Is
t u/s-

j (x,t) =etpt ds f(s)eau(t+ults stu)—
~ t —r3+x/m

where n is the primary ionization coeKcient and has
units of reciprocal length.

If initially there is no charge present in the gap, the
solutions of (2) are subject to the boundary conditions

i(o,t) = f(t),

j(b,t) =0,

i(x,t) =o, t(x/tt;

i(x,t) =f(t x/tt)e, t&—x/e;

where f(t) is zero for t(tp and is specified through the
secondary mechanisms. Physically, of course, f(t) is
simply the cathode electron current density. The most
general solutions of (2) are

f(t) =0, t&0.

Considering the photon and positive-ion secondary
mechanisms only, the Townsend model postulates in
general that

M 5

f(t) =ip(t)+ —j(o,t)+p i i(x,t)dx;
n (8)

ip(t) =f(t) =0, t&0.

t

f(t) =ip(t)+ tt I e t' s~tf(s)ds—

Some authors denote y, = pt/n, y „=P/n; the first
quantity represents the ion secondary coefficient, the
second represents the photon secondary coefficient.
With the use of (4) and (7), (8) becomes in the absence
of initial charges in the gap

j(x,t) =o,

j(x,t) =a ~ u,(t+xlm)

t(x/e;

i (s; t+x/w s/w) ds, —
+Pe) e " ' ' f(s)ds. (9)

t —ry

t+x/w (tt'/tt;
~5

j(x,t) =n i(s; t+x/w s/w)ds, t+x/w& ll/pt;—

ee(x—et) e (Sa)

where we have set the starting time to equal to zero.
If initially there is a distribution of negative charge

density rt(x) and positive charge density p(x) present in
the gap, we shall have to add expressions

The above equation represents an integro-difference
equation. It is complicated by the fact that two diGerent
transit times, ~& and 7-3, are present. I'"or purely mathe-
matical convenience we shall consider only the case
where one secondary is operative; in particular we
assume it to be a photon mechanism. To convert from
a pure photon case to a pure positive ion case, it is only
necessary to interchange the roles of P and tp, e and I, rt
and rp, in the integral equation. It is obvious from (4)
and (7) that once a solution to (9) is obtained, the cur-
rent characteristics of the gap are fully specified. Before
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considering detailed solution of (9), we wish to discuss discussed. The following notation will be useful:
the current in the external circuit. $=t/ri=time in units of ri,

III. EXTERNAL CIRCUIT CURRENTS

In an experimental investigation of transient dis-
charge characteristics, one ordinarily observes the cur-
rent in the external circuit. In a dc discharge not
limited by external resistance, the electronic contribu-
tion and ionic contribution to the external current are,
respectively, f(k) =io(k)+)( '" "'f(n) dm;J~, (13)

0- =o.b =avalanche size,

)(=Pl) =&„o=size of secondary.

For an arbitrary externally induced current, ip(t), the
pertinent integral equation becomes

I,(t) =r-' i (x,t) dx,
f(E) =io(5) =o,

I,(t)=8 ' ~ j (x,t)dx.

i))l)'ith neglect of initial charge in the gap, (10) may be
recast with the aid of (4) into the form

t

(t)
—1 r (sas(( s)f(g)dg-

t —ry

I (t) —r —i I )L~as(s s) gaa(s s))f—(~)dg—

For initial times (t(ri), the lower limit of integration
in (13) is zero and the equation is readily inverted to
give

f(h) =io(k)+) )
('"+'" "'~o(~)d~ o& 5&1 (14)

0

Thus, in the interval 0 to 7.
& for pure photon secondary,

or in the interval 0 to ro for pure ion secondary, (14)
presents a complete solution to the transient charac-
terization of the discharge.

For arbitrary times one can readily verify that the
solution of (13) may be written in the form

pt —rx

+r —1 I L~ao g {asss)s$f(~)d~ f(k) = 'o(5 n)g(n)d—n; (15)

The second of these expressions is obtained after an
integration by parts and some rearrangement. It will be
noted that the lower limit of all integrals is to be taken
as zero when the indicated limit is less than zero, since
f(t) =0 for t(0. For times less than an electron transit
time, the second integral in I„is identically zero. The
total observed current in the external circuit, I(t), is the
sum of I, and I~. The expressions given by (10) and (11)
are valid for any combination of secondary mechanisms.
Experimentally, of course, one usually observes the sum
of the electronic and ionic components. On the basis of
(11),however, it is possible to have them contribute on
diferent time scales. For purposes of rough estimation
we can assume that

r,/r, -()/u-100.
The first integral in I„as given by (11) is then always
negligible in comparison with I,. The variation of the
second integral in I„relative to I, depends in detail on
the nature of the secondary and on the extent to which
the gap has an overvoltage or undervoltage. We post-
pone a fuller discussion of this point until we obtain
solutions of the integral equation for f(t).

IV. UNIT PULSE SOLUTION

We shall now treat the case where only a photon
secondary is active. The relation of this situation to the
one where a pure ion secondary exists has already been

where the quantity g(P) is the unit pulse solution and
satisfies the equation

(16)

with 6($) denoting the usual delta function.
As examples, consider first the case where the source

of ip(t) is a finite charge density of size go appearing at
the cathode at only zero time. Then, according to (15),

ip(t) = (Ipb (t);
f(g)=i,g(P), t&0; (17a)

io=go/ri.

On the other hand, consider the case where io(t) arises
from a constant source of background illumination.
Then

ip(t) =ip=const,

f(()='o g(g)dg, t&0.
0

The above two cases are the ones which have been
treated by Miyoshi. ' The other authors' ' have treated
primarily the case described by (17b). On the basis of
(15), however, the unit-pulse solution, g($), provides a
method for the construction of solutions for arbitrary
variation of ip(t).
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The initial time span solution reduces in the case of functions by expanding (23) as
the unit pulse to

g(P) =S(P)+acti+ &~, 0&g&1. (18)
1—8

@(p)=-- Z (—1) (p-~ -=o Ep-~)
(24)

I'or times greater than zero it is useful to define a new

function according to the scheme

g(()=X"(()e &, ()0.
and (24) may be inverted by standard techniques to
yield the final solution

(19)
- »-'(j—~)-' »(j-~)-

Substituting (19) into (16) for $)0 and differentiating ~(~) =e ~ Z
with respect to P yields a difference equation:

= - (j-1)
g
—(i—5) &

7

e'(P) =APE(P) —e(P—1)], P) 0;

N(p)=e"&, 0&&&1,
(20)

hmu(1 —e) =e",
&~0

where the prime denotes diBerentiation and the bound-

ary condition for e($) is obtained from (18).
If we integrate (20) beyond the initial time span, we

notice there is a discontinuity in N($) and g(f) at )=1:

e~&$~&m+1. (25)

The solution given by (25) is exact but not very useful
for computation purposes when )becomes greater than
a few transit times. The trouble is that (25) is an
oscillatory series and numerical calculations rapidly
encounter significant-figure difhculties as ( increases.

The problem in ease of computation can be rectified
as follows. Using a Burmann-Lagrange series expansion'
for e"& in powers of (Xe "), we obtain the identity

limg(1+e) =e"—1,
a~0

(21)
- ~'-'(j—~)'-' ~ (7—~)—

ex/

(j—1)'
e—(t—~)~ (26)

liming(1
—e) —g(1+e)j=Xe.

e~0

Q(p) =P e &tu(()d&,
—

40
(22)

P ~ =lim
1—e pm

The integral in (22) is the principal-value integral; this
must be used because of the discontinuity given by
(21). One may verify independently using the method
of generating functions that (22) is the proper way to
describe the Laplace transform.

Applying (22) to (20) we obtain, with the aid of (21),

Physically, the reason the discontinuity appears is

simply because the finite starting pulse leaves the dis-

charge system after a unit transit time and its contribu-
tion to the secondary avalanche process disappears.

There are two convenient ways for solving (20). One

is by the method of generating functions as discussed

previously, ' the other is by the method of Laplace
transforms. We shall use the second method in this

paper, since it can yield directly the results of all four
authors cited previously.

We define the Laplace transform of u($) by

Substituting (26) in (25), we obtain the desired form:

»-'(j—
~)

-' »(j-~)'-
~(~)= 2

i=n+i (j—1)!
g
—(j—px

7

pp ) eoeh

N(~)= 2
~

—
)

~=o 4 X )1—X+p
(28)

where the p„are the roots of the transcendental
equation

(29)

n~&$&~e+1. (27)

The series given by (27) is not oscillatory. Some
numerical examples given at the end of this paper will

demonstrate that the series is quite rapidly convergent—for all X«1.The expansion given in (26) is not proper
for X&1; however, the situation X=p„nb)1 is rarely,
if ever, encountered in practice.

In order to obtain an asymptotic formula for N($)
and at the same time recover the result of Miyoshi for
the unit-pulse case, we wish to invert directly the
Laplace transform given by (23). This may be done by
the standard methods of the calculus of residues. We
6nd

N(p) =
p —X(1—e—&)

When A, &0, there is one positive real root and an
inlnite number of complex roots which occur in pairs

L. P. Smith, MathematicalMethods for Scieltists aad ENgineers
We may recover the results of the method of generating (Prentice-Hall, Inc. , New York, 1953), p. 184.
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as complex conjugates. We label these roots as

pe=& —&o,

p =X o:„W—iy, m)0;

(19) provide the complete solution of the unit-pulse
case.

The criterion for breakdown is readily derived from
theasymptoticformof g($). We find, from (19)and (34),

where the P p, x„, y„are all real positive. The roots are
then given by the set of equations

t'Xs —X y
g(()= I (35)

Xp8

x„=y„coty„,
x„e '~ =Xe ~ cosy

(31)

Two cases may be distinguished, depending on the
magnitude of X. They are (a) X & 1 &Xp, and (b) Xe& 1 &X.
As indicated previously, case (b) may be neglected since
it is not physically interesting. For case (a) one can
readily see on the basis of (31) that

Xp =X+o.. (36)

One can easily obtain on the basis of (31) that the above
is equivalent to the familiar Townsend criterion

When the exponent in (35) is negative, all currents
decay to zero eventually; when the exponent is positive,
the currents grow without bound and breakdown results.
Threshold is obtained at

X(j ) 1(Xp(Xy
~ (rt. (32) y(e' —1)=1, (37)

g
—(&n—&) 5t'Xo —X q

Ate(() =
~

~e-&"' "'&+2 Q
EZ,—1) -=i (x.—1)'+y„'

&{L ( -—~) (*-—1)+X-'j

where the x„have been sorted according to size. The
important fact is that

~ ps~ as defined in (30) is the
smallest root and all roots have negative real parts. The
quantity m(&) decreases with time for X&1 and its
asymptotic behavior is given by the term containing Pp.

After some rearrangement, (28) becomes with the aid
of (30)

where y denotes either y~ or y, . It is interesting to note
that at threshold the unit pulse case leads to an asymp-
totic constant current, while immediately below or
above threshold the current decays or grows with time.

V. CONSTANT ILLUMINATION

The results of the previous section allows us to find
expressions for the cathode current under a variety of
external conditions. We shall be particularly interested
in the case of constant external illumination described
by (17b). In general the relation in (15) states that

)&cosy„P—(1—X)y„siny„$), (33) f(p) = )I' i(p g)g(g—)dg
0

(15)

where the pertinent roots are to be found from (31).
The above expression has been derived for a pure
secondary but is equally valid for a pure p; secondary
upon the proper change in symbols. It is equivalent to
Miyoshi's result' and is the unit-pulse analog to
Davidson's original result for constant ip.* For purposes
of numerical computation over 6nite time spans, we
have found the expression given by (27) somewhat
more convenient than the equivalent form given by (33).

The asymptotic form follows from (33) and the
previous discussion:

In many instances the easiest way to evaluate this
integral is to take the Laplace transform. Using the
convolution theorem, we find

f(P) =f(P)g(P) (38)

where the symbols denote I.aplace transforms.
The Laplace transform is easily computed from previ-

ous results. It is proper, in this case, to use the con-
vention that the Laplace transform of the delta function
is unity. Thus

(Xo—X 'l
limb, se(g) =

~

&Xo—1)
(34) g(p) = 1+»(p—)

This is the unit-pulse analog of Davidson s original
simple exponential expression. Numerical comparison of
(34) with exact results will be given in the last section.
The results of (27), (33), and (34), along with (18) and

6 Our expression corresponds to Miyoshi's exact results. In his
detailed discussion Miyoshi uses only the approximate form given
by our asymptotic formula.

*Note added iw proof The author has bee.—n advised (Davidson,
private communication) that Davidson's original result (reference
1) contains the unit pulse solution as a special example.

p —o.—X(1—e &r &)
(39)

sp(P) =io/p (40)

which may be combined with (39) and inverted by the

If the Laplace transform of io($) exists, one can usually
invert (38) with little labor and thereby
asymptotic form.

For the case of constant illumination, we have
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calculus of residues to yield the 6nal result VI. CURRENTS IN THE UNIT-PULSE CASE

The last two sections have been devoted to developing
general methods for the calculation of the cathode
electron current density. According to the results of the
first three sections the formal solution to the transient
analysis is complete once the cathode electron current
density is known. In the present section we wish to apply
these formal results to the calculation of the pertinent
currents for the unit-pulse case. In order to save space
we shall not attempt to generalize these calculations to
other external cases. However, it is hoped that the
exposition to follow will enable interested readers to
extend these results to.other cases of particular interest.

It has been our experience that the simplest consistent
way to apply the formal analysis of the first three
sections to the computation of currents is to use the
convolution theorem of Laplace transforms in conjunc-
tion with the unit-pulse solutions of Sec. IV. Direct
inversion can usually be accomplished readily by the
method of residues. This has the advantage that the
constants of integration are found automatically. Also,
by picking out the dominant roots, one can obtain
asymptotic relations with a minimum of labor. Con-
venient forms for short-time behavior, on the other
hand, may be obtained by expanding the Laplace
transform before inversion in the appropriate power
series.

In the case of the unit pulse, (17a) gives the desired
form for the cathode electron current density:

1 (P, o
—Xq ei"+ ""t'—

+I
1—7(e ' —1) EXo—1~ A+a —Xo

f(k) =~o

( p ) (e(n~+.)&) (41)
+Z I—

=i (1—X+p„) E p +0 J

p„=x—x„wiy .

The quantities Xo, x, y„, are the same as the ones dis-
cussed in the preceding section; the quantity y repre-
sents either p„or p;, depending on which secondary is
operative. If the complex roots p are used for computa-
tion, both pairs of complex conjugates must be included.

The asymptotic form can be obtained from (41) by
the same arguments as used previously:

limf($) =io[A+Be '],

a =[1—p{e-'—1)]-i,
(42)

([~+.—~.]-,
&~.-1)

a=A+a. —Xo.

The same breakdown criterion is obtained from (42) as
in the unit-pulse case. When a(0, 8 is negative and a
steady state is reached as given by A. This is the
familiar Townsend result. When a&~ 0, 8 is positive and
the current grows without bound until breakdown.

An alternative expression for f($) analogous to the
series results of (25) and (27) in the unit, pulse case may
be obtained by expansion of the Laplace transform f(p)
before inversion. This result may also be derived from
recurrence relations obtainable from the N(g) difference
equations of (20). We find

f(~) =iC(() =io[~(q)+l ~(l)e.~], P) O.

The electron current density in the gap becomes

i(x,t)= f([g—x/S],)e-, t&x/. (45)

The electronic contribution to the external current in
the event of a pure p„secondary follows immediately
from the original integral Eq. (9):

~ (t) = (P&) '[f(t) —&o(t)]

I,(g) =aloe(()e &, t= t/ri) 0.
(46)(p/q) n+1 -,

f(k) =~o—

t

j(0,t) =au~~ e "i' 'f(s)ds;
t —T3

(47)
=he )

and in the case of unit pulse with pure p„secondary this
becomes

The positive-ion current density at the cathode is
q 1 ( /q)

given by the expression+-2 (p/V)'~(k j)'"", ~&6—&~+1-, (43)
q j=o

The expression given in (43) is an equivalent form of
an expression derived previously for this case' and is the
correct version of an expression proposed subsequently. '
If tabulated values of the N(() functions are available,
(43) may be simpler than (41) for computation purposes.

7 P. L. Auer, Phys. Rev. 98, 320 (1955), Eq. (3.14).
8 P. L. Auer, Phys. Rev. 101, 1243 (1956), Eq. (2).

j (0,$)=iotioe" o 1+X I e" »'&u(g)drt
(48)

ti =u/v =zv/(a+v).

In actual practice, p&(1, p '))1, and the lower limit of
integration remains zero for a large number of electron
transit times.
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TABLE I. Values of the unit-pulse function u(p).

0.5 1.0 1.2
(a) X =1Q s, Xo =9.1191296, urrr -1.123042 Xiose o Irsraoog

1.5 2 0 2.5 3.0 3.5 4.0 4.5 5.0
ur

(u' )(o)
uII I

1.0005
1,0005

11.76

1.000 Xio 8.004 Xio 5.008 Xio S.ool Xio & 1.255 X10 1.671 Xio 'o 2.10 X10 4 X10
1.000 X10 s 8.004 X20 5.008 X20 ~ 5.007 X20 't 1.255 X20-7 1 671 X20-Io 2 103 X20-11 4 188 X20-w 2 666 X20-15

5.007 X20 & 4.288 X20 14 2.666 X20»
123.2 X20 s 22,90 X10 4 135.1 X20 ~ 14 81 Xio—fo 16.24X20 '4 1.70X10»

413 X20-ss

17.81 X10 's

0.5 1.0 1.5
(b) X =10 2, 'Ao =6.48460, urrr =118.050e o 4&4s+

2.O 2.5 3.O 3.5 4.0 4.S 5.0

ur
(u")(s)
(u")(s)
uI II

1.005
1.005
1,005
4.636

1.005 X20 2

2.005 X20 2

1.005 X20 2

18.20X20 2

5.075 X10 s

5.075 X20 s

5.075 X20 s

7.149 X20 s

5,067 X20 & 1.298 X20 '"

5.06l Xio ' 1.298 Xio '
5.067 X10 s 1.298 X20 s

28.07 Xio 5 1.102 X20

1.702 X20 'I

1.702 X20 &

1.702 X20 ~

4.329 X20 7

2.34X10 s

2 341 X20—s

1,552 X20 s

4.387 X20 ~o 3.243 X20 '&

4.388 X20 'o 3.245 X20»
6.676 X20 Io

9.147 X20 Is
9.149 X10 's
10.30 X20 's

0.5 1.0 1.S
(g) g —20-& go —3 72495 uIII —23.32oe s o&4o'"~

2.0 3.0 4.0 4,5

ur
Cu'I)(s)
(u") (o)
uI II

1.052
1.045
1.051
2.191

0.1052
0.1043
0.1052
0.3243

5,800X10 2

5.747 Xio 2

5.799 X10 2

5.881 X20 2

5.725 X10 s

5.645 Xio-s
5.724 X20 s

7.891 X10 s

2, 284 X20 4

2, 137 X20 4

2.184 X20 4

2.597 Xio 4

6.805 X10 o

6.523 X20 o

6.8OQ X20-o
6,991 X20 o

1,031 X20 s

1.148 X10 o
1.757 X10 7

1.877 X20 ~

1.882 X20 'I

0.5 1,0
(d) ) =0.5, )io=1.756432, u =3.32199e ' " '~

1.2 1.5 2.0 3.0 4.0 5.0

ur
(urr)(s)
(urr)(o)
(u")(Io)
(u")(2o)
uI II

0,992
0.9361

1.772

0.4285
0.5504

0.9457

0.4031
0.5129

0.7355

0.3342
0.4332

0.5046

0,1421
0.1976
0,2268

0.2692

7.558 X10 2

3.391 X20 2

5.474 X10 ~

6.715 X10 2

7.663 X20 2

2.182 X20 &

o.675 Xio '
1.346 X20 2

1.820 X10 2

2.181 X10 2

6.213 X20 s
1.063 X20 s
2.968 X20 s

4.680 X20 s

S.94S X20 s
6.210 X20 s

When t is less than rp rt+rs, expr——essions already
derived may be used for the quantity represented inside
the curly brackets of (48). It is only necessary to
substitute (1—p)o. for o in the expressions given by
(41) to (43) of the previous section to obtain the correct
solution for this quantity. For times greater than v-3 we
can obtain an expression for j(0,t) by the Laplace
transform method:

form is given by the first term in (51). Similar expres-
sions can be derived for j(x,t), but they are of little
practical interest. The Xp, x„, y„, appearing in (51) are
the same as defined in Sec. IV.

In terms of quantities already defined, the ionic
contribution to the external current becomes

a(p)= J
e "'i(0,$)dk

0

( t
I (1 e" """)f—(p)

E —go)
(49)

e—Cu—u~)/u( p er-
a(p)=i» I (50)

(p—po) p —o.—X(1—e
—f& '&)

Note that the residue at per disappears for t&7-3 and
the simple exponential term e&'& disappears with it. I'he
expression in (50) may be readily inverted to yield the
desired formula for j(0,t),

e
—[&+(&—a) &—&pl/a

j(0,&) =i»
I

&&p—1) X+(1—p)o- —Xp

The above expression follows from (47). In the case of
the unit pulse (49) becomes

f(rt) drt (52).
When t&rt, the integral in (52) vanishes. For rt&t&rp,
the lower bound of the integral is zero and its value for
the unit-pulse case has already been computed; it is
only necessary to substitute $—1 for $ in the expressions
given by (41) to (43) to evaluate this integral. For times
greater than r3, the integral may be written as the
difference of two integrals both starting at zero, and the
results of (41) to (43) may be used once more to evaluate
it.

From results previously obtained, asymptotic expres-
sions for the external current can be obtained readily
for the unit-pulse case:

(Xp—X)
limI, ($) =ipse 'I Ief"+' "o&t,

~X,—1)

( p~
+i»~P

I

=t i.1—X+p.)
e—(u +(1—t )oj/I-

e(un+~) 5

( p q (Xp—X)
hm, (()=ipI Ix- zI Ief + —

o& p

(51)
(1—p) &Xp —1)

-e—()N+tr—)ip) e
—(bio —xp)/p, -

K= 1+Re

(53)

p„=x x„wiy . —p-+(1—
t )~

By arguments previously advanced, the asymptotic

e
—[x+(1—ttt) o—')tP] / P-

X+ (1—p)o.—Xp
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In the next section we shall present the results of
numerical computations based on formulas obtained in
Secs. IV—VI.

2800—
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2400—

2200—

IOOOO

3268
ti

3203

l =.OOI

~ = ~2= 9.2093I09

2600—

2400—
9I I9

2200
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l800—

l600—

14QQ-

A g($)

I 200—

IOQO—

800—

)i ~ .Ool

aa ~la 9.ll8I 296

au = II 238

2000—

I 800—

I600— I
laoo—

A g(()

iIoo~
looo—

SOO-

600—

400

200

I 00

00 I 2
I I I

3 4 5
) I I

7 8 9 IO

400—
300

200

IOO

00

2800—

2600—

2400—

I I I I

2 3 4 5 6

(a)

I I

7 8
I I

9 IQ

Aa, OQI

0 = 0&= 9.026943

(c)

Fzo. 1. Unit-pulse solution for X=0.001, (a) threshold;
(b) undervoltage; (c) overvoltage.

Before presenting the numerical results a few remarks
about pure ion secondary and mixed ion-photon second-
ary mechanisms may be appropriate. The case of pure
ion secondary mechanism is probably of no practical
interest. The results of the preceding presentation are
readily applicable for this case, however. For pure ion
secondary the notation becomes

8320
2200

) =ooo=y,o, $=t/ra) ta= ra/ra, ao=rjo/ra, (54)

2000—

I 800—

I 600—

I400-
dg(()

I 200—

1000—

800—

600—

400

200

I 00

00 I

I I I I

3 4 5 6

0)

I I I

8 9 IO

where io designates the externally induced current for
the unit pulse case.

The electron and ion current densities at the cathode
are, respectively,

'(O, p) =a,g(p) yt u(g) e 35,

j(0,&) =ioou(g)e'&

The contribution of the electron and ion currents to the
total external current may be written

J.(~)=(:./. ) '« g(.)d., -
dt

o.—3

(g) =
I Iz (p) — j(o,p) (56)
&I.—p)

'
t —t

(
+as l I

&
g(e)dn.

l. 1—ta

The above formulas apply to the unit-pulse case.
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Considerable simplification can be obtained for the
case of a pure ion secondary over time intervals less
than r3. From previous results we obtain, for t&~ra,

280—

260—

240—

I =O. I

0 -. tr&r 6.53935

280—

260—

240—

220—
645

200—

I80—

l60—

l40

) tgI()
120—

I 00—

80—

60

40

~l
II

II
II
II
I

I

I

I

I

I

I

I

I

l
l

A =.Ol

rs r, = 64746

u = II8.05
lK

220—

692
200

I80—

I60—

I40—
X g(()

I 20

100—

eo—

60

40

20

IO

00

fl
]I
]I
II
II
l

I
I

I1

I

I I I

3 4 5

(c)

I I I I I

6 7 8 9 IO

20

!0
00 I 2

I I

3 4
I I

6 7
I I I

8 9 I0

Fxo. 2. Unit-pulse solution for X=0.01, (a) threshold;
(b) undervoltage; (c) overvoltage.

280—

260—

240

220 608

200—

A =.Ol

rsg3- 6.40985

g(h) =~(8)+)tg(k) e'
—g (()+)t e(x+~) P

Substituting (57) into (56) we obtain, for 0&~ t&~rr,

$0 tM,

&.(~) = P(1 Ii)oe'P—~" trXe~"+—')Pj; (58a)
a —p(X+o)

for r~ & t ~& r3, we obtain

Xe&"+'&&
I 80—

I60—

1.($) =io I-,.—.(+.)
a —tr(A+a)

(58b)

l40-
)'g(()

l20—

loo—

II
I

I

There is a discontinuity at t =r & in I,($) equal to (ip/p) e'
due to the fact that the initial pulse is lost to the
avalanche system at this point.

For times less than rj, the integral in the expression
(56) for I,(g) is zero; and for times rr (t ~& rs, it becomes

80—

60

( e ) X
(. + «-v —1) .

(1—p) . X+o.
(59)

40

20

IO

Op
I I I I I

2 3 4 5 6

(b)

I I

7 8
I I

9 lo

The above expression combined with (58), (57), and
(56) gives the required result for I„($).

In the event that both a photon and ion secondary are
active, the appropriate notation becomes

X=Pti=yvo, $=t/rr, p, =rr/rs, v=o)/P=y;/yv. (60)
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(8) for the cathodeThe fundamental in g
'

te ral equation
electron current ta eses the form

28

26—
39.6

24—
I=

~ I

Lj = ~ = 3.57880
3

+vp)L)
ILL-1

"'" "'f(n)dn (6&)

22—

20—

~ ~

n d S.culties in obtaining a
hod t d

a licable However the so u
'IVadV e y pp

0 ( )
'

) v

the fact that the experimenta is'M
f 1 bl 0 od' 1

d th l l
th t 1 d

d it ractical to discuss
erimentalof (61) because of these mat ein

inconveniences.

I8
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l4—
K gI(I ~~

l2

IO—

VII. NUMERICAL EXAM I LES

Example I
e

'
— fu

'
) is tabulated for four
—d) With

function tj(P is a
riate

q

from
Wh i lfts of the series.

f 25) h b of
'll dhff fosignificant figures in I and I' wi

00

26—

22

20—

I I I

8 9 IO

42

a = jr - 3.65IIO0'- jr2-

I I I I I

4 5 6 7I 2 3

(b)

24—
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k =.IO
tj:rj.- 3.6I 495 16—
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IO—

LI - I 3.315
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I

00
I I

7 8
I I

9 IO

I I

2 4 5 6
I I I

3 4

(c)

X=0.1, (a) threshold;M
I () oIt

lse solution for X= . ,
(h) undervo tage;

2

I

00
I I

2 3
I

4 5
I I

6 7
I I

8 9 IO

~~~ is the asymptoticic formulavalues. The quantity I is

f r X&0.1, the convergence of t eIt will be noted that or
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I" series is quite rapid. Since in practice one usually
finds X&10 ', we may conclude that the I" series is
most useful for calculation of short-time behavior.
When ) &~ 10 ', the e" series does not converge rapidly
enough for convenient computation. However, in this
region the simple asymptotic expression I"~ rapidly
becomes a very good approximation to the true value
of N.

20—

l8—

l6—

l2—

1= 8.6386X lo ~

o~- l5.2055

l.658 x lo'

& = 8.6386 X lO 6

&l = l4.32I IO—

lo A g(()
8—

400—

00

(c)

FIG. 4. Unit-pulse solution using Miyoshi s breakdown parameters,
(a) threshold; (b) uiidervoltage 1%, (c) overvoltage 1%.

00

60—

so—

40—

lO ), g(()

30—

6P- 124.45

2 ( 3

& = 8.6386X lO'
r& = l3.4630

Example II
In Figs. 1—3 we have drawn the quantity )I, 'g($)

=N(g)e'& as a function of g for three different X values.
The oscillatory curves represent g functions obtained
from true I values; the smooth curves labeled I"'
represent the asymptotic formula for g obtained from
(34). For a given X value three different o values were
chosen. In each case, figures marked (a) represent
threshold conditions where n5—=0&=)«—); the 6gures
marked (b) represent conditions of slight undervoltage
with nb=o ~=0 99oi, and. figures marked (c) represent
conditions of slight overvoltage conditions with n6—=02
=1.0io-g.

It will be noted that the unit pulse solution g(g)
oscillates inside an envelope whose breadth decreases in
time. The asymptotic formula for g runs approximately
down the middle of this envelope. As time increases the
amplitudes of oscillations decrease and eventually the
true solution coincides with the asymptotic solution.

For a pure y~ mechanism the quantity )t 'g($) repre-
sents I,($)/ie according to (46) and also X 'i(0, &)/ia
according to (44). For a pure p; mechanism the quantity
X 'g($) represents o 'j(0,$)/ie.

20—

lo—

00 2

(b)

Example III

In order to compare numerically our results with
those of Miyoshi, 4 we have taken his expressions for n
and computed X 'g($) for his three cases of threshold,
1%undervoltage, and 1% overvoltage. The results are
given in Figs. 4 (a)—(c), respectively, and are to be
compared directly with Miyoshi s Fig. 9. Miyoshi plots
only the initial transit time and does not mention the
discontinuity. There appears to be a slight discrepancy
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l2—

STE AOY, STATE

12.85

Sp—

& =.00'

tr~ = 9.026948

I =.Opi

~&= 9.2093l09

—5—
Io

00
I

2
I

5
00

I

2

(b)

Fro. 5. Constant illumination for X=0.001, (a) undervoltage; (b) overvoltage.

between our numerical results and Miyoshi's for the
initial transit time. We are not certain whether this
discrepancy is due to the fact that Miyoshi is using
approximate expressions for his computation or whether
there is an arithmetic error in his calculations.

The curves labeled Nzxr denote the asymptotic formula
for g(g) and are drawn in for comparison. Because of the
scale chosen, the lower bound to the envelope is dis-
torted in Fig. 4. For the sake of reference we quote
Miyoshi's n values:

where A =1.048)&10 4 (cm mm Hg/v), 8=27.38 (v/cm
mm Hg), p=760 (mm Hg), 8=1 cm, and V,=31 kv.
The constant value of y is obtained from the threshold
condition y(e '—1)=1 with the V, value of rr.

voltage and overvoltage, respectively, corresponding to
the unit-pulse functions shown in Figs. 1(b) and (c).
The curve labeled I represents the true value of f($) as
obtained from (43), while the curve labeled III repre-
sents the asymptotic formula according to (42). The
quantity f($) may be interpreted as either i(0,$) for
constant illumination or as j(0,$)/po. e&' for the unit
pulse case with y„mechanism. )Strictly speaking the
quantity f($) represents j(0,$) only if we substitute
(1—Iu)o for o in the f($) formula; see (48).j It will be
noted that the oscillations in f($) are very small com-
pared to g($) and the discontinuity at $= 1 appears only
in the derivative of f($). The asymptotic formula is
always a reasonably good approximation to the true
function except in the initial interval.
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