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Ergodic Theorem in Quantum Mechanics

P. BoccHIERI AND A. LQINGER

(Received April 9, 1958)

Landsberg and Farquhar have shown that the von Neumann-Fierz approach to the quantum ergodic
problem does not give any criterion of ergodicity.

In this paper it is shown that von Neumann s procedure of averaging over the macro-observers is sufhcient
by itself to "justify" at every time the use of the quantum microcanonical ensemble. It is then proved
that the time behavior of the system is completely irrelevant to the demonstration of the von Neumann
and von Neumann-Fierz ergodic theorems. It is concluded that the quantum ergodic problem must be
attacked on entirely new lines.

of eclat a priori probability of all macro-observers is
completely unfounded from a physical point of view
and consequently proposed to abandon von Neumann's
approach.

Later, Landsberg and Farquhar' removed from the
von Neumann-Fierz theorem also the assumption of no
degeneracies, thus reaching the important conclusion
that the von Neumann-Fierz approach fails to give any
criterion of ergodicity. Consequently every system
would be ergodic, provided that its quantum states are
sufficiently numerous in every "phase-cell. "

In this paper we prove that the von Neumann and
von Neumann-Fierz ergodic theorems follow solely
from the averaging over the macro-observers, while
time evolution of the system is completely irrelevant
to the validity of the theorems and could even not be
governed by the quantum equations of motion. In
other words, the averaging over the macro-observers
is a kind of statistical procedure, which only "accounts"
for the ergodic theorems.

The inadequacy of the von Neumann's approach is
therefore mathematically proved. A satisfactory proof
of the quantum ergodic theorem is still lacking.

'HE ergodic problem of classical mechanics was
attacked in a series of papers by von Neumann,

Birkhoff, Hopf, and others. ' The fundamental researches
of these authors started from the "general dynamics"
and from the formulation of classical mechanics in
Hilbert space, due to Koopman' and von Neumann. '
The condition of ergodicity required for the validity
of Birkhoff's theorem is metric transitivity of the
dynamical system. The important problem of singling
out the class of the metrically transitive systems, whose
existence is not forbidden by topological reasons, ' is
still open.

Shortly before the development of the classical
ergodic theory, von Neumann' investigated the quan-
tum-mechanical ergodic problem. In his approach the
condition of ergodicity was the absence of degeneracies
and resonances in the energy spectrum. By averaging
over all macro-observers and making some qualitative
assumptions on the density of quantum states in the
"phase-cells, " von Neumann was able to prove the
ergodic theorem (and the H theorem).

Pauli and Fierz' simplified von Neumann's proof and
evaluated explicitly the probability of ending a non-
thermodynamical observer, i.e., an exceptional macro-
observer for which the ergodic and H theorems do not
hold.

Recently Fierz' objected to von Neumann's definition
of entropy and suggested a somewhat different defi-
nition; according to this the II theorem can be proved
to follow from a weaker ergodic theorem than von
Neumann's. This ergodic theorem was derived by
Fierz without the assumption of no resonances in the
energy spectrum. In his paper the analog of the classical
metric transitivity was the absence of degeneracies.
He strongly emphasized, however, that the assumption

Let us consider an isolated dynamical system
characterized by a Hamiltonian H. Let @(t) be the
state-vector of the system in the Schrodinger picture.
We shall denote by "macro-observer" an observer who
can make measurements with limited accuracy only.
The statistics of the energy determined by a macro-
observer is well represented by the macro-energy
operator BC=+, B,Psr, . In this formula 8, is the
energy value found with certainty by a macro-observer
when the state-vector of the system belongs to the
5-dimensional manifold M, ("energy shell" ), whose
projection operator is P~,.

We shall assume, for the sake of simplicity only,
that the state-vector belongs to the manifold M . The
measurement of a set of commuting macro-observables
made by a macro-observer results in projecting the
vector 4(t) in a s„-dimensional subspace of the energy
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shell (1(s„&S).This subspace is called a "phase cell, " U transformations. ' As we have
and all the cells corresponding to the possible eigen-
values of all the commuting macro-observables consti-
tute the S-dimensional unitary space, which we have k, k'=1

called the energy shell. Let us suppose that the energy
shell contains X cells; evidently

the average Kover the macro-observers can, be written
as follows:

This subdivision into cells of the energy shell character-
izes a macro-observer. We shall refer the v cell to an
orthonormal basis {&o„,,) (j=1, s„). All the vectors
&o,, ; (v=1, Pl'; j=1, s„) constitute a basis of the
energy shell.

Let us consider now a second macro-observer, who
makes measurements on a different set of commuting
macro-observables, with the same accuracy as the first.
We shall obtain a second subdivision of the energy shell
into S cells, the v cell containing s„quantum states.
Again we refer every cell to an orthonormal basis,
obtaining in this way another basis {oo'„,;) (v= 1, . ~ 1V;

j=1, s„) for the energy shell; and so on for all
possible macro-observers.

j=l k, k'=1

If we split the numbers uk(" j) into their real and
imaginary parts, nk'" '& and pk'"" respectively, and
make use of the relation

we can evaluate the expression gp[uk&" '&*uk'" '&] by
integrating over the spherical surface of radius
defined by Eq. (5). Thus we obtain

(6)

from which it follows that

We expand the state-vector %(t) with respect to a
basis {co,, ;) of the energy shell, which diagonalizes all
the macro-variables measured by a certain macro-
observer. We obtain:

N sv

v 1 j=l

(7)

It should be noticed that this result does not require
any hypothesis on the magnitude of the quantities s„.

In order to prove that the relation tt„=s„/5 holds for
the greatest part of the macro-observers, at any given
time, it is sufficient to show that

Sv sv

(2)

When this macro-observer makes a maximal macro-
measurement, he finds the system in the v cell with a
probability: This might be done in a way similar to that used in

obtaining Eq. (7). We prefer, however, to transform
the average over the macro-observers into an average
over all the vectors U '%(t), making use of the relation

We shall now prove that the probctbi/ity at tt givers time

t, N„(t), eptals the microcartorticcsl valtte s,/5 for most
macro-observers.

To this end we recall that by "average over all
macro-observers, considered to be equally likely" is
meant an average over all bases {co,, ;)—favoring no
basis over another. Now, given a basis {to„,,&o&) of the
energy shell, any other basis {&o., ;) can be obtained
by transforming the first with a unitary operator U. The
average over all macro-observers, i.e., over all bases
{co,, ;), is therefore equivalent to an average over all

If we put

U 'e(t) = p tlktN(t)tok&N,
k=1

' The Schur-Weyl method of group integration Lsee, e.g. , P. D
Murnaghan, The Theory of Group Represeutatiorss (The Johns
Hopkins Press, Baltimore, 1938), Chap. VIIIj gives a unique
way to perform this average. In the following we shall use the
equivalent geometrical technique developed by von Neumann. '
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It is not dificult to show that'

s„(s.+1)
) S(S+1)

from which Eq. (8) follows, i', Provided fhaf s.»1
(i =1, N).

We notice now that relations (7) and (8) remain
obviously valid when averaged over time. But time-
averaging M and averaging gg over the macro-observers
are commuting operations when applied to u„s(t)." It
follows that

s„gPM[(u„—s,/S)'j
KM[u, (f)]=—; &1. (13)

5 g s/Ss

These relations constitute von Neumann's ergodic
theorem.

It is now evident that von Neumann's method of
justifying the microcanonical ensemble is not accept-
able, because his result is a mathematical consequence
only of the averaging over the macro-observers. In
other words, von Neumann's ergodic theorem holds
independently of the time evolution of the system,
i.e., it holds for any "trajectory" of the extreme of the
state-vector %(f) in the energy shell, evens if this
"traj ecfory" does not satisfy fhe Schrodinger equation.

Lastly we remark that the inequality

&[M( .)— /S7)
X($

s '/S'
(14)

M Equations (6) and (12) may be also derived with the methods
of probability theory, as Professor Landsberg has kindly pointed
out to us. We have preferred to stick to the geometrical treatment
since this will make more intuitive the further considerations of
the paper.

"In fact, gP(t) is given by the following expression:
~v S

N.s(f) =~. '&s, s, ', s (rs"'(f) s""(f)ri "'(f)r "'*(f))
1 1

y [gi(".i)+g J
(".t)g/, , ("i)*gs, (" i)].

therefore, since M acts on ( ) and R on [ ~ ], the final result
is the same if one performs erst M and then gg or vice versa.

is a consequence of the second of relations (13). In
fact, owing to the Schwarz inequality, we have

M[(u„—s„/S)'1 & [M(u„)—s„/Sj'. (15)

We have recalled formula (14) because it is a basic
formula in the von Neumann-Fierz approach. Actually,
inequality (14) is sufficient to prove the H-theorem,

provided that we assume Fierz's definition of entropy
instead of von Neumann's. But our procedure shows
that also formula (14) holds independently of the
"trajectory" of the extreme of the state-vector, being
a pure consequence of the averaging over the macro-
observers.

If the extreme of @(t) filled densely and uniformly
in its time evolution the +hole surface E defined by
Eq. (5), the following relations would hold:

s. M[(u, —s,/S)'j
M(u„) =—; &1, (s,»1). (16)

S s 2/Ss

In this case, time-averaging would coincide with the
averaging over the macro-observers, and consequently
the latter would be quite superQuous.

It is well known, however, that in no case will the
extreme of the state-vector show the above behavior.
To prove this, it is sufficient to expand iI (t) in the
energy eigenvectors p and to notice that the existence
of the S "constants of motion" ~(iIr(t), p )~s (n=1,
. .S) prevents the extreme of @(f) from filling densely

the whole surface E.
The averaging over the macro-observers "corrects"

the "wrong" time behavior of the vector iI (t). This
averaging is in fact equivalent to an average performed
on all the vectors of the energy shell and is by itself
suKcient to "justify" the use of the microcanonical
ensemble. Vofs Neumane's approach is therefore ufsable
fo puf statistical mechafsics ofs a purely mechanical basis
The quafsfum ergodic problem should bc approached in an
eetirely mm vvay.

As a conclusion we might remark that the mathe-
matical classical analog of the averaging over the
macro-observers would be as follows. Let (p(t), q(t)) be
a phase configuration at a time f and f(P,q) any function
of the variables p, q. Let us average f(p, q) over all the
transformations which map (p,q) into all the points of
the microcanonical ensemble. Such a procedure is
equivalent to an average over the microcanonical
ensemble and leads therefore to the laws of statistical
mechanics, but obviously it cannot give a proof of the
ergodic theorem.
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