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New Variational Principle for Transport Theory
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A general variational principle of Kahan, Rideau, and Roussopoulos is shown to be applicable to problems
of transport theory and in particular to the solution of the Milne problem. The variational principle yields
directly the Qux at every point, not only at inanity, unlike the classical methods for asymptotic densities.

MATHEMATICAL DEVELOPMENT

RANSPORT theory has made a great use of
variational principles, whose inception began

with the work of LeCaine ' Marshak ' Davison, ' and
KourganoG. ' Later on, Pryce, ' Fuchs, ' and wilson
used variational principles for the determination of the
critical radius of a neutron reacting sphere, and Corn-
gold' has done likewise for slowing-down problems. In
all those problems but the last, a given functional was
shown to be a maximum. The utility of variational
principles is, however, not restricted to the cases of
extrema, and for the purpose of practical computation
it is sometimes quite sufficient to use functionals
leading to saddle points.

Many problems of neutron transport theory are
given in the form of an integral equation of the Fred-
holm type:

y(x) =)t E(x,x')y(x')dx'+S(x),

where

q(x) =X ~E(x,x')q(x')dx'+ f(x), (3)

f(x) =X E(x,x')N(x')dx' —N(x)+S(x).

If, on the other hand, G(xo-+x) is the Green's function
of (1), one has

G(xo~x) =X) E(x,x')G(xo—+x')dx'+RE(x, xo). (4)

Given the integral operator

I: '

I 5(x—x )—X—E(x,x )] ' dx,

the problem is to find reasonably accurate values of
q(x). Introducing (2) into (1), we have

where the limits are given, and the kernel E(x,x') is
real, symmetrical or symmetrizable. The exact solution
of (1) is often unknown but it is quite easy to find
approximate solutions N(x). Given

Eqs. (3) and (4) take the form

Lq(xo) =f(xo),

LG(xp +x) =RE(x,xp). —
(3')

(4')

P(x) = ts(x)+q(x),
' J. LeCaine, Phys. Rev. 72, 564 (1947).' R. E. Marshak, Phys. Rev. 71, 688 (1947).' B. Davison, Phys. Rev. 71, 694 (1947).
4 V. Kourganoff, Compt. rend 227, 895 (1948).
s H. L. Pryce, Birmingham Report MSP 2A (unpublished).' K. Fuchs, Birmingham Report MS 85 (unpublished).
7 A. H. Wilson, Birmingham Report MS 115 (unpublished).' N. Corngold, Proc. Phys. Soc. (London) A70, 793 (1957).
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A theorem of Kahan and Rideau' (generalized by
Roussopoulos" for the case of unsymmetric L operators)
shows that the two quantities

' T. Kahan and G. Rideau, Compt. rend. 233, 1446 (1951).' P. Roussopoulos, Compt. rend. 236, 1858 (1953).
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are equal to the same stationary value (SV),

) "q(hp)&(h, ho)dho

f(*p)G(x ho)dho

J
G(x~ho)f(xo)chp g(xp)E(x, xp)chp

=SV

I G(x—+xo)L,g(xo)dxp

we have

lim ~E(x,xp)q(xp)dxp.

limE'(x, xp) =0 and lims(x) =0,

limG(xp —+x) =py(xp),

where p, is a constant factor to be determined in each
particular case by physical considerations. Under such
conditions,

where G(x~xo) and g(xp) are approximate values of
G(x—+xp) and q(xp). The functional (5) retains its
stationary property independently of the particular
significance of q(xp), f(xp), G(exp), and E(x~xp).

An important particular case is the evaluation of

It is quite evident from inspection of (3) that the last
term can be evaluated by means of the Schwinger
variational principle

Lfg(*o)f(ho)«oj'
I f(hp)q(ho)dho=SV

fg(xo)I q(xo)dxo

It has not been possible to determine the direction
of the error in. (5). However, in the case of (7) it can be
shown' that under specific conditions imposed on I. and
f(xo), the functional (7) is a maximum.

We remark also that the functional (5) give us an
estimate of q(x) for every point in the interval of
integration, in contrast to the methods expounded in
(1), (2), and (3).

THE MILNE PROBLEM

We shall apply the functional (5) to the determi-
nation of the neutron (or photon) flux in a semi-infinite
isotropically scattering and noncapturing medium,
which is bounded by vacuum and which sustains a
constant current from infinity, i.e., the Milne problem.

We have X=1;5(x) =0; E(x,x') =-',Ei(~ x—x'~), and
the diffusion approximation gives us N(x) =x, that is
f(x)=-,'Ep(~x~), with

F00 g
—tfx)

E„(ix[)= Ch. —

Since lim, „E(x,x') =0, we could as well apply (7) with

lim q(Xo) E'(h, hp)dhp =p f(ho)4 (*o)dXo

=p J~f(xp)N(xp)dho+p J f(xp)q(xp)dxp. (6)

q(~) =lim E(x,x')q(x')dx',.--J
since lim „f(x)=0 and obtain

q(oo) =— Ep(h)hdh+p SV
2 0

—,'Ep(x) g(x)dx
0

00 QO

~ g(*)c* g( )—lJ" E (I —'l)g(*')cx'
0 0

(9)

Physical considerations' "show that p=3. Solution (9) If, on the other hand, we want to determine q(~) by
is nothing but the well-known variational estimate of (5), we take g(x) =so and replacing G(exp) by
the extrapolation length. P(xo) =*o+so, obtain

q(oo) =SV lim (ho+so)-', Ep(xp)dxp —,'spEi(
~
x—hp ~)dhp

x ~CO
0 ~l 0 J (xo+so) so o

I Ei(ix—ho i)sodxo' dxo, (10)
0

which gives us by straightforward integration

3+4so
q(oo) =

4+«p

This result is dependent on the normalization chosen
for q(x) Lthrough p(x) jbut if we take a value consistent

"B.Davison, Xeltron Transport Theory (Oxford University
Press, tv York, 1957), p. 2j.o.

with an iteration scheme, we must take sp=q(~)
which gives us immediately

1
q(~) =—=0.7071;

this differs by less than 0.5% from the exact value
0.7'104. LeCaine' found, with a constant trial function
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q(x) in (9), the value q(oo) =0.7083 which is slightly
more precise.

Let us determine q(x) for every point of the medium

by means of the functional (5). Since the Green's
function for the diGusion approximation in a non-

capturing half-space is

2or
I x+xo

I
2or

I
x xo

I

we choose the following approximate Green's function:

C(x—+xo) =27r [x+xo~ —2or ~x—xo~+4orq(oo), (11)

which has the property that

limC(x —+xo) =4orLxo+q(~) g,

i.e., p=4or. The conjunction of (5) with (3) leads to

CI x+xol —
I
x xol+2q(oo) j-'&o(&o)&xo o&x(l x—xo 1)~xo

~Jp Jp
q(x) —,'Eo(x)+—

F00

Llx+xol tx xo(+2q(~)jodo(xo)&xo
0

(12)

We shall omit the resulting integrations which are long
but straightforward, giving the final result

q(*)=o&o(x)+q(~)L1—o~o(x)j
12E,(x) 6E&(x)

X 1- 1-, (13)
4q(~)+3. 3q(~)+2

which has the correct asymptotic form

The value at the boundary q(0) =7/12=0.584 differs

by 1% from the exact value 0.577. The error never
exceeds 1.5%%uq at other points. It is expected that the
greater error near the boundary is caused by the rather
incorrect form of the Green's function at the boundary.

CONCLUSION

The use of the new variational principle —whose
precision is satisfactory for most purposes —has two
interesting properties:

1. We make no use whatsoever of any hypothesis on
the development of q(x) in a series of functions, and
moreover we reach'satisfactory accuracy with the rough

trial function q(x)=so. Much greater precision could
have been obtained if we had taken a development of
q(x) in a series of functions E„(x) with unknown
coe%cients.

2. We have no extremum to compute and we avoid
the rather cumbersome work of computation of the
coeKcients of E„(x).

In general the method expounded above could equally
well be applied to problems of transport theory whose
exact solution is unknown (e.g. , the slab or sphere
problem), in contrast to the classical methods' ' valid
for asymptotic densities. We have found a direct
determination of q(x) through (5) and not through
q(oo), which would moreover be impossible in the
case where all the points of the reacting medium are at
6nite distances. The approximate Green's functions
G(xo—+x) could always be taken as the Green's functions
pertaining to the diffusion approximation, which are
quite easy to construct for a great number of problems.
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