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Velocity-Deyendent Features of a Static Nucleon-Nucleon Potential*
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The consequences of assuming a pseudoscalar classical field with pseudoscalar coupling are considered in
a static approximation. Virtual pair formation of nucleon-antinucleon pairs is not calculated but it is sup-
posed that it gives rise to an attraction. The interaction is being studied mainly in order to see what features
of commonly assumed static potentials may not apply. The quantitative features of the derived interaction
are not expected to correspond to the physical one. The qualitative character of deviations from static
potential behavior is believed, however, to have a bearing on the velocity-dependent features of the actual
interaction. The work neglects some of the effects of the exclusion principle caused by the population of
negative-energy states. Some of the qualitative nonstatic features are: (a) different magnitudes of the spin-
orbit potential in even and odd states, (b) inadequacy of the usual procedure of the insertion of es/r in the
wave equation for the calculation of phase shifts in p-p scattering; this inadequacy is connected with the
fact that the standard form of the wave equation is obtained only after a transformation of a wave equation
in which e /sr has a direct significance as a potential energy, (c) velocity (energy) dependence of core radii
and of magnitude of effective potentials, (d) occurrence of quadratic term in the tensor interaction in the
effective potential even though in an earlier stage of the calculation only linear terms are present.

I. INTRODUCTION

A NUMBER of attempts have been made to work
out the interaction between two nucleons, making

use of the meson theory of nuclear forces. An account of
the more important of these is given in the book by
Bethe and de Hoffmann, ' from which it is clear that a
satisfactory treatment of the interaction of nucleons
through the pseudoscalar field is not available. The
present note does not pretend to provide a solution of
this problem. Its object is to report on calculations
which suggest the possibility of certain diGerences be-
tween the actual behavior of nucleons and their de-
scription by effective static potentials. The possibility
that the interaction is velocity-dependent has been
realized for a long time. Thus Breit, Thaxton, and
Eisenbud2 have calculated some of the e6ects on the
nuclear-force range parameter following from experi-
ment on the supposition that the depth parameter
varies with the energy. Internal excitation of a nucleon
has been studied by Breit and Vovits' as a model giving
rise to such a velocity dependence. In the more purely
field-theoretic studies the e8ects of internal excitation
have been considered by Matsumoto, Hamada, and
Sugawara, ' who have considered the e8ects of the
(s', ss) state in the static limit. Iwadare' is concerned
with "nonstatic" corrections employing the quantized
symmetrical pseudoscalar theory and making use of an
expansion in powers of the coupling constant. The well-

known difficulties of this procedure make it hard to
arrive at definite results on such a basis' and the publica-
tion of some, in the main part, old calculations showing
somewhat related eGects in a relatively simple manner
appears justifiable. It will be seen that many of the
qualitative velocity-dependent features of the potential
appear to be not in contradiction with the analysis of
nucleon-nucleon scattering data made by Marshak and
Signell' and by Gammel and Thaler' in terms of static
potentials. The interaction is considered by making use
of pseudoscalar coupling to a symmetrical classical
meson field. The employment of a nonquantized held
simplifies the calculations and makes it possible to treat
a part of the problem to within all powers of the
interaction constant. The omission of quantization of
the field is an approximation only. It doubtless causes
serious errors at energies approaching the threshold for
meson production. It is not clear, however, that this
method is necessarily very inaccurate at the lower

energies. In the case of the electromagnetic interaction,
the larger effects in the interaction between charges
follow from a nonquantized electromagnetic field theory,
although the emission of photons as well as the Lamb
shift and associated phenomena depend on quantization
in an essential manner.

Another limitation of the present treatment is the
omission of an explicit consideration of the e8ect of the
exclusion principle in connection with the population of

*This research was supported by the U. S. Atomic Energy
Commission and by the OS.ce of Ordnance Research, U. S. Army.

'H. A. Bethe and F. de Hoffmann, Mesons and Fields (Row,
Peterson and Company, Evanston and White Plains, 1956),
Vol. II, Sec. 47.' Breit, Thaxton, and Eisenbud, Phys. Rev. 55, 1018 (1939).

3 G. Breit and M. C. Yovits, Phys. Rev. 81, 416 (1951).
Matsumoto, Hamada, and Sugawara, Progr. Theoret. Phys.

Japan 10, 199 (1953).
& J. Iwadare, Progr. Theoret. Phys. Japan 13, 189 (1955); 14, 16

(1955); A. Klein and B. H. McCormick, Phys. Rev, ],04, I/47
(1956).

s G. Breit, ProceedAtgs of the Fifth Aststgal Rochester Cottferemce
on High-Energy Physics (Interscience Publishers, Inc, , New York,
1955).

VR. Marshak, Proceedings of the Seventh Annual Rochester
Conference on High-Energy Nuclear Physics (Interscience Pub-
lishers, Inc. , New York, 1957); P. S. Signell and R. Marshak,
Bull. Am. Phys. Soc. Ser. II, 2, 176 (1957); P. S. Signell and R.
Marshak, Phys. Rev. 106, 832 (1957); 109, 1229 (1958).

8 J. I.. Gammel and R. M. Thaler, Proceedings of the Seventh
Annual Rochester Conference on High-Energy Nuclear Physics
(Interscience Publishers, Inc. , New York, 1957); Phys. Rev. 107,
291, 1337 (1957).

652



STATIC NUCLEON —NUCLEON POTENTIAL 653

negative-energy states. In the interaction between elec-
trons a similar omission matters only in rather small
corrections. In the present case the eBect of the omission
may be more serious because of the peculiarities of the
pseudoscalar interaction. A discussion of the error
introduced by this simplifying assumption is attempted
in the fourth section of the present paper.

The treatment is entirely static in the sense of
neglecting the time taken for the 6eld produced at one
nucleon to reach the other one. It includes no recoil
effects of nucleons caused by meson emission. Judging
by analogy to the electromagnetic case, one may suspec t
that some spin-orbit interaction eGects have been
omitted as a result of these approximations This is
probably the case. One of the omitted e8ects is con-
sidered in a very crude and phenomenologic manner in
connection with a discussion of indications concerning
the spin-orbit interactions. It appears possible that this
effect originates in a Thomas-type correction to the
attractive potential caused by virtual nucleon-anti-
nucleon pair formation and that the effect of this term
adds itself to the spin-orbit interaction term which
arose in the absence of pair formation. Iii some respects
the treatment of the spin-orbit interaction is related to
the paper by Araki. The main difference is that no
attempt is being made here to include corrections for
nucleon recoil. These corrections should eventually be
included of course. It is doubtful, however, that one can
do so consistently without bringing in effects of forces
between nucleons caused by virtual pair formation. For
this reason no attempt is being made here to treat the
recoil e8ects. The large repulsive e6ects present in the
static approximation are speculatively supposed to make
the relativistic features less important than in a formal
expansion in powers of the interaction constant. The
recoil effects are therefore considered as giving rise to
corrections which apply to the combined action of the
static and pair-formation e6ects. The main emphasis in
the present paper is on the deficiencies of the equivalent
static potential concept and its object is modest, being
mainly qualita tive.

The work appeared worth reporting because it shows
possibilities of the presence of the following effects. The
spin-orbit interaction is expected to be diferent for
triplet even and triplet odd states. Furthermore, the
spin-orbit interaction which appears in the wave equa-
tion in the form of a term containing the usual (L S)
as a factor is not the only interaction giving rise to eGects
which are most readily attributed to first order eGects
of an (L S) term in nucleon-nucleon scattering. In
addition to the occurrence of the tensor interaction
operator in the final radial wave equation, one finds also
a term in (S~2)'. The occurrence of this term is a
consequence of a velocity dependence of the effective
i nteraction operator when the equation is reduced from
the original 16-component to a 4-component form. De-

' G. Araki, Progr. Theoret. Phys. Japan 6, 379 (1951}.

pending on the form in which the results are expressed,
there appear tensor force operators containing one r
replaced by relative momentum y or both r replaced by
p. The interaction potential is velocity dependent also
in other ways. Thus the effective potential energy wells

depend on the incident kinetic energy. The possible
existence of these types of velocity dependence of
nuclear forces has been considered before. ' ' The present
work furnishes a model of such a dependence. There
appears in the calculations a soft repulsive core and
possibilities of obtaining hard cores for some states. The
presence of the cores appears to be approximately
reconcilable with phenomenological requirements.

An additional general feature of the equation is that
the radial equation containing an effective potential is
not directly related to the four-component function
obtained by reduction to 4 components, a transforma-
tion of the radial function being involved. The trans-
formation is necessary in order to remove terms linear
in d/dr which occur as a result of the velocity depend-
ence of the effective potential. A consequence of this
additional transformation is that it is not quite right to
be making corrections for Coulomb effects by intro-
ducing the Coulomb energy e'/r in the radial equation
used for the calculation of phase shifts. Comparisons of
p-p and p-e interactions made for the purpose of tests
of charge independence need re6~ement on account of
the presence of correction terms containing e' and arising
through the introduction of the Coulomb energy e'/r.
Numerical estimates presented in the fourth section are
not discouraging. The main object of the work was,
however, to determine those qualitative features of
static potential models which one should treat carefully,
rather than to attempt the formulation of a quantitative
theory.

II. DERIVATION OF THE EFFECTIVE POTENTIAL

Two nucleons a and b are coupled symmetrically to a
pseudoscalar field p. The Hamiltonian of the system is
accordingly

&=&.+&~+l) ZL(~v-/»)'+(~v-/~r)'

+ (~ v -/»)'+ (~ v -/e~~)2+ p'v -'jdr

+( )'fZL - -( )+ -' ' -(')3 ()

Here o. takes three values 1, 2, 3 which correspond to the
three components of the isotopic spin vectors c', ~'. p is
a constant while the matrix p2 is one of the three matrices

p introduced by Dirac, p~ entering n= p~s, while P=pa
and p3p&.

——ip2, H, and JJ& are, respectively, the free-
particle Hamiltonians for u and b. The equations of
motion for the unquantized meson field yield

(a p' &3'/c'Bt')q- —
= (4n)'*fPr 'p2'8(r ro)+r 'p/8(r r—)], (1.1)—



654 G. BREIT

where the 8 functions are three-dimensional. Neglecting Making use of (1.2), one obtains
the motion of the nucleons, H'b= —2fmga raap2arabp2b

exp( —p(r r—'~)
p.(r) = —(4 )

—'*f ..p,.
«a

, ,exp( —p I
r- r'I)

+ra p2
r—r' (1 2)

&&(exp( —pIr —rbI))/I' —r'I (2 2)

In Eq. (1) the last term can also be decomposed into a
self-energy part and a part depending on particle
proximity. Comparison with (2.1) shows that it is H'b.
Hence, from (1),

Substitution of (1.2) into (1) yields an infinite energy.
This divergence is harmless, however, in the present
essentially nonrelativistic theory because it can be
removed by spreading the sources of the field in (1) in.

three dimensions through the insertion in (1) of an
integral over the field coordinates r and of three-
dimensional source functions D, (r—r'), D b(r r'). T—he
change in II caused by the proximity of a and b can be
obtained by surrounding these particles by small spheres
and applying Green's theorem to the volume outside
these surfaces and inside a sphere of infinite radius
surrounding the system. One has

with

H=H +Hb+self energy+H b, (3)

(3.1)

III. REDUCTION OF THE HAMILTONIAN

The self-energy part can be discarded since it amounts
to a large but finite constant as long as the D-function
distributions have finite extension. The same result can
be obtained by keeping the D functions in the calcula-
tion without the employment of Green's theorem pro-
vided the limit of infinitely concentrated D functions is
taken.

For two particles of equal masses, the Hamiltonian
[(VP )+a@ Pa ]dr 0 a(~pa/~+)d~y (1'3) may therefore be taken to be

4 4

as a consequence of
H= —c(n y ) PMc'—c(u'y—b) PbMc'—

f'(" "—)p p." "'/», (4)

(6—p')p =0, where
ra rb (4.1)

which holds in the space between the particles in the
static approximation. The integration on the left side of
(1.3) is over the previously mentioned volume, while on
the right it is taken over the surface enclosing the volume
with e standing for the outward-drawn normal. At the
small sphere enclosing particle a, one may use the
approximation

8 exp( —p~r —r ~)——(47») ~fr. 'p2
Bs

7a P2

One has therefore

2~ [(Vy )'+p'p, ']dr self energy—= ——',H", (2)

where

H'»= (4rr)~f P [p b(r')r 'p '+(p '(rb)r bp bj (2 1)

the first and second terms in brackets having arisen,
respectively, from integrations over the small spheres
around a and b. For the first part, only the portion of
the field having b as a source counts because the

(r ) contributes in this term only to the self energy;
similarly in the second term with a and b interchanged.

the original Dirac choice of matrices 0;, P being used.
The wave equation is

(H F)$=0, — (4 2)

(0 ei ]1 0 i
Ee 0) (0 —1l

each of the entries in the matrices being a two-by-two
matrix and the e being the standard Pauli matrices. The
16 components arrange themselves into 4 sets with 4
components each, which in the nonrelativistic limit are
large or small for u or b, respectively. These sets are here
denoted as +, y, x ~, 4; 0' is large for a and b, C is small
for both, x is small for a and p' is small for b. Equation
(4.2) is equivalent to the four simultaneous equations

with

(E—2MC')4+rraXa+m'bXb —FC =0
rr ++Ey +Fgb+rrbC =0,
rr k+FX jFyb+m'4=0,

—FC+mbya+m ax'+ (F+23EC') =0

(43)

F= (f'/r) (~'~b)e ~", ~.=c(e'y.),
n-b= c(o' y') (4.4)

with P standing for a 16-component spinor. With the
usual choice of matrices, one has
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X( -— ') —(.+ ') ( + ')(E+F) (4.&)
E+F

and with the specialization in the last two equations to

(p +p')4 =0, (4.8)

Eliminating y and y ~ one finds

2, (4+4) =0, 2, (+—4) =0,
with

Z, =E2—F2—4M'c4 —(s. —~') (s' ~b)
E—F

1
x (E—F)—(E/F) (7r'/7r') — (1r +7r'), (4.6)

E+F
2

Z2 =Z' F' 4M—'c4 —(E F)—(~—' 7r')—
jV j"

(4.5) neither 4+4 nor 4—4 satisfy equations with an
equivalent Hermitean Hamiltonian. On. the other hand,
it follows from (4.5) that

L@1+@2 (+1 @2)(+1++2) (@1 @2)]p=0, (53)

and in this equation the operator to the left of 0 is
Hermitean. It would be complicated to work with (5.3),
especially on account of the occurrence of the reciprocal
of 2~+22. The effective Hamiltonian corresponding to
this equation is velocity dependent in a very compli-
cated way. In order to determine the phase shifts,
however, it is not necessary to eliminate all components
with the exception of O'. In fact, if 8=0 in a part of the
coordinate space, then in that part of the space Eq. (4.4)
determines C in terms of + and a phase shift in 0' is
reproduced as ae equal phase shift in C. For this reason
the reduction of the 6rst of the two equations in (4.5)
will be used. The starting point for further reduction is
thus

1 d (E/r)dF/dr
X —2( (o'o')+(o' r) (o' r)——

r dr, E2—P2-,'(z,+z,)

which applies in the rest system of the particles. This ~'= Mc 4cP+c"
specialization will be used henceforth. Calculation gives

=E' F' 4M'c—4 4c—'p'—
1 d (E/r)dF/dr

2PPPII'

(ohio&)+

(oar) (o&r)
r dr. E2—Ii2

—2c'it'II'I 3+i(o'+rr ) I vxr]+r —
I

E.

(F/r) dF/dr
x ), (5)E'—P2

where differential operators occurring inside the i ) are
meant not to be applied outside these special brackets.
One also finds

(F/r) dF/dr—2iI (o +o') (v Xr)]
g2 P2

t' d ) (F/r)dF/dr
-2ll:I 3+r—I- II

dr 3 E'—F'

(E/r) dF/dr 2 (E/r) dF/dr—2(v r) — (r v)
g2 P2 g2 P2

—L(o' V) (o'r)+(o' V) (o' r)]
(F/r)dF/dr (F/r)dF/dr

X
g2 P2 g2 P2

(E/r)dF/dr (E/r)dF/dr
=c'ft' —2(v. r) — —2 (r v)

E2—F2 g2 P2

—
I
(o' v)(o'r)+(o' v)(o' r)]

(F/r)dF/dr (F/r)dF/dr
X

E2—F2

X5( ' )( 'v)+( ' )( 'v)] . (5.4)

s=-'(o +o'). (5.5)

Further reduction can be made by specifying the value
of the total spin which has the same value for 4' and C.
The truth of the last statement follows from the fact
that all the operators occurring in (5) an.d (5.1) com-
mute with

Here and below, we set

)+ ( q ) ( v)] (5 1) It is convenient to introduce the oPerators

T'. +=3L(s r)(s p)+(s p)(s r)]
—s'L(r p)+(p r)], (6)

r=r —r' P=P = P ~ (5 2)
T. =3L(s r)(s p) —(s'p)(s'r)]

—s I (r p) —(p r)]=3ih(l. s),
Inspection shows that (2~+22)/2 is Hermitean and with
that (Z~ —2,)/2 is anti-Hermitean. Hence, according to hL= LrX p], (6.2)
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in terms of which

L (~ +o ') r]L (~ +~ ') p]
,'(T-.,++T.;)+;s'(-r p),

L(~ —e') r]L(1r —~') P]
= —3(T.~++T. t, )

+4(1—-', s') (r p)+4ik(s L).
These operators give

( ' P ) ( & r)+ (e' V) ( 'r)
= (i/k) {3 T-b++ r 3S(S+1)—2] (p r) ),

(e r) (e' V)+ (e'r) (e V)
= (i/k) bT.~++L3S(S+1)—2](r p)),

where

(6.5)

(6 6)

r 'dF/dr
E' —F'—4M'c4 —4c'P'+ (4c'A/i) (r p)

E+P

Setting

X (1P+@')=0, (S=0) (9)

where only the case of states with sharp values of L is
explicitly considered. In this equation S,& is a c number

(63) equal to the element of S & diagonal in L and S. The
occurrence in this equation of terms containing the first
power of d/dr shows that an additional transformation
is needed before an equivalent potential can be intro-

(6 4) duced. For singlets the equation simplifies to

Ls' —S(S+1)]4=0, (6 7)

so that S has the values 0 and 1 for singlets and triplets,
respectively. It may be shown that the elements of
T,~+ are related to those of the tensor operator

S.p
——3 (e' r) (e' r)/r' —(e' c '), (7)

in the following way:

(L-2l T. +IL)/(L-2 IS..IL)
= (kr/i) Pd/dr+ (L+1)/r], (7.1)

(L+2I T-~+IL)/(L+2 IS ~IL)
= (kr/i) [d/dr L/r], (7.2—)

(L l
T,p+

l L)/(L l
S.p l L) = (Ar/i) [d/dr+3/(2»)] (7.3)

Here the designation of magnetic quantum numbers is
omitted since it is unessential in the application. These
quantum numbers are the same for the elements of
T,~+ and S,~ whose quotient is being considered.

Employing these formulas together with (6.5), (6.6),
and (5.4), one finds

Z i =E' F' 4M'c4 —4c'p'— —

4+4 ='Rc+(r) Ys. ,v c(0,1'), (9 1)

'R i,+(r) = 'e+(r) (E+F)l/r,

there results the radial equation

(9 2)

with

(E—2Mc')' F' m~' V,ii = — + -+ (m.c')4' c2 4Mc2

where

iy'p F )' F
x —.'l 1+-

l l I
— —, (94)

xi PE+F1 2(E+F)

d' I.(L+1) M
+ (E 2M—c' 'V—,ii) 'I—+(r) = 0 (9 3)

df A2

+c'k' —2lc (2S(S+1)—3) x=pr, p=m. c/k, (9.5)

with m standing for the meson mass. In this equation
the first term is a relativistic correction to the kinetic
energy. The second term gives a repulsive potential
which becomes large at short distances and may be
described as a soft core in the same terminology which
refers to an infinite repulsive potential as a hard core.
The last term shows a slight velocity dependence
through the entrance of E. The shorter-range part of
this term is always repulsive and is qualitatively similar
to p'/(4Mc'). The longer-range part of the last term is
attractive for isotopic triplets (T=1) and repulsive for
isotopic singlets (T=O). The 'V, ii is not expected to
represent the whole eRective potential because of the
omission of the eGect of nucleon pair formation and
other approximations.

For triplets (S=1), Eq. (8) can be reduced to a radial
equation with an eRective potential by means of the
substitution

d (E/r) dF/dr
+-,'(S,g+2S(S+1)—3)r-

dr F —F
(F/r) dF/dr

-(6+4(L s)) E'—F'

d (F/r)dF/dr ( d ~ (E/r)dF/dr—2 it»
——

jl
—21 3+»—

dr F2—F' E dr ) E2—F2

2(E/r)dF/dr d ( d
r—

~

-r—+1)S,
E2—F' dr I dr

)4 d q
- (F/r)dp/d»

+l -s(s+» —2
l l
.—+3 l

k3 ) E2—F2

(F/r) dF/dr p d
',r +1 lS —g—

E" F' l dr )—
x l (E+F)/(E —F)]k(E2 P2)—(i+»si/» (10)
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and in this case

d' L(L+1) 1
(Z Fs—4&V—so4) y

df 4c'A'

d'F Fd'F EdF
X ,' (—1+—S.b) E — +s (S.s —2)

dr' 2dr' rdr

FdF
-(1+(L S))

rdr

(dFq'

&dr)

(dF/dr)s
+ —-', (1+S,s)EF——,'E' —F'

(Es—Fs)2

1——(1+S,s)'Fs sN+(r) =0. (10.1)
36

As in (8), the S,s in this equation is the value of the
diagonal element of the operator S b. The effective
potential corresponding to this equation can be inferred
by noting that its erst two terms are the same as in the
singlet case and that the remaining terms are obtained
from the factors multiplying su+(r) by the factor —)s'/M .
Among the terms there is the contribution to the spin-
orbit interaction

As(F/r) dF/dr
1(L.s) —— (L S)

M(E' —F')

is' d(Fs/4Mc')
(L.S). (1o.2)

rdr'c'

This term has its origin in the second term in curly
braces in (5.4) and can be inferred directly from the
latter on noting that

43fc'

(E—2Mcs)'
E 2''+-

4Mc'
(1o.3)

"G. Breit, Phys. Rev. 51, 248, 778 (1937);53, 153 (1938).
"M. G. Mayer, Phys. Rev. 75, 1969 (1949); 78, 16 (1950);

Haxel, Jensen, and Sness, Phys. Rev. 75, 1766 (1949); Z. Physik
128, 295 (1950).

and solving for the first of the two terms in the curly
braces. In the asymptotic form applying at long dis-
tances according to the last expression in (10.2), this
spin-orbit interaction is somewhat reminiscent of the
Thomas term which would arise from the repulsive core
potential F'/(43''). It differs from the extension of the
Thomas term to two-body potentials" only by its sign.
In the region of large r it thus has the sign corresponding
to shell model requirements. "It may be called an aeti-
Thomus term. The origin of the change of.sign is the
pseudoscalar rather than scalar character of the Geld.
For distances at which F'(E, the sign of the spin-orbit
interaction changes. At E=F there is a simple pole in

the dependence of V(L. &) on r and this singularity does
not introduce divergence troubles.

A possibility of this kind of difficulty exists in the
group of terms in (10.1) which contain the factor
1/(E' —F')' arid occur last in the formula. If these
terms amount to a repulsive potential close to the
singularity, no difhculty arises because at most such a
term enforces the vanishing of 'I+(r) at the singularity,
in which case it simulates a hard core Poterstia/ The. last
term in curly braces in (10.1) can be expressed as

(—-'LE+ (1+S ~)Fj'+ (2/9) (1+S.~)'F' —F')

(dF/dr)'
X . (1O.4)

(E'—F')'

A sufficient condition for the corresponding potential to
be repulsive is

1)(2/9) (1+S.,)'.
For I=I. this condition is not satisfied because in this
case S,b=2. However, in this case the first of the two
factors in (10.4) is

—& (E+F)(E+5F)
If F)0, the potential corresponding to (10.4) is there-
fore always repulsive and there is no difhculty regarding
the existence of an acceptable solution. If F(0, there is
also no difficulty, because at the value r=rp for which
E+F=0, the singularity in the potential is of the type
1/(r —rp). This potential energy term changes sign at
r =rp. Taken literally, it calls for a special consideration
at r =r p, being similar to the Coulomb function at r =0
for I.=O. For the Coulomb function, one has solutions
one of which is regular and the other irregular at r=o.
The irregular solution behaves at small r like

constX [1+(2r/a) 1n (2r/a)],

where u is the Bohr length, the dependence being written
here for the case of repulsive fields only. In the case of
Coulomb functions, the three-dimensional wave func-
tion corresponding to the above form is inhmite since it
is obtained from the usual Coulomb functions as Fs/r or
Gs/r. In the present case, however, r of the Coulomb
function is replaced by r—rp and one has to divide
essentially by rp. There are thus two acceptable linearly
independent solutions for r&rp and for r &rp which can
be matched.

Equations (8) and (10.1) have been written for the
uncoupled case; i.e., for J=J. H there is coupling be-
tween states with different I., two equations instead of
one have to be used. These can be written in the form
of a matrix containing differential operators, the matrix
multiplying a two-component wave function. The di-
agonal terms of this matrix determine the properties of
the radial functions if one uocouples the functions by
setting the oG-diagonal elements equal to zero. The
diagonal terms contain in this sense equivalent po-
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tentials in the decoupled form. These equivalent poten-
tials are reproduced by Eqs. (8) and (10.1), only (7.3)
entering in this case. For these potentials one has in the
('L) r,+i case

1+S,b
——1—2I./(2L+3) (1, 'L r+i , 10.5

(2/9) (1+S,b)'(1.
The expression in (10.4) gives rise to a repulsive po-
tential. No difficulty involving too much attraction at
r =ro arises in this case.

For ('L)I, i states,

1+S b= —3/(2L —1), (('L)z i). (106)

The absolute value of the right-hand side is less than 1
for L)1 and the 1/(r —rb)' terms are repulsive. For
L=1, 1+S,b= —3 and the quantity in curly braces in
Eq. (10.4) is

{ ) = ', (E F—)(-E —5F), (—'Fp). (10.7)

If F&0, this is negative for all r and one deals with a
repulsive potential. If F)0, there is a 1/(E F)—
singularity so that no divergence difFiculty arises. The
'I'0 state corresponds only to 7 =1 so that for it F&0.
The hard core cases arising under some conditions are
likely to need modification in a more complete theory.

IV. PROPERTIES OF THE POTENTIAL

The potential differs from those ordinarily dealt with
in the following respects.

(a) It is related to the four-component function 4'
only indirectly. For the triplet case the function 'I+(r)
is connected with 4'+C by means of Eq. (10). For the
singlet case the analogous relationship is given by (9.1)
and (9.2). The significance of the potential is somewhat
different, therefore, from the usual one which refers
either to P or to O'. The entrance of the Coulomb po-
tential in the final equations can also be expected to be
somewhat different from the usual one because e'/r
occurs with E in (4.2) and (4.3) while E occurs in
various places in (9), (9.4), and (10.1). If e2/r were
treated as part of E, the latter would have to be treated
as a function of r and differentiations of E+e'/r would
have to take place. Tests of charge independence by
comparing p pand p-n interac-tions nvay be expected to be

a+ected by the occurrence of additional terms having
their origin in e'/r.

(b) The effective potentials entering (9) and (10.1)
contain some velocity dependence, the total energy E
entering in various terms. The presence of 1/(E+F),
1/(E' —F'), 1/(E' —F')' in the equations gives strong
variations of the effective potential whenever the de-
nominator in one of these expressions is close to zero.
Some of this velocity dependence originates in the
operators T,b+, T b which enter Zi through (6.3),
(6.4), (6.5) and (6.6). The (L.S) terms originate in
T b and their velocity dependence needs no special
discussion so far as this operator is concerned. The

operator T b+ is seen to have a structure related to that
of the familiar tensor interaction S,b. It contains how-
ever a y in place of one of the r. A term in the Hamil-
tonian containing T b+ directly would destroy sym-
metry under time reversal if it had a real coefFicient.
Actually T, b+ does not occur directly in the Hamil-
tonian and enters the calculations with a pure imaginary
coeKcient as in (6.5), (6.6). No contradiction to time-
reversal invariance is involved therefore.

The occurrence of different velocity-dependent opera-
tors depends on the way in which the result is expressed.
Thus, referring to (4.6) and (4.7), there occurs also the
operator

T. &b= 6(s p)' —2s'p',

which enters these formulas for Z~ and Z2 through

Xb — X'
E+F

C2

[(4—-'s') p' —-'T
b "$

E+F
c'tv r 'dF/dr

+—. 3 Tub 3 Tab
i (E+F)'

(11.1)
+4(1—l")(' )+4 ~('L)j,

~a ~b
E—Ii

c' c'Ar 'dF/dr
L s p +3Tab j+E F — i(E—F)'

X[-,'T.b++-,'T.b +s s'(r. p)].

The operators T, b& were mentioned in a preliminary
account of this work. ' They enter the coupled equations
between 4' and C, and in this form T,b+ is not needed.
Velocity-dependent potentials of related types have
been considered by Moshinsky"- and by Marshak and
Okubo, " although the reasons for their consideration
were only those of consistency with general invariance
requirements.

It will be noted from (10.2) that Vtz, . s& is also velocity
dependent, there being the factor E2—Ii2 in its de-
nominator. Locally the velocity dependence is pro-
nounced close to the value of r for which E2=F'. This
does not mean, however, that the approximation by a
velocity-independent V~L. z~ term is necessarily poor.
Similarly the other terms in the effective potentials
which involve 1/(E' —F') and 1/(E' —F')', while for-
mally showing large energy dependence close to E=F,
need not necessarily cause a strong velocity dependence
of a phenomenologically dependent potential. The local

'2 M. Moshinsky, Phys. Rev. 106, 117 (1957)."R. E. Marshak and S.Okubo, Bull. Am. Phys. Soc. Ser. II, 8,
& j. (&958).
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velocity dependence caused by such terms is doubtless
exaggerated, some rounding oG of P at r=0 being
probable as previously mentioned.

(c) The effective potentials appearing in (9.4) and
(10.1) contain a repulsive potential

F'/(4Mc'),

which is large at small r. It provides a contribution to a
soft, core for the interaction. This term increases at small
r as 1/r'. The increase is not strong enough to outweigh
the strong attraction resulting from virtual pair forma-
tion which appears in the Levy" type calculation. As
pointed out by Brueckner and Watson, " there are
reasons for believing that the effect of virtual pair
formation should be suppressed. In the present note, no
attempt is being made to calculate the effect of virtual
pair formation. Adopting the general viewpoint of
Brueckner and Watson, one would expect, however,
that virtual pair formation is suppressed inside the soft
core. The soft core may be supposed then to remain a
permanent part of the effective potential. This view is,
of course, somewhat speculative and conclusions reached
by means of it cannot be precise, but if one adopts it an
easy explanation of the cores, which are desirable
phenomenologically, is seen to be arrived at. According
to (4.3), x~ and g s are for large F of the order of (1/F)
when expressed in terms of 4 and C. The probability of
finding the nucleons close together thus depends on the
latter quantities. It has not been shown rigorously that
the probability of finding the nucleons within the cores
is negligible in this approximation, but it appears
possible that this is the case if 'F/( 4Mc') is large enough;
i.e., if the interaction constant f is made su%ciently
large. The repulsive potential 'F/( 4Mc') becomes then
similar at small r to a repulsive centrifugal potential
with a sufIiciently large I., and the functions are then
like r~' at small r. If the probability of finding the
nucleons close together is small as a result of the
largeness of the core, then virtual pair formation inside
the cores may be expected to be small also. If this is the
case, the attraction caused by virtual pair formation
may be supposed to be small in comparison with the
repulsive potential so that the cores would retain their
repulsive character.

(d) The effective potential contains the previously
referred to spin orbit interact-ion avernus as in Eq. (10.2).
For

~

F
~
(F., these terms have the same sign as indicated

by nuclear shell structure theory. In this case the ap-
proximate form in (10.2) applies. The coefficient of
(L.S) is therefore negative, making terms with large j
fall lower. This sign of V~L. s~ is such that small phase
shifts are larger for larger j.The spin-orbit interaction

'4M. Levy, Phys. Rev. 88& 725 (1952); the phenomenologic
introduction of hard and soft cores was advocated by H. A. Bethe
and H. A. Kramers, Ann Arbor Summer Physics Symposium, 1935
(unpublished), and in connection with high-energy data it was
used first by R. Jastrow, Phys. Rev. 79, 389 (1950);81, 165 (1951).

'~ K. Brueckner and K. Watson, Phys. Rev. 92, 1023 (1953).

listed in (10.2) changes sign at F.= F~. . For energies
that are not too large, this means for F t 2M—c' which
corresponds to a repulsive core height F'/4Mc' Mc—s.
The point at which reversal of the sign of V~I, .g) takes
place may be expected therefore to lie in the range of
values of r which are shielded by the repulsive core, and
the sign to be such as corresponds to (10.2) for large r.
The absolute magnitude

~
U&L. s&

~

at large r depends on
F' and is thus proportional to

~

(~'~') ~'=1, (~'~') =1, T=1,
(11.2)=9, (~ ~') =—3, T=O.

This spin-orbit interaction should therefore be larger in
absolute value for triplet-even than for triplet-odd
states. The latter correspond to p-p scattering and are
the ones for which the presence of V|L.&~ is especially
suggested by experimental data. Evidence for spin-
orbit interaction in triplet even states does not seem to
be clearly established but will be discussed later on.

The spin-orbit interaction term obtained in the ap-
proximation considered so far is not likely to be the
whole spin-orbit interaction, because the attractive
potential which must exist in addition to that calculated
above is probably associated with an additional spin-
orbit interaction. Since the additional potential is at-
tractive, its parts for larger r give the inverted order
indicated by shell theory provided one assumes that the
Thomas-term sign holds. This assignment of the sign
corresponds in the case of two-particle interactions" to
the second-order interaction through a scalar field. The
virtual pair production may perhaps behave relativ-
istically as though each of the particles were producing
a scalar field which is absorbed by the other nucleon. If
the sign of the additional (L S) terms should be as just
supposed, there are two sources of the (L S) interaction
combining to give e8ects in the same direction and
capable perhaps of making it large enough. If, however,
the virtual pair potential turns out to have transforma-
tion properties similar to those caused by electromag-
netic field interactions, the effect of the potential (10.2)
would be opposed and there might be difhculty in
obtaining the large V&&,.&~ potential suggested by shell
theory. A similarity to the transformation property of
the electromagnetic field appears unlikely, however.
Therefore, in a purely speculative manner, some of the
numbers involved will be considered on the supposition
that the potential in (10.2) is either helped by an addi-
tional Thomas term arising from the pair formation
term or is at least not counteracted by additional terms.
It will be noted that the range constant of the (L S)
potential is expected to be 1/(2ii) rather than 1/ii. In
(10.2) this follows from the occurrence of F'. For the
virtual pair formation potential the range may b ex-
pected to be —,

' of that of the second-order part. In both
cases, the range constant is seen to be in agreement with
expectation" from dispersion relations. The asymptotic

"Goldberger, Nambu, and Oehme, Ann. Phys. 2, 226 (1957).
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which when used in (10.2) gives

11')

V(L.s)=0.4~
—+— (e '*/x' Mev.

Lx' g)
(12.1)

A fit to the spin-orbit potential used by Marshak and
Signell in the region x =0.2 to 0.4, where the potential is

large, can be obtained by changing the 0.4 Mev in
(12.1) to 4 Mev. This way of trying to fit the (L S)
interaction is unsuccessful, giving an interaction of

y p of the empirically required magnitude. The dis-

agreement is not significant, however, for the following
reasons. In the first place, the identification of the term
F'/(4Mc') by comparison with the singlet-even potential
cannot be carried out uniquely. A larger value for
F'/(4Mc') would have been obtained had one postulated
the existence of an attractive pair-formation potential.
Similarly, part of the phenomenologic potential may
be caused by the Thomas term of the pair-formation
potential. In addition to these causes, the factor
(1 F /E') ' presen—t in (10.2) and neglected in (12) is
estimated to be 2.26 for x=0.3 and 1.34 at x=0.4.

Another view on the comparison is obtained by ad-

justing F'/(4Mc') to be 10 times larger than the value
in (12) and thus more than accounting for the desired

, spin-orbit interaction. This gives

rate of decrease of the spin-orbit potential at r= ~ is
seen to be steeper than that of Marshak and Signell'
and to resemble the potential obtained by Gammel and
Thaler' somewhat more in this respect, as will be dis-
cussed more fully presently.

Regarding, for the present, the fits obtained by
Signell and Marshak as furnishing a phenomenologic
potential and considering the soft repulsive core in the
singlet-even case as furnishing F /(4Mc'), one obtains
on reproducing the Gartenhaus" potential at x=pr
=0.1 the approximate value

F'/4Mc'=17(e '*/x) Mev, (x=0.1, T=1), (12)

Employing the low-energy fits of Blatt and Kalos, it
appears reasonable to use (g'/4n. ) =9 which gives

F—1300(e */x) Mev, (Blatt and Kalos). (13.3)

With this adjustment the proportionality constant in
V~L. s~ is more than accounted for, the factor to spare
being at least (1300/800)'= 2.6.

For large r, the spin-orbit interaction arising as the
anti-Thomas term of F'/4Mc' is 9 times larger for T =0
than for T =1.There appears to be no phenomenological
evidence for considering the whole triplet-even (T =0)
interaction to be stronger than the triplet-odd (T =1).
However, for 7 =0 the value of r at which the spin-
orbit term changes sign is larger than for Y =1.Thus, if
one uses the rough phenomenologic value of Ii in Kq.
(13), the sign reversal for T=0 takes place when e /x
=2Mc'/(2400 Mev) =0.78 which corresponds to g—0.7,
while for T=1 the sign reversal takes place for e */x
=2.35 which corresponds to x—0.3. The much larger x
for T =0 should decrease appreciably the eRectiveness
of the V~L. 8). The fact that x=0.3 is close to the usual
core radii appears to fit in with the speculative origin of
cores in the expressions of the type considered in (10.4).
The presence in (10.1) of terms quadratic in S,~ indi-
cates that usual calculations may give incorrect con-
clusions regarding V(L. s). In the usual considerations
the nucleon-spin polarization produced by scattering
owes its origin mainly to V(z, .s). The term in S,&

produces an eRect on phase-shift diRerences which is
neither of a pure S,& nor of a pure V(L. S) type. In
principle these terms make phenomenological con-
clusions regarding V&L. s) more dificult, and eRects of
this type make conclusions arrived at phenomenologi-
cally regarding V&L. &) more questionable than in a
theory without such terms. The eRect under discussion
is caused by the transition from a wave equation con-
taining d/dr linearly and quadratically to one without
the linear term and is thus a typical velocity-dependence
eRect.

F—800(e '/x) Mev, (L.S). (13)

)m. q'
V"' = (m c'/3) (~ ~.) (g'/47r) )

&2M)

3 3~)e
&& (o~ ~2)+%2~ 1+-+—~, (13.1)

x x'& x
'

which when compared with the corresponding term
contained in (5) gives

g'/4n=f '/Ac. . (13.2)

' S. Gartenhaus, Phys. Rev. 100, 900 (1955).' J. M. Blatt and M. H. Kalos, Phys. Rev. 92, 1563 (1953).

The Levy potential" in the modification of Blatt and
Kalos" gives a second-order part,

V. ERRORS CAUSED BY NEGLECTING THE
POPULATION OF NEGATIVE-

ENERGY STATES

The calculations in this paper have been made as
though there were only two nucleons in the physical
system. This procedure neglects the fact that negative-
energy states of protons must be considered as occupied

by protons forming a Dirac sea of particles in negative-
energy states and that a similar Dirac sea must be
pictured for neutrons. The problem is somewhat similar
to that of considering the interaction of two electrons in
the presence of two closed electron shells. Some of the
essential features of the problem are manageable with
the aid of the Bethe-Salpeter" equation, which should
furnish relativistic answers provided one neglects the
emission of real pions. The work involved in reductions

"E.E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
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of the Bethe-Salpeter equation is laborious in the case
of the nucleon-nucleon problem, however. Since the
potential obtained provides repulsive cores, a relativistic
treatment does not appear to be imperative for bom-
barding energies below the pion production threshold.
Nonrelativistically there is a similarity to the ordinary
spectroscopic treatment of electron shells.

The problem of taking into account the filled states
is simple if the states are known. In the present case,
however, the states occupied are themselves determined
by the interaction. This circumstance can be seen
simply in the case of the interaction of an electron with
a proton. In the limit of infinite proton mass the electro~
moves in a time-independent field. One can consider the
problem in terms of plane-wave states which will be
denoted for brevity by

I (r,y). (14)

Here nz labels the state, p, is the Dirac spin index, and r
is the electron's position vector, The vacuum polariza-
tion is well known to be directly obtainable from the
distorted wave functions

u" (r,p,), (14.1)

the solutions of Dirac's equation in the field of a point
charge. The functions -v rather than the plane. wave
functions I are in this limit the simpler to deal with.
They can similarly be used for the description of a state
with total charge —e, not counting the proton charge
+e. Writing in the Dirac notation

i"(r,p)
—= lm), (14.2)

the antisymmetric wave function for which all negative-
energy states m&, m2, as well as a positive-energy
state mo+ are filled may be represented as

the functions separated by commas in parentheses being
used for the formation of a normalized Slater determi-
nant. The state limo+» describes a condition in which
one electron is physically present in state mo+ and for
which there exists, besides, the vacuum polarization
charge. The interaction of the vacuum polarization
charge with

l
mo+) is not taken into account in (14.3)

and radiative effects are not considered in it either. The
correctness of the above statement may be seen if one
calculates contributions to particle density, which are
then seen to arise from the states lmo+), lmi ), lm2 )
separately. The result of the consideration after taking
into account the symmetry of density contributions for
positive- and negative-energy states for the field-free
functions is

p =p(no+)+ p(vac. pol. ) (14.4)

For many problems one could, in this limiting case,
forget the population of the negative-energy states and
use only the distorted functions ~ . It wouM be wrong to
remove from

l
mo+) its projection on the subspace of all

the plane wave states u having negative energies. The
error in such a procedure lies in the fact that the
nega'ive-energy states u are themselves distorted by
the proton field. If the proton field is switched on
adiabatically, the orthonormal set I changes to the
orthonormal set ~ which makes the direct construction
of the Slater determinant (14.3) possible. It is essential
for the simplicity Of the result that the v are
orthonormal.

For a finite but large proton mass, the problem of
mass motion effects has been treated for bound states
by means of the Bethe-Salpeter equation by Salpeter. "
This treatment is characterized by its essen'ial sym-
metry in space-time. In the stage called by Salpeter "the
instantaneous interaction, " this method of making the
calculation has the appearance of yielding a very difI'er-

ent result from that which would be obtained by con-
sidering just two particles. In this "instantaneous
approximation" there appears a projection operator

Here A+ is the projection operator on the positive-
energy subspace for particle u with the plane wave
rather than the ~ meaning of energy states. At this
stage, in the plane wave sense, the whole wave function
contains only the components p++(p) and p (p) in the
center-of-mass system.

%ere one to use the instantaneous interaction ap-
proximation in the above sense for the nucleon-nucleon
interaction problem, the results would be entirely difer-
ent from those obtained in the preceding sections. The
equation in momentum space can then be transformed
to coordinate space only in a symbolic sense, there being
no simple coordinate space indicated by the problem
itself. The transformation to coordinate space carried
out by the usual Fourier transform procedure leads to a
complicated integral equation. Approximating in it
quantities such as (M'c'+ p')&by the first two terms and
thus introducing usual differential operator forms, one
does not obtain the interaction forms which have
followed from the consideration of two particles without
pair (hole) theory, there being some changes in the sign
of the effective coordinate space interactions. However,
the "instantaneous interaction" approximation does not
lead directly to the static wave function solutions (14.2)
or (14.3) in the proton-electron problem. To obtain
these solutions it is necessary to include the efkct of the
G„(') diagram of Salpeter's paper, " as shown by
Salpeter. At this stage of the calculation he obtains also
a correction term for the motion of the proton which is
not obvious from more elementary considerations. The
correction term is small in the hydrogen problem. The
fact that G„&" has to be included shows that the
"instantaneous interaction" approximation cannot be
used for the derivation of the effective interaction po-
tential in the nucleon-nucleon problem unless it is

I E, E. Salpeter, Phys. Rev. 87, 328 (1952).
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supplemented by the calculation of higher approxima-
tions. These would have to include terms in A+ A+',
A+ A ~, A 'A in addition to the A 'A+ combination
in Salpeter's Eq. (34). The results of such calculations
would give terms which would have to be supplemented
by further terms in the expansion in powers of the
interaction constant. The value of such work would not
be clear, however, because the starting point of the
calculation involves approximations of uncertain final
significance. Since, on the other hand, the considerations
of Eqs. (14) to (14.4) show that in the limit in which one
mass becomes very great the elimination cf the plane
wave negative-energy parts is incorrect and since the
Bethe-Salpeter equation leads to a similar result in the
hydrogen problem if terms beyond the "instantaneous
approximation" are included, there appears so far no
special reason for doubting the qualitative aspects of
conclusions obtained neglecting the difference between
the interaction using pair theory and the interaction in
the absence of the population of negative-energy states.
To be sure, the pseudoscalar interaction di6ers con-
siderably from the electromagnetic one with respect to
the possibility of obtaining a static interaction. Pseudo-
scalar coupling between particles of unequal masses M,
m gives no interaction in the relativistic limit for
M/m —+~ if the coupling constant is kept fixed. But one
obtains a nonvanishing interaction if F'/M is kept at a
constant value in the limit of M—+~.The wave function
distortion described for the electromagnetic case in con-
nection with Eqs. (14), (14.4) is present also for the I'S
interaction with the above understanding. The limit
just discussed does not correspond to actual conditions
and does not directly prove the reality of the terms
derived by the naive procedure of the preceding section.
It indicates only that the di6erence between the
pseudoscalar and electromagnetic interaction does not
destroy the similarity of treatment of E(0 states in the
limit of one mass becoming infinite, provided the limit

is taken in the manner described.
It is believed, therefore, that the omission of the

consideration of the occupation of E(0 states does not
prevent the employment of Eq. (4) from having a
meaning as furnishing an interaction which can be
improved on through the inclusion of virtual pair
formation, field quantization, and other omitted eBects.
The occurrence of repulsive cores and of the spin-orbit
interaction is in qualitative agreement with experiment.
The correspondence of empirical indications with sug-

gestions arising from the model is difficult to discuss

quantitatively, not only because of the incompleteness
of the theory but also because it is not clear whether

such fits to experimental data as have been obtained' '
by means of potentials are the only ones. The potentials
used are not the same and they dier in diferent
editions of the same work. Thus the potential used in

the work on deuteron photodisintegration by de Swart,

Bilhorn, and Marshak" does not contain a spin-orbit
interaction for triplet-even states, this change having
given better agreement with the photodisintegration
data. A fit of this type is described in a preprint of the
longer paper by Marshak and Signell. 7 The possibility
of using no spin-orbit interaction in the triplet-even
states (T=O) appears at first sight to disagree with

(10.2) because according to (11.3) it should be stronger
for triplet even states. This conclusion does not neces-
sarily follow, however. The reversal of sign for the spin-
orbit potential occurs at larger r when ~=0 and it may
therefore become effectively weaker, even though for
sufficiently large r it might be stronger. According to
the estimates at the end of the preceding section, the
reversal of sign might occur at x=pr—0.7 for r =0 and
at a much smaller value for 7.=1. If the sign reversal
may be considered as taking place at these large values,
the spin-orbit interaction appears to be in qualitative
agreement with the phenomenological analyses. Thus,
according to Fig. 7 of Signell and Marshak, the phe-
nomenologic (L S) potentials of the Rochester as well

as the Los Alamos workers are much smaller for x&0.7
than for x(0.7. The centrifugal barrier for L=1 at
x=0.7 is 90 Mev and this region is thus well accessible
to the particles in the experimental range which has
been mainly considered in making the phenomenological
fits. The Gamrnel- Thaler spin-orbit interaction potential
is stronger in odd than in even states by a factor of

1.4. This difference in the interactions is in the direc-
tion just discussed and may be accountable for by the
sign reversal just discussed.

According to the considerations in the present paper
as well as the dispersion theoretic considerations of
Goldberger, Nambu, and Oehme, "the asymptotic form
of V(L. q~ must be e 'l"". The potentials compare as
follows regarding the exponential factors determining
their asymptotic behavior:

Marshak-Signell

Gammel- Thaler

Theory

exp (—0.93r),

exp( —3.7r),

exp (—1.46r),

where r is expressed in fermis (1 fermi—=1f=10 "cm).
The theoretical form has a meaning only asymptotically
and the above comparison may not be too meaningful
therefore. It appears to be in reasonable agreement
with the empirical indications, however. The Signell-
Marshak fit is concerned with adjustment of 'I' wave
e8ects more than with eBects of higher L. The Gammel-
Thaler fit, being concerned with higher energies, is
relatively more sensitive to higher L. The short-range
character of the spin-orbit interaction in their fit pre-

sumably has been caused by the desirability to have
small eGects of V|L.g~ on the Ii waves and has con-

siderable chance of being right. The fact that the

~' de Swart, Bilhorn, and Marshak, Bull. Am. Phys. Sot-.,
Ser. II, 8, 48 (1958).
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theoretical dependence is intermediate between the two
empirical ones appears to be not accidental therefore.
The adjustment of phenomenologic spin-orbit poten-
tials depends on the central and tensor potentials used
with them and is therefore not unique even apart from
the question of choice of phase shifts. The very small
value of the range of the V~L. g~ potential of Gammel and
Thaler may accordingly have a number of explanations
without implying a real disagreement with the theo-
retical asymptotic form. There is of course a slight
chance that the leading term in the dispersion theoretic
form cancels or is accidentally small and that
the Gammel-Thaler result should be interpreted as
exp( —2.92r). There is also the possibility that the
V(z. s) is not a truly meaningful concept. This view is
partially supported by there being a difference in these
potentials for even and odd states in the formulas of the
present paper. Some indication of this is also furnished

by the occurrence of 5 s' terms in Eq. (10.1). A
physically complete theory may make the literal em-

ployment of V«. &) even less meaningful. The introduc-
tion of V«. 8~ has produced useful effects mainly on I'
waves. It is possible therefore that its physical character
has more to do with the production of P-wave phase
shifts, which produce effects somewhat like those caused
by (L.S) but have no such interpretation in other
states. The experimental evidence has not been shown
to point to anything more specific regarding V«. z) so
far, although at least a slight deviation from the pure
tensor pattern of phase shifts for 'F terms is probably
necessary.

The fact that the Gammel-Thaler fit gives a wholly

repulsive 'V while their 'V+ has an attractive part
appears to be not in contradiction with the larger value

of F2 for Y =0.Although the Gartenhaus potential has a
deep attractive 'V part, the second paper of Signell and
Marshak shows that a bound 'E~ state is the result of
this attraction, and it is therefore necessary to modify
the Gartenhaus potential as already modified by the
Case-Pais (L S) term by the inclusion of an additional
repulsion such as a repulsive core.

Evidence from the 'V,+, 'V, (c here stands for
central) appears undecisive. The Rochester and the Los
Alamos groups agree in giving mostly repulsion for 'V,
which corresponds to 7=1. Strong repulsion in the
model of the present paper is characteristic of T=O,
however. Figure 3 of the second paper of Signell and
Marshak~ shows that a strong repulsion may be used for
'V,+(T=O), the upward trend beginning at about
@=0.5 and increasing toward small x. For 'V Gammel
and Thaler used a hard core radius with x=0.3 and no
further interaction. There is thus no apparent contradic-
tion with the expectation of a greater value of the
repulsive Ii'/4Mc' term in the T=0 state. This com-
parison is complicated by the presence of spin depend-
ence such as in (13.1) and the strong effect which the
tensor interaction may have on the binding energy of
the deuteron. There appears therefore no special reason
for doubting the potential calculated here on the basis
of the comparison of 'V,+ and 'V, . This comparison
may hardly be considered as giving special support to
the view, however, the number of possible adjustments
being too great to be convincing.
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