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Correlation structure can be introduced into the shell model by means of a product of pair correlation
functions, each of which vanishes within the repulsive core radius and then approaches unity with a short
range dependent only on the Fermi momentum and the relative energy of the pair. Correlations of this type
are independent of the state of a particule within a given shell-model orbit. The additional effect of such
scalar, state-independent correlations on the magnetic moment of a ‘“closed shell plus one” nucleus is
shown to vanish, leaving only the shell-model value. The proof can be extended to correlations having a
scalar spin dependence and to certain more complicated symmetries. The effect of residual state-dependent
correlations due to terms in the relative momentum of the correlated pair and to the space-exchange part
of the attraction as it appears in the correlations is estimated for O'7 as a correction to the magnetic moment
of 0.002 magneton. There is no modification to the magnetic moment operator due to velocity dependence of
the correlation functions, and the expectation value of the ordinary space exchange operator coming from
the exchange part of the Hamiltonian is shown to be the same as given by the shell model.

I. INTRODUCTION

HE basis of the independent-particle model, or
shell model,! of the nucleus has been much solidi-
fied by recent advances in the theory of many-particle
systems.? These studies have improved our understand-
ing of nuclear matter in bulk, particularly in regard to
its saturation energy and to its correlation structure.
There are good reasons to believe that this correlation
structure can be carried over to finite nuclei, in which
case it becomes possible to examine the effect of the
correlations in finite nuclei on the expectation value of
certain dynamical operators.

The shell model is particularly suited to accounting
for nuclear properties associated with the symmetries
of the wave functions, and has thus been specially
successful near closed shells where states of different
symmetry are most easily classified and separated. In
the independent-particle model in its widest sense, the
separation is often brought about through the effects
of a two-body interaction between degenerate or nearly
degenerate states. This mixing and separating of close
configurations of particles outside closed shells will in-
troduce long-range, state-dependent correlations among
these particles, and it is well known that correlations
of this type are extremely important in determining
nuclear properties. Breuckner, Eden, and Francis® have
studied the introduction of these correlations into the
independent-particle system from the point of view of
the actual nuclear Hamiltonian. However, there are
other correlations in the nucleus which arise when the
highly singular two-body interactions are ‘“‘turned on.”
These correlations affect strongly all the particles in
the nucleus and are much more important in deter-
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1 A full account of the shell model and a complete list of refer-
ences are given by J. P. Elliott and A. M. Lane, Encyclopedia of
Physics (Springer-Verlag, Berlin, 1957), Vol. 39.

2 A comprehensive list of references is given by K. A. Brueckner
and J. L. Gammel, Phys. Rev. 109, 1023 (1958).

3 Brueckner, Eden, and Francis, Phys. Rev. 99, 76 (1955).

mining the total energy of the system than are the
relatively weak correlations among particles outside
closed shells. The success of the shell model leads one
to expect that there are large classes of predictions un-
affected by these correlations, but until now there has
only been this pragmatic argument. We shall discuss
the effect of the correlations on certain dynamical
operators, in particular the magnetic moment, in an
attempt to give some theoretical justification to the
success.

It is convenient to separate the effect of the short-
range correlations affecting all the particles and the
long-range, state-dependent correlations introduced by
configuration mixing among particles outside closed
shells. Since we are interested only in the former, we
shall consider the case of a closed shell plus one particle
and examine the effect of the correlations of the odd
particle with the particles in the core on the magnetic
moment. Since the magnetic moment of nuclei with
only one particle outside an L-S closed shell is well
given by the shell model (e.g., OY),* and since for more
than one particle outside an L-S closed shell the devia-
tions from the Schmidt lines can be accounted for in
terms of configuration mixing among the particles
outside closed shells,® we expect to find the effect of
the correlations to be small, and this indeed is the case.

The nuclear two-body interaction is extremely singu-
lar, consisting of an infinite repulsive core and a short-
range, very strong attraction.® In order that the total
energy of the nucleus be finite with this type of inter-
action, the total wave function must vanish whenever
any internucleon coordinate is within a core radius.
Thus the first type of correlation that must be intro-
duced into the shell model consists in the making of

4R. J. Blin-Stoyle, Revs. Modern Phys. 28, 75 (1956).

5 R. J. Blin-Stoyle and M. A. Perks, Proc. Phys. Soc. (London)
A67, 885 (1954); A. Arima and H. Horie, Progr. Theoret. Phys.
Japan 11, 509 (1954).

6 P. S. Signell and R. E. Marshak, Phys. Rev. 106, 832 (1957);
J. L. Gammel and R. M. Thaler, Phys. Rev. 107, 291 (1957);
J. L. Gammel and R. M. Thaler, Phys. Rev. 107, 1337 (1957).
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“holes” in the independent-particle wave functions
any time two nucleons get closer together than a cer-
tain distance. In an infinite nucleus the exclusion prin-
ciple prevents a nucleon from being excited into a
nearby state, except at the top of the Fermi sea. Thus
the correlation of two distant particles, which correla-
tion would correspond to very small energy excitation,
is forbidden, and the wave function quickly approaches
its free-particle uncorrelated value as the two particles
separate. The presence of the attractive part of the
two-body potential has very little further effect on the
correlations, although of course it is very important for
determining the binding energy. The range and struc-
ture of the correlation is then almost entirely deter-
mined by the core radius, the Fermi momentum, and
the relative energy of the two particles, and this range
turns out to be very small.”

It is expected that the structure of the correlations in
finite nuclei will be essentially the same as in the
infinite case. Firstly the energy gap for excitations due
to the Pauli principle is still present in finite nuclei
and is in fact accentuated by the separation of the
levels. The gap is not present for the degenerate states
of particles in unfilled shells, but we are not concerned
with that case here. Thus the correlations will still have
a very short range. As is pointed out by Brueckner,
Gammel, and Weitzner,® if the correlation distance is
small, then from the point of view of the independent-
particle model, the states being admixed to produce this
correlation must be highly excited states; in fact
excitation energies of order 150 to 250 Mev are typical.
The error introduced by using plane-wave states for
the particle functions at such high excitations is cer-
tainly small, and thus the admixtures introduced in the
finite nucleus by these correlations are well approxi-
mated by taking the correlation structure of the infinite
case. Alternately one can say that as long as the density
fluctuations over the correlation distance are negligible,
then the correlation structure of the infinite system can
be taken over to the finite nucleus.

The correlations to be introduced into the inde-
pendent-particle system, then, depend largely on the
core radius, the Fermi momentum, and the relative
energy of the particles being correlated. The first two
of these are essentially state-independent factors, that
is, the same for all particles in all states. The relative
energy of the particles has a weak effect on the range of
the correlation. Neglecting spin-orbit splittings in the
core, the energy difference between particles depends on
the principal quantum number and on the total orbital
angular momentum of the particle orbits and is inde-
pendent of the z component of angular momentum.
Thus the bulk of correlations among particles is inde-

7 A detailed discussion of the correlation structure is given by
Brueckner and Gammel, reference 2. See particularly their Fig. 5
and Appendix B.

( SSBI;ueckner, Gammel, and Weitzner, Phys. Rev. 110, 431
1958).
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pendent of state within each orbit, as we shall see in a
detailed discussion of the correlation function in Sec. IT.
There are additional correlations arising from momen-
tum dependences and from the attractive part of the
potential that are state-dependent, but these are much
smaller than the state-independent correlations.

In Sec. ITI we shall investigate the effect of state-
independent correlations on the magnetic moment of a
“closed shell plus one” nucleus. There we shall show
that so long as the correlation function is a scalar in
ordinary space, and state-independent, then there is no
additional contribution to the magnetic moment due to
correlations. The proof can be extended, under more
restrictive conditions, to correlation functions that
have scalar as well as second rank tensors for their
orbital parts, but of course are still scalars in total
space. The proofs do not depend on the correlations
being short-range, or being only two-particle correla-
tions. The result may seem surprising since it is certain
that the correlations introduce many different excited
states into the system, but when taking an expectation
value the additional contribution from these excitations
cancels leaving only the shell-model value. It might be
emphasized here that this does not mean that the
effect of the correlations is small, or that the overlap
of the shell-model wave function with the actual cor-
related wave function is large, but rather that the shell-
model wave function has certain symmetry properties
that are preserved in the presence of state-independent
correlations so that the expectation value of the mag-
netic moment operator is unaffected by the correlations.
Since the proof does not depend on the nature of the
correlations except for their state independence, there
are an infinite number of nuclear wave functions dif-
fering from each other only by state-independent corre-
lations all of which have the same magnetic moment.
It is clear that we could adjust the overlap of any of
these with the true wave function to zero and we would
still have the same magnetic moment. This serves to
emphasize the model nature of the shell-model state,
as being a state which preserves certain general sym-
metries but need not otherwise resemble the actual
nuclear wave function.

In Sec. IV the state-dependent correlations coming
from the small momentum dependence of the correla-
tion function and from the exchange parts of the
attractive potential as it appears in the correlations are
considered. The effect of these is estimated for OV, We
find that the additional contribution to the usual mo-
ment operator is of the order of +0.002 nuclear magne-
ton. This extremely small contribution comes about
essentially because of the short range of the correlations.
In addition there appears the well-known space-ex-
change moment operator that comes from the space-
exchange potential in the Hamiltonian. This has essen-
tially the same expectation value as it would have in
the shell model since the major contribution to the
matrix element comes from the long-range, uncorrelated
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part of the wave function. Thus the correlations intro-
duced when the two-body interactions are ‘“turned on”
in an independent-particle system have essentially no
new effect on the magnetic moment of a “closed shell
plus one” nucleus.

II. STRUCTURE OF THE CORRELATION FUNCTION

Brueckner and co-workers® have shown that corre-
sponding to the actual nuclear Hamiltonian

H= ZiTi+Z <03, (1)

where T'; is the kinetic energy operator and v,; is the
two-body interaction including the repulsive cores, one
can write a model Hamiltonian

Hy=3.T+2.V, (2)

where V; is a one-body potential obtained from a self-
consistent average of the reaction matrix corresponding
to v;;. If the eigenfunctions, ¥, of H are related to those
of Hy, ®, by the operator F,

V=P, 3)

where F is defined through a complicated chain of
equations involving the off-diagonal parts of the re-
action matrix, then the energies of the model system,
calculated with appropriate factors of 3, will correspond
almost exactly to the eigenvalues of H. Since Hy is a
single-particle Hamiltonian, ® will be an independent-
particle wave function, which can be constructed from
determinental wave functions of single-particle states.
W, on the other hand, is the fully correlated, actual
nuclear wave function. The correlations are introduced
through F. For the purposes of calculating binding
energies and the like, it is essential that F be fully
known since the matrix elements of the highly singular
H are very sensitive to small variations in the wave
function.? On the other hand, an operator like the
magnetic moment is not so sensitive to these variations.
We make use of this to simplify greatly the form of F.

Firstly we use the fact that the most important part
of the correlations occurs over a very short range and
therefore, as was discussed above and is treated in
much more detailed by Brueckner, Gammel, and
Weitzner,® we can use the correlation structure of the
infinite nucleus in the finite case. The correlation struc-
ture of nuclear matter has been discussed by a number
of authors.?!® In particular Brueckner and Gammel?
have calculated the correlation structure of nuclear
matter at saturation density. They show that the shape
of the wave function for the relative motion of two
particles in an .S state is almost entirely determined
by the core, the Fermi momeuntum, and the relative
energy and momentum of the particles. One can thus in

(1; ?;)e K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344

10 H.‘ A. Bethe and J. Goldstone, Proc. Roy. Soc. (London)
A238, 551 (1956); Comes, Walecka, and Weisskopf, Ann. Phys.
(to be published).
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first approximation neglect the effect of the attraction
on the wave function and write the wave function for
the relative motion of two particles in an .S state as!!
sinkr sinkr, G(r,7.)
(r)= r>7,

kr o EroGrer)
U(r)=0,

r<r.

where 7. is the core radius, £ the magnitude of the rela-
tive momentum wave number for the particles, and 7 is
the relative coordinate. G(r,7") is the Green’s function
for the propagation of particles in the self-consistent
average potential with the effect of the exclusion prin-
ciple in forbidding excitations to filled states included.
U (r) can be written

r sinkr, G(r,7) "Isinkr
7. Sinkr G(rc,rc)J B

U(r)=[1— r>7,

U(r)=0, r<te.
Since sinkr/kr is the free particle wave function for an
S state, this defines a correlation function, B, for the
two particles:
. 7 sinkr, G(r,7.)
B(n)=1l——-, r>r,
resinkr G(re,r.) 4

B(r)=0, r<te.

This correlation function has the expected features. It
vanishes if any two particles get within a core radius
of each other, and since G(7,7.) is a short-range function
that goes to zero for #>>r., the particles become un-
correlated when they are far apart. Since such a form
for the correlations is to be assumed for all pairs of
particles, we obtain the total correlation function by
approximating to the operator F with the product over
all pairs of nucleons of B. This is an excellent approxi-
mation if we restrict our attention to nonsingular
operators.

In this approximation of no attraction, the Green’s
function depends on the state of the two particles only
through their relative energy, which dependence deter-
mines the range of the Green’s function. But for the
correlations between particles in given orbits in a finite
nucleus this energy difference is a constant and thus so
is the Green’s function. We can take this dependence
into account then by changing the range of the Green’s
function for each orbit but keeping it constant within a
given orbit.

The more explicit dependence on the relative mo-
mentum, and therefore the state of the particles,
occurring in the sinkr./sinkr term is also easily dealt
with. At nuclear saturation densities, kpr,=0.7, where

1 Correlations will be most important in S states since in these
states the nucleons get closest. By extending the S-state correla-

tions to all particles, therefore, we overestimate the effect of the
correlations.
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kr is the Fermi momentum. This means that even for
the maximum possible relative momentum, sinkr. is
well given by k.. Since G(7,7.) is a short-range function
of 7, the expansion of sinkr is also justified and, if one
keeps only the first term, B becomes

G(ryro)
, T>7,
G (7o) (3)
r<te.

B=1—

B=0,

This form of the correlation function has the great
advantage of being state-independent, and it is only
this state independence and not any detailed knowledge
of the correlation structure that is needed in order to
prove that the correlations have no effect on the mag-
netic moment. The ordinary part of the attractive
potential will also produce state-independent correla-
tions and hence give nothing new. We shall see in Sec.
III that this is true as well of scalar, spin-dependent
correlations. The corrections both from higher terms
in % and from the space-exchange part of the attraction
in the correlation structure are discussed in Sec. IV,
where we see that they are extremely small in the case
of the magnetic moment. We consider, then, correla-
tions making the total wave function vanish if any pair
is inside a core radius and going to one, as pairs sepa-
rate, in a way dependent only on the relative energy of
the correlated pair. For the proof of Sec. III any correla-
tion function having this type of state independence
would do, but of course this particular choice has
strong physical justification.

III. STATE-INDEPENDENT CORRELATIONS AND
THE MAGNETIC MOMENT

If the total Hamiltonian for a nucleus is given by
(1), and if the two-body interactions contain no space-
exchange part or other velocity dependence, then it is
well known that the operator for the magnetic dipole
moment can be written*

eh 4 4
(€ a®IO+E g®o®),  (6)
c

v daMc k=1 k=1

where 1% and ¢® are the orbital angular momentum
and spin operators for the kth nucleon and g;*) and
2, are the orbital and spin gyromagnetic ratios. The
factor ek/4wMc is the nuclear magneton. It should be
noted that it is the magnetic moment of the actual
nucleus that concerns us. We introduce the electro-
magnetic field in the usual way into the actual Hamil-
tonian, and therefore it is the real nucleon mass that
appears in the magneton and not some effective mass.?
Upon using the transformation (3), the magnetic dipole

2 Bell, Eden, and Skyrme, Nuclear Phys. 2, 586 (1956/57);
J. S. Bell, Nuclear Phys. 4, 295 (1957).
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moment of a nucleus in some state becomes

(@lulv) (@ Fyr|e)

W e

It might be thought that if F is velocity-dependent,
there will be additional contributions to the magnetic
moment operator with respect to the model state coming
from the currents generated by this velocity depend-
ence. Thus we might say that Eq. (3) is only the trans-
formation for zero electromagnetic field, so that in the
presence of a field the energy of the system, E, is not
given by

x (Y|H|¥) (2|FHF|®)

@|¥) (@ FIF|D)

(7)

unless the field is included in F as well as in H. This is
of course correct but no new parts of u will arise from
this. The terms contributing to u are identified as those
in the expansion of the energy which are linear in the
electromagnetic field. Since F|®) is an eigenfunction of
H, the energy is stationary with respect to changes in
the eigenfunction, and thus there are no terms coming
from F in the expansion of the energy that are linear in
the electromagnetic field. Therefore, although state-
dependent correlations may change the expectation
value of u as given in Eq. (6), (see Sec. IV), there will
be no contribution to the magnetic moment operator
arising from velocity-dependent correlations. This can
easily be verified directly in Eq. (7). If one puts the
electromagnetic field into F and then makes a small
field expansion, the linear terms from the numerator
will just be cancelled by those from the normalization
denominator.

Upon using the well-known properties of the gyro-
magnetic ratios and measuring the magnetic moment in
units of the nuclear magneton, u for diagonal expecta-
tion values can be written

z N

z
M= Z lz(k)+gp Z Uz(k)+gn Z
k=1 k=1 k=1
protons neutrons

o, (k)’
protons

where # and p refer to neutrons and protons. Writing
u in this form we see that our problem reduces to show-
ing that the correlations do not change the expectation
value of the z component of the proton orbital angular
momentum, or the value of the z component of the
proton or neutron spin angular momentum separately.
Since the state for a doubly closed L-S shell plus one is
an eigenstate of each of these three operators,’® the
additional contribution to the magnetic moment from
the correlations will be given by the commutator of

18 We consider the case in which the odd-particle total angular
momentum j=I+%, and as usual for the magnetic moment fix
our attention on the azimuthal state for which m;=j3. For this
case the appropriate Clebsch-Gordan coefficient is unity and the

state is an eigenstate of the operators. The extension of our dis-
cussions to other couplings for the odd particle is straightforward.
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the operator u, with F. Thus, for example, the expecta-
tion value of the z component of the proton orbital
angular momentum for the case in which the model
state is a closed L-S shell plus one particle is

(®|F11,PF | ®)

L.®)=
(®|FIF|®)
(B|FIFL P |®) (@|FI[I,",F]|®)
= 4 (8)
(B|FIF|®) (®|FIF|®)

where we have set L,)=3" i protons £:*). The first term
in Eq. (8) is the shell model value and the second is the
additional contribution from the correlations. We shall
call this A;. There are clearly similar expressions for
A., P and A‘, N-

We consider the case in which F is approximated by
a correlation function of the general type discussed in
Sec. II, which function is the product of two-body,
state-independent correlation functions containing no
exchange. That is F is considered to be some sort of
product of simple scalar “hole makers” for the nucleus.
For a nucleus with a double closed shell plus one nu-
cleon, the wave function can be split into a spin part
and an orbital part, and the orbital part can be further
factored into a neutron function, Q, and a proton func-
tion, Qp. Since we are assuming that the correlations are
spin-independent, the spin part of ® in the evaluation
of A; will just be cancelled by the normalization and we
need ounly consider the orbital part. Putting the nor-
malization denominator equal to one, A; can be written

Ar=(QnQp| FI[L® F]|Qn2p). (9)

In order to evaluate this, we expand the scalar F into a
product of tensor operators for the protons and neu-
trons.* This can be one so long as the neutron and
proton parts commute, and for our form of the correla-
tions they do. Thus we write

F=3% (—1)*Py N\
Ly

where P, , is a tensor operator of rank A with z com-
ponent  for the protons and Ny, —_, is the similar opera-
tor for the neutrons. As was shown by Racah,* the
tensor operators can be defined in terms of their com-
mutation relations with the angular momentum opera-
tors; thus

[P, F]=3 [P, P, J(— 1)*Nx, -
Au
22 (“ 1)"P>\,MN)\.—M/~‘~
\u
Substituting into Eq. (9), we get
A= T Q| Na N (— D Q)
Nou N !
X{Qp| Py, 1Py, |Qp)1’.
14 G, Racah, Phys. Rev. 62, 438 (1942).

(10)
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Since we are considering the case of a doubly closed
shell plus one particle, either the neutron or proton
wave functions must be spherically symmetric, that is
an S state. The matrix element between S states of a
tensor operator vanishes unless that operator is a scalar.
A scalar can be constructed only from two tensor opera-
tors of the same rank, so the double sum in Eq. (10)
reduces to a single sum with A=\’ and u=y’. The corre-
lations actually depend on the orbits of the particles
through the weak dependence of the Green’s function
on relative energy. But the condition for the combina-
tion of tensor operators between the closed shell states
being a scalar is that the combination be constant as
we sum over each of the 2/4-1 azimuthal quantum num-
bers of each filled orbit / in the core, and this is in fact
satisfied. In other words, we can label the correlation
function by the orbital angular momentum of the
orbits, but they will be constant as we sum over the
azimuthal quantum numbers in each orbit, and it is the
fact that all the 2/41 azimuthal states for each orbit
are full that makes the closed shell an .S’ state.

The Hermitian conjugate of a tensor operator is
defined by?'®

Ty ut= (=1,
so that Eq. (10) becomes
A= Qx| N, N —a| Qv )Qp | Pr,—uPr, x| 2p).

Each of the operator combinations in the matrix ele-
ments is symmetric under change of u to —u, since the
operators commute. Thus the sum is odd in u, and
since it runs from uy=—\ to u=-A\, it must vanish.
Thus for this case, A;=0.}

If the correlations do not depend on spin at all, then
clearly there can be no A,p or A,y. If the correlation
function is a product of a scalar in spin space and a
scalar in orbit space, we can factor the wave function
of a closed shell plus one into a spin part and an orbital
part and the matrix element of the scalar spin correla-
tion functions between the factorized spin wave func-
tions will just be cancelled by the normalization and
therefore the proof that A;=0 goes as before. The proof
that for a closed shell plus one particle A,p and A,x
must vanish for scalar, commuting, spin correlations is
completely analogous to the one for A;=0. Thus if the
correlations contain a ¢1- @5 term making them different
in singlet and triplet states, this will not affect the
magnetic moment since the spin operators for protons
and neutrons commute and we can carry out the tensor
operator proof.

15 A. R. Edmonds, Cern Report 55-26, 1955 (unpublished).

T For this case J. Bell, T. H. R. Skyrme, and E. J. Squires have
suggested an alternative, simple proof. The choice of Hermitian
conjugation properties for the tensor operators means that F is
Hermitian. Thus we have

A= (FH 1P, F]) = (FLLD,F D = ([F 1P F)

=5[F,LD,F]1])=0.
For F a function of coordinates only the double commutator is
clearly zero.
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This concludes the demonstration that there are no
additional contributions to the magnetic moment of a
“closed shell plus one” nucleus from correlations so
long as these are state-independent correlations, scalar
in spin and orbital parts separately. It is interesting to
note that since the proton (and clearly neutron) spin
and orbital angular momenta are separately unaffected
by the correlations, so the total spin and total orbital
angular momentum must be unaffected. This is a result
of interest in deuteron stripping where the orbital
angular momentum of a state is “measured.” Similarly,
inasmuch as the nucleon operators in 3 decay are the
same as those in the magnetic moments, the above
proof applies to 3-decay calculations.

The techniques used with correlations that are
separately scalar in spin and in orbital parts can be
extended to investigations in which this is no longer the
case. We consider then an arbitrary scalar correlation
function, F, which we expand in tensor operators By ,
for the orbital part and Sy, _, for the spin part. That is
we consider F to have the form

Fzzk,u(_l)“Bk,uS)\,—w (11)

We shall assume here and in all further expansions that
all the parts commute. If we wish to consider A;, then
we need further to expand B,,, into a proton part, p,
and a neutron part, #. This can be done by using a
Clebsch-Gordan coefficient!s:

By, 5=k &, mPk, w0k, (kR M — | KAL),

Then, if x is the total spin wave function of the system,
we can write

@|FI D Fe)= 2 2 (Q|nmem e um| Q)

AN pm kk/ kR’
X | SruSN i | X NQP | PrmPirm | Qe Y (— 1)E+42
X (BB | RE mp—m) B R mp—m | BB A),  (12)

where we have made use of the Hermitian conjugation
properties of the tensor operators and where we have
used the fact that since we are taking diagonal matrix
elements, the total z component of the operators must
be zero. If we assume the odd particle is a proton, then
the neutron wave function is an S state and so we must
put £””’=Fk" and form a scalar of the # operators. Let
us call this scalar No(k”'). The matrix element of
No(k") is independent of the z components so it can be
taken out of the z-component sum. The product of spin
operator tensors can be coupled to form a sum
over single tensor operators using a Clebsch-Gordan
coefhcient :

SMS)\'-,J:ZLO\}\IM——}LI)\)\LO)SL()O\’),
with the restriction that L must be even if A=\’. This
16 The Clebsch-Gordan, or vector addition, coefficients are
taken to agree in phase and normalization with those of E. U.

Condon and G. H. Shortley, Theory of Aiomic Specira (Cambridge
University Press, Cambridge, 1935).
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restriction arises because if A=\’ we can interchange the
operators on the left without changing their matrix
elements, whereas on the right this interchange multi-
plies the expression by (—1)Z by virtue of the conjuga-
tion properties of the Clebsch-Gordan coefficients.
Similarly, we can couple the product of the proton
operators: ‘

Dimprm= 22 (kR —mm|kE'k0) @ (kE'),

with again the restriction that if k=F#’, then x must be
even. Substituting these back into (12) we can do the
sum over p immediately. The sum over m can also be
done if we notice that

m=[x(x+1) {w1m0| x1lxm)
for nonzero x. One finds finally for Eq. (12)

%{ kk’Zk"L @ | No(R")|Qn)
X8O [x)(@r| @ (kE)|Qp)

XW (Lkxk; F' V)W (ENE'N 5 B/ L)(L100| L1£0), (13)
where factors of 2\+-1, phase factors, etc., have been
absorbed into the definition of the matrix elements
and where W (abcd; ef) is the usual Racah coefficient.

We wish now to investigate the conditions under
which (13) will vanish. Before doing this we note one
further restriction that can be imposed on the quan-
tities. For a closed shell plus one, the total spin eigen-
function, x, will correspond to a state of spin %. Since
the matrix element must be a scalar, the fact that x
corresponds to spin % restricts L to have the values one
or zero. The Clebsch-Gordan coefficient in (13) re-
quires that if L=0, xk=1. But if L=0 the triangle con-
dition imposed by the Racah coefficient on the triad
(kk'L) will require that k=Fk'. This means that x must
be even, which conflicts with the condition that k=1,
so the contribution from L=0 must vanish. Of course
the proof for scalar spin and scalar orbital correlations
is a special case of this. The remaining possibility is
L=1, with the restriction that A\\’. The triad (AN'L),
which for this case is (A\'1), must satisfy the triangle
conditions. If we assume that the nonscalar part of the
spin correlations are entirely two-body correlations,
then the highest-rank tensor we can form from two spin
vectors is 2, and thus A\, N'=0,1,2. If we exclude
A, AM'=1, then we cannot satisfy the triad (A\N'1) and
A=\ with A\, M'=0, 2, and hence we must get zero for
A;. It is clear that the particularization to the case of
odd proton can easily be reversed, and A; will still
vanish if the odd particle is a neutron. Thus, even if
the two-body correlations contain a tensor part of the
same type as the ordinary nuclear tensor interaction
(that is of rank 2), there will be no additional contribu-
tion to the z component of the orbital angular momen-
tum of the protons.

By a similar procedure one can examine the effect of
correlations with nonscalar orbital parts on the z
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component of the total orbital angular momentum of
the system. In this case we find that for a closed shell
plus one particle, the correlations do not change the
shell-model value so long as the correlations are only
scalar and tensor of rank two in the orbital part, and
there is no need to make the additional stipulation that
the total spin of the system is .

' Analogous procedures can be used to investigate the
spin angular momentum. We find that the z component
of the total spin angular momentum of the system is
unchanged by correlations if the expansion (11) only
involves A=0, 2. The proton and neutron z components
of spin angular momentum are separately unaffected if
the condition of A=0, 2 is combined with the restriction
of total spin of the system of 3.

Thus we see that the magnetic moment of a ‘“closed
shell plus one” nucleus is unaffected by correlations so
long as the correlations when expanded into orbital
and spin tensor operators only contain scalar and tensor
of rank two parts. This restriction is not very serious.
We have seen in Sec. II that the most important corre-
lations are scalar in the orbital part and spin-independ-
ent. The introduction of a scalar spin dependence has
no effect on the magnetic moment. The higher order
parts if present will come in from the attractive part
of the interaction, and hence will be much weaker than
the correlations from the repulsive core and the Pauli
principle. For these weak correlations, it is certainly a
good approximation to consider only the two-body
correlations, and for these only A=0, 1, and 2 can exist.
A=0 gives nothing new. A=2 comes from the ordinary
tensor force. A=1 would arise from some vector part of
the two-body interaction like the spin-orbit force.
Velocity-dependent forces like the spin-orbit force no
doubt are present in the two-body interaction, but
their effect on the correlations is probably quite small.
In addition to making A;#0, the spin-orbit forces
would modify the magnetic moment operator, through
their velocity dependence. We do not consider any of
these effects here.

IV. STATE-DEPENDENT CORRELATIONS

We saw in Sec. II that one can reduce the correlation
function to a form dependent only on the relative
energy of the correlated pair, which form is a good
approximation to the actual correlation function. In
Sec. ITII we saw that such correlations do not affect
the expectation value of the magnetic moment. We now
consider corrections to this due to the state-dependent
correlations, but since these are quite small and since
the bulk of the correlation structure gives no effect,
we can simplify considerably the correlation structure
in studying these corrections.

To take into account the state dependence of the
correlations introduced through the attraction and
through higher order terms in the relative momentum
from the term in sinkr./sinkr, one must have an ex-
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plicit form for the correlation function. This can be
obtained by following Brueckner and Gammel.? If one
approximates the effect of the Pauli principle in allowing
only transitions to states above the Fermi surface by
adding some mean excitation energy to the energy
denominators in the Green’s function, then one finds

G(ry)=—

8wArr’

X[exp(—A|r—7'[)—exp(=A|r+7'])], (14)
where M is the nucleon mass, and A is a parameter de-
pending on the Fermi momentum and on the relative
energy of the particles. In the finite nucleus it is A, the
range of the Green’s function, that we take to be a
constant for a given orbit. Upon using this form for
the Green’s function, B in Eq. (5) becomes

Ye
B=1——exp[—A(r—r,)], r>7,
r (15)

B=0, r<re.

A plot of this function is shown in Fig. 1, where it is
compared with a Gaussian correlation function of the
form [1—exp(—v7%)] for all . The parameter v is a
function of A and 7, and is chosen to give the best
correspondence to the form of Eq. (15). This Gaussian
function retains the major features of Eq. (15) and is
in an easily managed form.

We first consider the effect on the correlation func-
tion of the higher order terms coming from the expan-
sion of the sine term in Eq. (4). We need only go to the
next higher term in k7 since sinkr. is always well
approximated by k7., and the short range of the Green’s
function suppresses the higher order contributions to
sinkr. Furthermore, as we shall see, all the state-
dependent corrections make very small contributions
to the magnetic moment and thus we need not estimate
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F1c. 1. The Yukawa form for the correlation function, ¥ =1
— (r/rc) exp[—A(r—7.)] for »>r. and Y'=0 for »<r., compared
with the Gaussian form, G=1—exp(—v7?) for all 7, with the
parameters A=0.87X10% cm™, y=1.25X10% cm™2, and 7.=0.4
X107 cm.
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them with great accuracy. Expanding then, we find

(rk)* 2[(r- k)*Iu
= =14 =1+ .
7. sinkr . (rk)? 3! 3!

3!

7 sinkr, 1

(16)

where the factor of 2 comes from taking the average
of the cosine squared that enters when (rk)? is replaced
by (r-k)?=[rk cos(r,k) 2. Equation (16) may be
written

‘(r. k)3

il"k+b

2[ SR

3 21

5 4; 7)

as long as we consider terms linear in these corrections,
since then the odd terms in r-k will be averaged out
and the even term will have its cosine appropriately
averaged when expectation values are taken. To third
order in r-k, Eq. (17) becomes

14+3—% exp(—ir- k)= (5/3) =3 Pu,

where use has been made of the fact that » and & both
represent relative coordinates to replace exp(—ir-k)
by Pu, the Majorana or space-exchange operator.l7:18
For k a ¢ number, as it is above, this replacement only
holds for plane wave states, but if k is an operator the
replacement is an operator identity. Since it is in the
spirit of our approximation to assume that the form of
the correlations for infinite nuclei can be taken over to
the finite case, we shall assume that the correlations can
be written in the finite nucleus with the space-exchange
operator expressing the momentum dependence arising
from this term. Since the corrections arising in the
magnetic moment from this part of the correlation will
turn out to be very small, we believe that no serious
error is made by this approximation. Putting the space
exchange form for the momentum dependence into the
correlation function, and using the Gaussian correlation
form for all » discussed above, one gets

B=1—(5/3) exp(—vr*)+-3Py exp(—vr). (18)

In the limit of very short range for the Gaussian, for
which limit P, approaches one, this goes over into the
exchange-independent correlation function we had
previously. It should be noted that in using Eq. (18)
care must be taken to consider only terms linear in Py,
since those quadratic in the P, part are excluded by
the nature of the approximation and are actually of a
very much higher order.

Since the attraction has little effect on the correla-
tion structure, it may be introduced in lowest order as
a correlation proportional to the interaction itself,
multiplied by the Green’s function propagator. The
Green’s function factor is important in reducing the
range of the correlation effect due to the attraction.

17 J. A. Wheeler, Phys. Rev. 50, 643 (1936).
18 R. G. Sachs, Phys. Rev. 74, 433 (1948).
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The nonexchange part of the attraction, if introduced in
this way, is state-independent and hence yields no cor-
rections to the magnetic moment. We saw in Sec. III
that this is true for the spin exchange as well since it
can be written in terms of ¢;-¢2. Thus we need only
consider the space-exchange part of the attraction.

If the space-exchange part of the attractive potential
has strength U and radial dependence f(r)Pu, then
the correlation function may be modified to take this
into account by multiplying the Green’s function term
in B by the factor [a+8f(r)Pa ], where @ and b are
constants chosen to give the desired magnitude of
correction as well as maintain the vanishing of B at
the core. If we make the simplification of taking a
Gaussian form for the interaction, f(r)=exp(—nr?),
so that f(0)=1, then using Eq. (18) we can write the
correlation function as

B=1—(1-B)[(5/3) exp(—~7*)—3Pu exp(—yr*)]
—Bf(r) P exp(—7r?),

where we have neglected the relative momentum de-
pendence expressed in Eq. (18) in the term involving
the attractive interaction. The effect of the attraction
on the correlation is measured by 8. We estimate 8 by
putting Py =1, plotting Eq. (19), and requiring that
the attraction have the same relative effect on the
correlations as is found by Brueckner and Gammel.?
This gives 3=0.6 with the Gaussian form for f(r). This
relatively large value of 8 may seem to belie the claim
that the attraction has a small effect on the correlations,
but actually it is 8 times the variation in f(r) over the
range of the Green’s function that represents the effect
on the correlations, and since the attraction in its
Gaussian form is very slowly varying over the short
range of the Green’s function, this product is in fact
small. We can collect Eq. (19) into the form

B=C+DPy, (20)

where C=1—(5/3)(1—p) exp(—v7?) and D=[%(1—0)
—Bf(r)] exp(—v7%).

The effect of these various state dependences on the
magnetic moment will be entirely on the orbital part,
and therefore we need only consider A;. The contribu-
tions to A; from such state-dependent correlations must,
from symmetry considerations, involve the odd particle.
The leading term will involve the correlation of the odd
particle with one core particle at a time. The next
term will involve three-particle correlations, etc. This
is essentially an expansion in powers of the ratio of the
correlation length to the interparticle spacing. For
nuclear saturation densities this parameter is about 3.
Thus we can determine the order of magnitude of the
corrections to the magnetic moment if we keep only
the two-body correlations. This is adequate since we
shall see that the corrections are quite small. In this
approximation, then, we replace the product of correla-
tion functions appearing in F by a sum over functions

(19)
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of the form in Eq. (20). The normalization change
introduced by such an approximation to F is of the
order of the ratio of correlation volume to total volume
per particle. This is (1/2)?, and therefore negligible for
order-of-magnitude estimates. Thus, in this approxima-
tion to F we take (®|FiF|®)=(®|®)=1.

Since we are considering a two-body interaction with
a space-exchange part, there will arise space-exchange
currents from the term Uf(r)Py in the Hamiltonian,
and these will modify the magnetic moment operator.'®
Upon taking these into account, the orbital part of the
magnetic moment becomes

My(®|F1l,'PF|®)4U(®| FtoF |®), (21)
where My is the nuclear magneton. o= (ir/kc) >k
X (ej—er) (rxX 1) f(r;r) Par(jk) is the exchange moment
operator arising from the exchange potential in the
Hamiltonian. As we discussed at the beginning of Sec.
III, there are no exchange operators from the exchange
dependence of F.

The shell-model part of the orbital magnetic moment
can be removed from (21) by taking the commutator
of I,'”) with F in the first term. The term in U gives
corrections only. In considering F to be a sum of terms
of the form (20), we go only to first order in D since the
matrix elements depend on a high power of the range
of the correlations and D? has a much shorter range than
D. To first order in D, and considering only two-body
matrix elements so that all the operators in the matrix
element refer to the same pair of nucleons, one finds

Ay=2M n(®| DPy[1,P,C|®)+ U(®|CoC|®)

=Au+UAw. (22)

Use has been made of the results of the previous section
to set the expectation value of C[,®),C7]=0. The terms
involving D and g go out since Py anticommutes with
r;Xr; and Py2=1.

From symmetry considerations it is clear that one
of the pair of nucleons referred to by the operators in
(22) must be the odd particle. Since g depends on the
difference in charge between the particles, it will vanish
if the core particle and the odd particle have the same
charge. In other words, there is no net current set up
by the exchange of two protons or two neutrons. Simi-
larly, if both particles of the pair have the same charge,
the commutator in the first term will vanish since C is
a scalar. This also means that no net current will be
set up by correlations between particles of the same
charge. Thus in the two-body matrix elements occurring
in (22) there will be no exchange terms from anti-
symmetry.

Since the matrix elements are diagonal, only the
z component of g will contribute, and one can make use
of the relation

(r1>< rg)z=%ril71[ |72|
XV ,-1(1)Y1,1(2) =Y 1,1 (1) V1,-1(2)).
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The phases and normalizations of the spherical har-
monics, Vi ., are taken to agree with those of Condon
and Shortley.!® The matrix elements for a ‘“closed shell
plus one” state may now be evaluated by converting
the sum over coordinates into a sum over particle states
in the core, and by using the addition theorem to ex-
pand the dependence on 7, in terms of 7; and 7;. One
finds

:Eelo
A= (®|C%,|®)= 2 Fr(llly; C*f) (2k+1)

2he(2l4-1) 1k

X ({lo— 1400 | ly— 1410Y2— (lo+ 1200 | Jo+1E0)),  (23)

where /o is the orbital angular momentum of the odd
particle, and the sum over / goes over the filled orbits
in the core for protons if the odd particle is a neutron
and over neutrons if the odd particle is a proton. The
upper sign is for odd neutron and the lower for odd
proton. As before we consider the odd-particle state
with j=li+% and m;=j. The radial integral in (23) is
defined as

Fy (db(,’d; E)

= fw f""Ra(I)Rb(Z)Rc(I)Rd(Z)Ek(1,2)“3,23(1,1‘{’2’
0 0

where
E(r12)=Z Ek(”lﬂ’z)Yk,u(l)yk.n*(z),
k.p

and where R, is the single-particle radial function in
the state a.

The commutator of 7,¥) with C is easily evaluated
for the Gaussian form of correlations since in general

[7.P, exp(—dr12?) ]= — 8 exp(—or12)[1L, P 112];
but since
ri2=ri2+r2—2r7s costis

87!'7’17’2
S

Z Yl,m(l)yl,m*(z))
we get
[P 712 = — (8/3)wr1re XV 1 (1) V1 % (2)

if particle one is a proton and two a neutron. Evaluating
as before, one finds
10 p 1 \ lo’Y
-8
3 (2et)

X2~ Fi(llolod; D exp(—v72))(2k+1)
Lk

Auz_L

X (Lo 1400 | L+ 110Y2— (lo— 1200 | ly— 1EI0Y?),

where the upper sign is for odd neutron and the lower
for odd proton.

These corrections are most easily evaluated in light
nuclei where the number of orbits is small and where
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harmonic oscillator radial functions can be used. The
best candidate is O, with one neutron in a dj state
outside the extremely stable O'® doubly closed LS shell,
and with a magnetic moment deviating by only 0.0193
nuclear magneton from the single-particle value.*
Furthermore, if we take f(r) to have a Gaussian form,
f(r)=exp(—nr?), then the interaction functions all
become simple sums of Gaussians and these with har-
monic oscillator radial functions reduce the radial
integrals to known forms.!*%

In evaluating the matrix elements for OY, we shall
neglect the dependence of the Green’s function, and
therefore of the correlation length, on the energy dif-
ference and use the length for the p shell in the s shell.
This is not serious since the population factors greatly
favor the p-shell contribution, and further since the
corrections increase with increasing correlation length,
this approximation only serves to overestimate what
seems to be a small effect. Taking harmonic oscillator
radial functions with a characteristic length &, one
finds for OV

Ap=— (40/3)’)’(1“‘5)

XU[3(1—B)A (2vb) —BA((2v+n)b*) IM v,

2mweb?
A=

10
[A (nbz)—?(l—ﬂ)fl((n-l-v)bz)],

c
where
9+ (3/a)+a?

A(eg)=——.
a5/2(2+a—-2)9/2

We have neglected the term in exp(—2y7?) coming

from C2

The harmonic-oscillator length parameter & can be
obtained from a knowledge of the nuclear radius in
oxygen, and one finds 5=1.6)X10" cm.!® The range of
the Green’s function, \ [see Eq. (14)7], for particles at
the bottom of the Fermi sea is given by Brueckner and
Gammel? in the approximation of no attraction as
N=Fk;(2/5)%, where k; is the wave number of the Fermi
momentum. The range of the Green’s function is not
expected to increase very rapidly as one moves up in
the Fermi sea until one is very close to the top. Thus for
the correlations between the odd particle and the p shell
we take A=0.5k;. At saturation density, k;7.=0.7, and
with a core radius 7,=0.4X 107 cm, this gives A=0.87
X108 cm™!, For this value of A, the best fit as in Fig. 1
is obtained with a Gaussian correlation function with
v=1.25X10% cm™2.

The parameters for the exchange part of the attractive
potential can be obtained from the potential of Gammel
and Thaler.® They find a triplet force that is almost
pure Serber mixture, that is, zero in odd states. Neglect-
ing the different dependence of the singlet force be-

19W, J. Swiatecki, Proc. Roy. Soc. (London) A205, 238 (1951).
20 R, D. Amado, Phys. Rev. 108, 1462 (1957).
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cause of its small weight and because as we saw in
Sec. ITI, terms in the interaction of the form ¢;-03 do
not affect the moment, we can write the central inter-
action for all states as

438
2.09r

— (14Px) exp(—2.097) Mev,

with 7 in units of 10~ c¢m, and with a radius for the
repulsive core of 0.4X 107 cm. To cast this in the form
of a Gaussian interaction we notice that since a turns
out to be 2 or greater, the leading dependence of 4 (a)
on the range of the force comes from the term in ¢~%, and
this corresponds to a dependence on the fifth power of
the range. We thus require that the integral /' V (r)r'dr
be the same for the Gaussian and the Yukawa poten-
tials. Because of the form of the correlations we carry
the Gaussian integrals from 0 to «, but for the Yukawa
potential we take the integrals from 7, to «. In actual
fact this makes little difference since the 7! weighting
makes the major part of the integral come from the
region in which B is essentially one. In order to get U
and 75 separately, we require that the two potentials
have the same effect in WKB approximation for zero
binding energy. This requires the [V (r)]idr be the

. same for both potentials. These two conditions give a

Gaussian with U= —64 Mev and n=0.84X10% cm™2
The effect of the attractive interaction on the correla-
tions is represented by taking 8=0.6.

Putting these parameters into the equations we find
Ap=0.002My and A;r=0.00285M y Mev~, and thus
A;=—0.18M y. This relatively large effect is entirely
due to Ay since Ay is negligible compared with A;p.
Ay represents the change in the expectation value of
the ordinary magnetic moment operator due to state-
dependent correlations. It is extremely small because
it contains D and therefore exp(—2v7?) in every term.
Thus since the effect of the attraction in the correlations
appears multiplied by the Green’s function, all the con-
tribution to A;; comes from within the correlation vol-
ume, and this is very small. A,y is much larger than
this, but by far the largest part of it comes from the
effect of the attraction in the Hamiltonian in the region
of no correlation. That is, because of the r* weighting
most of the contribution comes from the region in which
B is unity. Thus the result for A,y is almost exactly
what one would have obtained from an ordinary shell-
model calculation for the exchange magnetic moment
in an uncorrelated-shell-model state. In view of the
small deviation of the O magnetic moment from the
single-particle value, the exchange moment is too large.
However, it is well known that there are a number of
other exchange effects, etc.,! that are expected to give
corrections of a similar order of magnitude. The calcula-
tions presented here are not an attempt seriously to
evaluate any of these corrections but rather to show
that the correlations in the wave functions introduce
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essentially nothing that is not already present in a full
shell-model calculation.f

V. CONCLUSION

The singular nature of the two-nucleon interaction
assures us that the actual nuclear state is highly cor-
related, but the success of the shell model leads us to the
conclusion that these correlations are unimportant for
finding the expectation value of a large class of opera-
tors. The paradigm of this success is the magnetic
moment of nuclei with one particle outside an LS
doubly closed shell. The correlation structure of nuclei
consists in the vanishing of the wave function if two
particles come within the radius of the repulsive core
followed by a rapid “healing” of the wave function to
an uncorrelated state as the pair separates. Since the
range of the correlation is short because the exclusion
principle forbids transitions to nearby states, the addi-
tional effect of the correlations from the relatively
long-range, attractive part of the interaction is very
small. Thus the bulk of the correlation structure can be
introduced into the shell model as a product of pair
correlation functions each of which vanishes within the
core and then approaches one, with a short range de-
pendent only on the Fermi momentum and on the
relative energy of the correlated pair. In a finite nucleus
with no spin-orbit splitting, this relative energy de-
pends only on orbital quantum numbers of the corre-
lated pair and not on azimuthal quantum numbers.
Therefore correlations of this type are independent of
the state of a particle within a given orbit.

To consider the effect of such correlations on the
expectation value of the magnetic moment of a “doubly
closed shell plus one” nucleus, we notice that the mo-
ment operator is a combination of the z component of
the proton orbital angular momentum, and the z
component of spin of the protons and neutrons sepa-
rately. A “doubly closed shell plus one” nucleus with
j=I+% and m;=7, is an eigenstate of each of these
operators, and hence the contribution of the correla-
tions to the magnetic moment can be found by taking
the commutator of each of these operators with the
correlation function. For the scalar, state-independent,
correlations discussed above, the expectation value of
this commutator is shown to vanish. Since correlations
between identical particles will produce no net current,
any contribution to the magnetic moment must come
from correlations between unlike particles. The correla-
tion function is therefore conveniently expanded into
tensor operators for neutrons and protons separately
and the fact that the proton or neutron wave function

f The correction to the magnetic moment of O from the
Gammel-Thaler spin-orbit force has been calculated. The spin-
orbit part of the magnetic moment operator gives +0.15 nuclear
magneton, thus canceling most of the contribution from the space
exchange moment operator. This cancellation appears fortuitous
and would probably not occur in other nuclei of very different

structure. The presence of spin-orbit correlations gives an entirely
negligible contribution.
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is an S-state requires that the tensor operators in this
space combine to form a scalar. This requirement re-
flects back on the operators in the space of odd particle
and makes the commutator vanish. The proof can be
extended to correlations having a scalar spin depend-
ence and to certain more complicated symmetries.

The proof does not show that the shell-model wave
function is a “good” wave function if we choose to
measure this by the overlap of the shell-model state
with the actual state, since this overlap is in fact very
small. We see rather that the shell model exhibits
certain symmetry properties that are unaffected by
correlations so long as these are state independent, and
this is so independent of what particular physical model
we choose for the correlations. It is well known that the
shell model is particularly suited to the prediction of
properties associated with wave function symmetries,
and it is suggested that it is the state independence of
the correlations that accounts for this success.

There is a residual state-dependent part of the corre-
lations due to higher order terms in the relative mo-
mentum of the correlated pair and due to the space-
exchange part of the attractive potential as this appears
in the correlations. In estimating the effect of these,
we make a number of approximations since we know
that these are small refinements to a state-independent
correlation function the effect of which we know to be
zero. These additional corrections are computed for O
and are found to give a correction to the magnetic
moment of order 40.002 nuclear magneton. This very
small result arises because of the very short correlation
length.

The space part of the attraction in the Hamiltonian
will also modify the magnetic moment operator giving
the well known space exchange operator. The expecta-
tion value of this turns out to be essentially the same as
it would be in a calculation using uncorrelated shell-
model wave functions since the major part of the
expectation value comes from the long-range part of
the attraction where the correlation function has gone
to one. The numerical result is too large to account for
the small deviation of the O moment from the Schmidt
line, but this is well known from shell-model calculations
as well. No similar space-exchange operator is found
from the exchange dependence of the correlation func-
tion since the correlated wave function is an eigenfunc-
tion of the nuclear Hamiltonian and thus there are no
terms in the energy of the system coming from first
order changes in the eigenfunction. It is therefore cor-
rect to take the magnetic moment operator from the
actual nuclear Hamiltonian, with the real nucleon mass.
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