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Problem of Overlapping Lines in the Theory of Pressure Broadening
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The theory of pressure broadening is re-examined, in order to include the possibility of overlapping lines,
which are a regular feature of pressure broadening in an ionized gas. It is found that a simple treatment can
be given using the impact approximation. This approximation is examined in detail, and its validity condi-
tions are discussed. When it is valid, it is permissible to replace the exact time-dependent interaction between
the atom and the perturbers by a time-independent effective interaction. The latter is not Hermitian, how-
ever, and therefore every level acquires a width. The shape of a group of overlapping lines is then worked out,
and is found to consist of a sum of Lorentz line shapes, plus some interference terms. In the particular case
of an isolated line, the results given previously by Anderson are obtained. Finally, a study is made of the
simpli6cations brought about by rotational invariance.

l. INTRODUCTION

HE problem of overlapping lines arises naturally
when one tries to compute the pressure broaden-

ing in an ionized gas. The free electrons and the ions
in the gas disturb the atom that is emitting the light.
The effect of the ions can usually be taken into account
by the theory of Holtsmark, ' or static theory, or Stark
broadening theory. According to this theory, the elec-
tric field of the ions splits the line through the Stark
effect. The resulting pattern is then averaged over all
electric fields with the appropriate probability distribu-
tion. The electrons, on the other hand, move too fast
to be treated in this way. But the impact theory' is
usually valid for them. ' In order to take into account
ions and electrons simultaneously, the procedure must
be, therefore, to apply the impact theory to the elec-
trons when a certain ionic field is present, then to
average the result over ionic fields. Since the effect of
the ionic field is usually to split the line into a number
of components, we are faced with the problem of apply-
ing the impact theory to a number of very close lines,
which, when broadened by the electrons, will overlap.

Overlapping lines also arise occasionally in other
pressure broadening problems, of course, but they have
not been considered in any of the theoretical treatments.
The most complete study of the impact theory is that
of Anderson, and it is restricted to isolated lines. The
most up-to-date treatment of hydrogen line shapes in
ionized gases is that of Kolb, ' but his work had to stay
incomplete because of this difficulty. Ko}b's results are
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restricted to the wings of the lines, where the over-
lapping problem does not arise. It is obviously desirable
to extend the theory to the core of the lines, which is
the most characteristic and interesting part.

In this paper, we shall generalize the impact theory
to make it applicable to overlapping lines. Thus, this
work is an extension of the work of Anderson, 4 and we
shall obtain Anderson's results again in the particular
case of an isolated line. Like Anderson, we make the
impact approximation. This consists essentially in
assuming that the average collision is weak, although
it does not preclude the possibility of a few strong
collisions. ' But the time interval between the strong
collisions is much larger than their duration. This is the
approximation which results in an isolated line having
a Lorentz shape. It is discussed thoroughly, and the
conditions for its validity are investigated, in Secs. 3
and 4. It turns out to be very often valid for electrons
in ionized gases. We shall assume, in addition, that the
perturbers' move completely independently of each
other, without mutual interactions. In the case of an
ionized gas, we may have to correct this later to take
into account mutual screening of the perturbers beyond
the Debye radius. We shall put no restriction on the
nature of the interaction between the perturbers and
the atom. The collisions may be inelastic as well as
elastic.

The main result of this study is the following: when
the impact approximation is valid, it is possible to
replace the fluctuating, time-dependent interaction
between the atom and the perturbers by a constant
effective interaction, 3C. We might call BC the average
interaction, but it is not just equal to the time-average
of the true interaction. It is not Hermitian, and is
related to the collision matrix, as we shall see in Secs. 3
and 6. The spectrum of the light emitted is the same as

' By "weak" and "strong" collisions we mean those which
result in a small (compared to unity) and large change in the wave
function of the light-emitting atom, respectively.

7 The name "perturbers" will be used, from now on, to desig-
nate the particles that cause the line broadening. We shall always
call the particle that is emitting the light "the atom, " although
it may be an ion or a molecule.
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if the Hamiltonian of the atom were the sum of its un-
perturbed Hamiltonian and K. Since 3C is not Hermi-
tian, the eigenvalues of the Hamiltonian are complex
and an isolated line has a Lorentz shape. The shape of a
group of overlapping lines is worked out in Secs. 5 and 6.

This paper contains no applications of the theory.
Work is now in progress on the shape of hydrogen lines
in an ionized gas, and will be reported later. In another
paper, to be published soon, we shall show how the
motion of the perturbers can be treated quantum
mechanically, with little modification of the basic
results. In the present work, the perturbers are assumed
to follow classical paths.

2. THE SPECTRUM

In this section, we shall derive general formal expres-
sions for the spectral distribution of the light emitted.
We shall be very brief, since these expressions have
already been given by Anderson. 4 We neglect the natural
line width, which, in practice, is usually much smaller
than pressure broadening eBects. The perturbers are
assumed to move on given classical paths, and their
motion is not inQuenced by what happens to the atom.
Thus, their contribution to the Hamiltonian of the
atom is a given time-dependent function. This neglect
of the reaction of the atom upon the perturbers is the
source of some theoretical difhculties (see later in this
section), but seems justified in practice. The paths of
the perturbers are usually taken to be straight lines,
for convenience, but this is not necessary.

The firs't step must be to write down a formula giving
the intensity of the light emitted or absorbed by a
quantum-mechanical system with an arbitrary time-
dependent Hamiltonian. Such a formula is a straight-
forward consequence of the principles of quantum
electrodynamics and has already appeared in the
literature many times. ' If we call F(oo)d&o the power
emitted or absorbed in frequency interval den about or,
we have

F(to) = (4~a 4rt~/3c') F(co),

T 2

F(~)=(2~2') ' «e'"(ltt(t) ldlk'(t)) (2)
p

In this equation, P;(t) is the initial state and Pt(t) the
final state of the system, in the Schrodinger picture.
Positive co s correspond to emission, negative co's to
absorption. The same two initial and final states may
give rise to both emission and absorption, a phenomenon
which is usually important only for very low frequen-
cies. c is the speed of light. e+ is the number of photons
per quantum state after the emission or before the
absorption, i,e., for whichever state of the radiation
field has the larger number of photons. n+ is unity for

spontaneous emission. For absorption or induced emis-
sion, m+ is connected to the intensity of the light beam
in the well-known manner. ' d is the vector electric
dipole moment of the system, in the Schrodinger pic-
ture, i.e., time-independent. We are considering only
electric dipole radiation. The absolute square in (2) also
involves a summation over the three components of d.
Equation (1) has already been summed over all angles
and polarizations of the light. Finally, T is a very large
time, which in the limit should be taken infinite. In the
following, F(~o) will be called "the spectrum, " or, in
case of an individual line, "the line shape. " This is
slightly incorrect, but convenient. The true line shape
contains in addition the factor (4oo4n~/3c').

The observed spectrum is obtained by summing (2)
over all final states, averaging over all initial states,
and averaging over all possible types of motion of the
perturbers. We denote this latter average by the sub-
script Av. We denote by p; the probability of a given
initial state (the density matrix). Thus, the complete
spectrum can be written

with

T
p

T

F(to) = (2x T)—'
~

dt dt'e'"&' 'lC (t,t'), (3)
Jo

c'(t t') =g t t~'[8"(t') I dllt't(t')) 6t t(t) I dllt" (t)HA' (4)

with

C'(s) =P,;t,LQ, (0) I dIA(0)). Qv(s) I dl4, (s))7„„. (6)

The quantity C (s) is what Anderson' calls the "correla-
tion function. " It is also the Fourier transform of the
spectrum. It always turns out to be easier to compute
the Fourier transform of the spectrum than the spec-

It is not essential to sum over aQ initial and final states.
If a line is isolated, one obtains the shape of this line
alone by omitting the summation in (4), and picking
the appropriate initial and final states. But if several
lines overlap, we mist sum at least over all initial and
final states that contribute to the overlapping lines.

The next step consists in saying that C (t,t') depends
only on the time difference t—t . This is evident since,
after the average over all types of perturber motion has
been performed, there is nothing to distinguish one time
from another in the behavior of the system. Hence we
can choose t and t—t'=s as new integration variables.
The integral over t is trivial, and just cancels the factor
T ' in front. The integral over s can be extended from
—~ to +~, since it turns out to converge at both
ends. In (4), t' can be set equal to 0 and t to s. There-
fore, we get

~+00

F(oo) = (2s.)-' e'"e(s)ds,

P. W. Anderson, reference 2; S. Bloom and H. Margenau,
Phys. Rev. 90, 791 {1953).

e W. Heitler, The Qnantnm Theory of Radiation (Oxford Uni-
versity Press, New York, 1944), second edition, Sec. 11.
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trum itself. To make F(~) real, we must have termined classical paths. Again, the trouble does not
arise when the impact approximation is valid.

where the asterisk means complex conjugate. This is
easily seen to follow from (4). Therefore we shall always
be content to calculate C (s) for positive s, and for nega-
tive s we shall use (7). Alternatively, one can write

F((o)= pr '6t e'"'C (s)ds,
Jp

where (R means the real part.
We can modify (6) by introducing the Schrodinger

evolution operator, T(s), which transforms a state at
time 0 into a state at time s,

&(s) 14'(0))= 14'(s) )

and which is unitary. Using it and using the density
matrix p, we can formally perform the summation in (6)
and obtain C (s) in the form of a trace,

C (s) =Tr[dT*(s) dT(s)p)A„. (10)

The asterisk on an operator will always mean Hermitian
conjugate.

We end this section by mentioning some difficulties
which result from our neglect of the reaction of the
atom upon the perturbers. When we said that (4)
depended only on t—3', we implicitly assumed that the
density matrix p was the same at all times. In a system
in thermal equilibrium, it would be a Boltzmann dis-
tribution. This will not happen, however, unless we
take into account the change of energy of a perturber
in an inelastic collision with the atom. If we neglect this
change, the atomic density matrix cannot stay con-
stant, and in fact the atom will eventually reach infinite
temperature, with all states equally likely. This is
absurd, and therefore we must hope, or verify, that
the times s that are important in (5) are not so large
that the density matrix has time to change appreciably
from the initial Boltzmann distribution. To state the
criterion in another way, p must be practically time-
independent, hence it must commute with the evolution
operator T(s). Then, there should be no difference
between C (s) as written in (10) and the following:

idT/ds = [Hp+ Vr(s)) T(s). (14)

One can also define an interaction representation evolu-
tion operator, U(s), by the equation

T(s) = e
—'Kp'U(s). (15)

3. THE IMPACT APPROXIMATION

In this and the next two sections, we shall consider
the case where we can neglect the interaction of the
perturbers with the lower state of the atom. We call
it the one-state case. This case is easier of physical
interpretation than the general case or two-state case.
Besides, it arises often in practice, since the atom is
more tightly bound and less polarizable in its lower
state. We shall consider the case of emission, i.e., the
lower state is the final state.

The problem is to compute C (s), given by (6) or (10).
We shall introduce the final state explicitly, since we
do not need to sum over all final states. On the other
hand, since we are interested in overlapping lines, we
must sum over initial states. Thus, we start from"

Cp(s) =Tr P~ [dI&f )e'K&'Qt
I
dT(s)p)ap. (11)

We have introduced a degeneracy index, n, for the
final state, on which we must sum if the final state is
degenerate. Ef, the energy of the final state, will be
taken as the origin of energies. Thus, we replace e'~f' by
unity. We define a Hermitian operator D by

(12)

If j, m, and parity are good quantum numbers for the
final state, D is a spherically symmetric operator, i.e.,
it can have matrix elements only between two states
with the same j, nz, and parity. With these conventions,
C(s) becomes

C (s) =Tr[DTA, (s)p). (13)

The problem, now, is to evaluate the average of T(s).
T(s) is the evolution. operator for the total Hamil-

tonian, which is the sum of Ho, the unperturbed atomic
Hamiltonian, and Vr(t), the total interaction. It obeys
the Schrodinger equation

C (s) =Tr[dT*(s) dpT(s))A„ (10a) Then, it is well known that U(s) can be written

We shall see that this is actually true with the impact
approximation. The same difFiculty arises in another
manner when one tries to verify that the "principle of
detailed balancing" is satisfied. This principle states
that, when our system is in thermal equilibrium with
radiation, the number of photons of a particular fre-
quency emitted per unit time equals the number
absorbed. Bloom and Margenau" have pointed out that
this may not be true with the assumption of prede-

"S.Bloom and H. Margenau, reference 8.

with

U(s) =2 exp i
J

Vp—(t)dt,

V' I
(t) —eiKptV (t)~

—iKpt

(16)

(17)

"%e assume that the units are such that @=i, and hence we
make no distinction between an energy and an angular frequency.

In the above, is the time-ordering operator, which
makes operators act in the order prescribed by the time
in their argument, with time increasing from right to
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left. Equation (16) can be proved by checking that
T(s), given by (15), actually obeys the differential
equation (14).

The interaction Vr'(t) is a sum of interactions,
Vi'(t), Vs'(t), . Var'(t) due to the various perturbers.
Thus we may write

U(s) =g exp i— V,'(t)dt

and

Xexp i — V~'(t)dt, (18)
0

UA„(s) =g exp~ —i V'(t)dt
~

0 3-AY
(19)

E being the total number of perturbers in the con-
tainer. We have expressed UA, (s) in the form of the
Sth power of an expression relating to a single per-
turber. It then bears a striking resemblance to the
result of the simpler theory which uses the adiabatic
approximation. This result is"

~s
C(s)= exp~ —i V(t)dt

~

"0 ) AY

(20)

However (19) is enormously more complex than (20),
6rst because the expression whose Eth power we are
taking is an operator, second because the operation Z
produces a hopeless entanglement" of the operators,
out of which it would be very dificult to extricate any
simple result in the general case.

At this point, we make the impact assumption. It
says that two strong collisions never occur simultane-
ously. Then, the operators in (19) are "naturally dis-

entangled, " i.e., the collisions take place one after the
other and the order in which the operators are written
in (18) is also the order required by time-ordering.
Really, it is only the strong collisions that are separated
from each other. There may be several weak collisions
going on at the same time, or together with one strong
collision. But those can be treated by perturbation
theory, because they are weak, hence they never get
entangled with each other, because it is only in the
higher orders that entanglement starts to appear.
A discussion of this point, and some validity conditions,
will be given in the next section.

Assuming no entanglement, then, we can compute
UA„(s) by computing 6rst an expression relating to a
single perturber,

~iH0tSg —iKP t (22)

where S is the collision matrix, or S-matrix, for a colli-
sion occurring at time 0. S is a unitary matrix given by

S=Xexp —i
J

V'(t)dt,

for a collision whose time of closest approach is 0. It
is clear that, if a collision does not occur at time 0, its
result is (22) and not S itself, since the atomic state at
time t is really e '~" times what it was at time 0.
Finally, the deviation from unity in (21) due to a
collision of a given type occurring in time interval Ct at
time t is

N dvdt(e'+"Se '+« —1). (24)

We obtain (21) by considering all types of collision and
all times between 0 and s. Therefore (21) is equal to

S

1++ ~
JI dteY~«(S —1)dv e

—'«Y.
0

(25)

This may be written

then raising it to the Xth power, while keeping the
collisions in chronological order. Let us try now to
calculate (21), by averaging over all possible states of
motion of the perturber. From the validity conditions
which will be given in the next section, one can conclude
that the important values for s are much larger than a
typical collision time. This is because the average
collision is weak, hence it takes many collisions to
produce a UA„(s) appreciably different from unity.
In the overwhelming majority of situations, the bracket
in (21) equals unity, because the perturber does not
make any collision in the time interval 0 to s. Once
in a great while, a collision occurs in this time interval.
The probability of this happening is of order E '.
The probability of two collisions occurring is of order
E ', and can be neglected. We consider all possible

types of collision, i.e., all possible values for the impact
parameter, energy of the perturber, angles, etc. We
call dv the frequency of a particular type of collision
when all the perturbers are present. Then, the fre-

quency with a single perturber is E 'dv, and the prob-
ability of such a collision occurring in time dt is E 'dvdt.

We talk about the collision as if it occurred instan-
taneously, since s is much larger than the collision time.
If a collision occurs at time t between 0 and s, the
bracket of (21), instead of being unity, equals

(
Zexp) i

~

V'(t)dt ~—
"0 ) AY

(21)

' P. W. Anderson, Phys. Rev. S6, 809 (1952).
Ys R. P. Feynman, Phys. Rev. 84, 108 (1951).

with

1—iX ' K'(t)dt,
Jo

K'(t) = e'~«BCe '~o'

(26)

(27)
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and

X=—i (1—S)di. (28)

4. VALIDITY CONDITIONS

Starting from (16), we can write

~8+68

To obtain UA, (s) we raise (26) to the /th power, with
the proper time-ordering, thus:

Us„(s+As) = Z exp i—V&'(f)df

p8

U„(s)=2 exp i— Se'(f)dh . (29)
XZ exp i—) V s'(t)dt . (31)

0 Av

Then, T&„(s) is obtained by (15):

TA (s) = e '~0'2 exp i — X'(t)dt
0

= exp L
—i(Hs+X) sg. (3o)

The impact approximation is valid if it is possible to
find hs such that (1) hs is so large that the first factor
on the right-hand side of (31) is statistically inde-
pendent of the second factor, and the two may be aver-
aged separately; and (2) As is so small that the average
of the first factor is very close to unity, and may be
written

This last equation can be proved by showing the
identity of the derivatives with respect to s."'

We have thus shown that, when the impact approxi-
mation is valid, it is permissible to replace the true
time-dependent interaction V r (t) by a time-independent
quantity, X, given by (28). Since X is not Hermitian,
the energy levels have an imaginary part, i.e., a width.
To compute X, we must know the collision matrix S.
The calculation of S is a standard problem in time-
dependent quantum mechanics. It may be a very
dificult one. Fortunately, BC is not very sensitive to
the details of S, since it involves a sum over all types
of collision, and we can hope that a rather crude
approximation to S will yield a rather good X. We refer
the reader to Anderson's paper' for approximate meth-
ods of calculation of S. As a first approximation, we
can divide all collisions into two categories, weak ones
and strong ones. For the weak ones, we compute S by
time-dependent perturbation theory. For the strong
ones, we say that the radiation is completely inter-
rupted, i.e., we replace S by zero. Further refining may
be necessary to properly take into account collisions
of intermediate strength. It may also turn out, es-
pecially for close collisions, that it is necessary to treat
the motion of the perturbers quantum mechanically
when calculating S. This can be done, in principle, and
will be the subject of a future publication. In general,
it may be objected that our approximation of pre-
determined classical paths is a very bad one to use
when calculating matrix elements of X, or S, between
two states of widely diferent energy. The answer is
that we do not need such matrix elements. The only
matrix elements we shall need are either on the energy
shell or close to it.

The determination of the line shape, using Eqs. (13)
and (30), will be given in Sec. 5. Now, we shall return
to the question of the validity of the approximation.

"'Equations (13) and (30) bear a close formal resemblance to
some results obtained in a rather different connection by P. W.
Anderson, J. Phys. Soc. Japan 9, 316 (1954}.I am indebted to
Dr. Anderson for pointing out this analogy.

&esII08~&—sH P8+S (32)

If these two conditions are satisfied, (31) may be
written

or
Us„(s+As) = (1 is'~saXe —' "As) U&„(s), (33)

dUs, (s)/ds= ie'~—"Xe '~o'UA„(s), (34)

p
8+58

g exp i—Vi'(t)dt,

p 8+58

+exp —i

including all the collisions that take place in the inter-
val. The collisions in this expression are entangled.
However, let us forget about that for a moment, and
compute (35) as if they were not entangled. Since each
collision is very weak, the contribution from each of
them is very close to 1. The first collision contributes
1+Mi, the second 1+Ms, etc. , where M, , Ms,
are very small matrices. When we multiply all these
expressions together, we get

1+(Mr+Ms+ )
+higher-order terms such as MiMs. (35a)

a differential equation whose solution is (29), and the
impact approximation is valid. In order to satisfy the
first condition, hs must be taken much larger than a
typical collision time. By this we mean the collision
time of a collision which makes an appreciable contri-
bution to the integral (28) giving X. If As is so large,
there will be many collisions in the interval As. How-
ever, because of the second condition on hs, most of
these collisions will be very weak. There can be at
most one strong collision in the interval and most of the
time there will be none.

Let us first consider the case where there is no strong
collision in the interval As. We can write the first
factor on the right-hand side of (31) as
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However, because the product (35) is required to be
very close to 1 still, the higher-order terms are negligible
compared to the first-order term, (Mi+M2+ ).
If now we try to take the entanglement into account in
the calculation of (35), we see that (35a) is still correct
except for the fact that the higher-order terms are now
diferent. But since those are negligible, the result is
the same, whether there is entanglement or not. Since
the average number of collisions of a given type in
interval hs is Asdv, this result is, after the averaging,

1+hs 3fdv=1+Ase'~" ~(S—1)dv e '~" (36)

By comparing (32) and (36), we see that K is indeed
given by (28).

We now consider the rare case where there is one
strong collision in the interval As. This collision is so
much stronger than the others that we can forget about
all the others in computing (35), at least during the
collision time of the strong collision. Thus, the question
of entanglement does not arise here and (36) still holds.

Thus, we have shown that the impact approximation
is valid, and the interaction may be replaced by a time-
independent K, whenever UA„(t) is very close to unity
for times of the order of a typical collision time v.
Another way to put it is as follows. Call T the time
that it takes for UA, (t) to become appreciably different
from unity. We require T)&7-. An order of magnitude for
T' is given by the inverse of the correction introduced
by X in the eigenvalues of the Hamiltonian, i.e., the
inverse of the level width m, or of the level shift d,
whichever is greater. Hence, we can write the following
validity conditions":

m«r ',

d((v- '
(37a)

(37b)

where e is the energy of the perturbers. If, in a certain
problem, (38) is not satisfied, while (37) is, it is an indi-

' These validity conditions are really not the most general ones.
But they are su%cient in most cases, and we did not feel justified
in going into the more general discussion necessary to treat the
subject completely. Actually, the impact approximation is valid
and the interaction can be replaced by something time-inde-
pendent whenever (37a) is true, even if (37b) is not. This may
happen, for instance, if the total interaction is due to a large
number of perturbers at all times. Then, the time-average of the
interaction constitutes the main part of the correction to H0,
and the levels are shifted much more than they are widened.
In this case (28) has to be somewhat modified unless (37b) holds.

'4' Work to be published.

Ke shall mention here, because we shall use them
later, the additional validity conditions which one
finds" when the motion of the perturbers is treated
quantum mechanically. They are

(38a)

(38b)

and e is the average perturber density. Then the validity
condition is

0'((e '

or "the radius of the cross-section disk must be much
smaller than the average nearest neighbor distance. "
Another way of saying the same thing is "the S matrix
for an average nearest neighbor collision must be very
close to unity. "The other example is the case where the
strength of the forces is approximately constant with
distance until a certain range a, after which it drops
sharply (finite-range forces). Then ii~ is of order a, and
both w and d must turn out much smaller than v/a.

S. THE LINE SHAPE IN THE ONE-STATE CASE

The Fourier transform of the line shape is given by
(13) and (30). The density matrix p should be propor-
tional to exp( —Ho/kT), where k is Boltzmann's con-
stant and T the temperature. As we pointed out at the
end of Sec. 2, we must check that this effectively
commutes with TA„(s) for the important values of s.
This is a consequence of conditions (38) which require
that the shift and width of the levels be much smaller
than the energy of the perturbers, and therefore than
kT. Then, p varies too slowly with energy to affect the
shape of the individual lines, and we can consider it as
a constant for each line or group of a few lines.

The line shape itself is obtained from (8). We may
perform the integral with TA, (s) in the operator form
(30). The imaginary parts of the eigenvalues of Ho+BC
are of the right sign to make the integral convergent
at infinity. We obtain (p is a constant)

—Z( ) = —V T [D( —II,—Se)-'j, (41)

where 8 means the imaginary part. At this point we in-
troduce the eigenstates of Ho+BC,

~ q;&, and the eigen-
values, co, iw, (w~) 0—):

(Ho+&) I v;& = (~,—~w') I ~~&. (42)

Since Ho+BC is not Hermitian, the states
~ q;& are not

mutually orthogonal. But we can de6ne another set of
states, (x, ~, such that

and therefore
(x

I ~') =~',

2'I ~'&(x'I =1

(43)

(44)

cation that the impact approximation breaks down

through quantum-mechanical eGects.
Let us end this section by giving two examples of the

validity conditions (37). First, suppose that the forces
between the atom and the perturbers vary smoothly
with distance, as forces between atoms and molecules
usually do (long-range forces). Then w and d are of the
same order of magnitude. We may estimate the collision
time by saying that vr (n is the velocity) must be of
order of magnitude 0&, where 0- is the "classical cross
section, "defined by

(39)
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Then (41) can be written

zrp 'F(oo)

= —&2 «ID( —Ho —X) 'lo &

= —a p; (rd co,+—zw;) rp; )
D [ o,)

One sees that the shape of a group of overlapping lines
is not composed solely of a sum of Lorentz line shapes,
but there are also some asymmetrical terms. For large
co, each of these terms becomes proportional to co '. In
order that the total intensity be convergent, the sum
of their coeKcients must vanish. This is indeed the case
since this sum is —8 Tra, and the trace of a Hermitian
operator is real. Hence, the asymmetrical terms are
important only in a region of overlapping lines. "

It is possible to transform (41) to a different form
which also shows the nonexistence of terms propor-
tional to ~ '. We write

zl p F (ro)

=(2z)—'Tr{D[(ro—Ho —X*) ' —(co—Ho —X) ']}
= (2i) ' Tr{D[(ro—Ho —X*) '(ro —Ho —X)

X(~—Ho —X) ' —(~—Ho —X*) '

X (ro —Ho —X*)(ro —Ho —X)—']}
=—Tr{D(ro—Ho —X*) 'X~(ro —Ho —X) '} (46)

zrp 'F(ro) —Tr[D(ro —Ho) 'X ((o—Ho) ']. (47)

Equation (47), for the case where X is computed by
perturbation theory, has been given by Kolb," in a
completely different notation. It is valid only in the
wings, while (41) and (46) are valid everywhere.
Finally, if we are much farther away from a group of
lines than the separation between the lines, we may
replace IIO by some sort of average energy, Ep, and
write

where K' is the anti-Hermitian part of K. This can also
be written in terms of components, like (45). If we are
far from any line center, we may forget about the anti-
Hermitian part of X in the two reciprocals. And, if we
are far, not only with respect to the widths, but also
with respect to the shifts, we may also forget about
the Hermitian part of 3'., thus getting

~,—zw,-=E,+(lt, )X
~
1t,), (49)

and we use the states ~f;) instead of
~
q,& and ~X,&.

We see then that the second term in (45) vanishes,
since a diagonal matrix element of D is real, and the
spectrum is (with the density matrix reinstated in the
summation)

with
(&a E, d)'+w—'—

d, =61(P,~X~&,&,

w;= —uQ;~X~&;). (51b)

Since we have used perturbation theory, (50) is valid
only when 3C is small compared to the spacing of the
levels of Hp, which restricts it to nonoverlapping lines.

Anderson's results involve only the diagonal elements
of K, or of the S matrix. We can always write

Q, ISIS,)=n,z ' ', (52)

where p; is a real phase shift and n; a real positive num-
ber not larger than unity. By (28), then, the shift
and width of line i are given by

d;= n; sony;dv, (53a)

(53b)

If all collisions are elastic, n; is unity and one obtains
a well known result of Lindholm. ' If all collisions either
are completely inelastic (n;=0), or have a very large
p, , the shift vanishes and the width equals the collision
frequency. This is the Lorentz" theory.

Even if the lines appear to be well separated, this may
be very different from what one would get by adding
together the individual Lorentz functions for the
individual lines.

We shall now show how the results of the no-overlap
theory of Anderson4 are obtained. We restrict ourselves
here to nondegenerate levels. Anderson also considered
degenerate levels in great detail. We whall investigate
them in Sec. 7. To get Anderson's results, it must be
permissible to compute the eigenvalues of Ho+X by
first-order perturbation theory. Thus, if ~f,& and E; are
the eigenstates and eigenvalues of Hp, we take

zrp-'F (&o)
—(ro —Eo)-' Tr(DX ). (4g) 0. THE TWO-STATE CASE

" The purpose of the preceding argument is to bring out the
general analytical form (45) of the line shape. However, for an
actual calculation of the line, it is usually not convenient to solve
the eigenvalue equation (42). It is easier to calculate the trace (41)
directly in the representation where Ho is diagonal. The number
of lines and columns in each matrix should be the number of
overlapping lines, hence the calculation of the reciprocal presents
no problem in simple cases. The sarge r|;mg, rk applies also to Sec. 6.

~' g.efqrcrice 5, p. 63,

Let us now return to the general case, where both the
initial and final atomic states interact appreciably with
the perturbers. Since we may have overlap effects both
in the initial and 6nal states, we must use the general
formula (10), which we rewrite here in terms of com-

"H. A. Lorentz, Proc. Roy. Acsd. Sci. (Amsterdam) 8, 591
(1906),
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ponents, using Latin letters for initial states and Greek
letters for final states,

4'(s)= 2 L&~ldl~)(~IT*(s) IP) &&ldlf')

with

X= o—
J

~ (1 S—,Sf+)d v (61)

cbcuP

X &f I
T(s) I p&(p I p I o)7A ~ (34)

We can make this two-state case very similar to the one-
state case of the last three sections by using a stratagem
which we shall call "doubling. " It consists in consider-

ing a new function space which is the direct product of
the function space of the atom by itself. In other words,
each state of the "doubled" system is associated with
two states of the atom or, more precisely, with an
initial state and the complex conjugate of a 6nal state.
We take the Hamiltonian of the doubled system to be
such that its eigenvalue, for each state, is the difference
between the two eigenvalues for the two atomic states
of which it is formed. Thus, each eigemalle of the
doubled system corresponds to a lAse of the atom, i.e.,
the diGerence between two energies. Therefore, we shall
call the doubled space "line space. "

We define three operators in line space, 0, 6, and p,
by the relations

&~l T*(s) IP)Q I
T(s) I ~) =&(+'I o(s& I

«+)»

&aldl~) &Pldlf»=((~+l~lf'P'&&, (36)

(~lpl~»-~=(&~v+lpl~'&) (57)

In these definitions, In+), IP ), I7+), are the complex
conjugate states of ln&, Ip), ly&, i.e., their components
are the complex conjugates of those of ln), lp), ly).
This slight complication is necessary in order to make
the newly defined operators linear. 6 is Hermitian.
We can now write (54) as

C(s) =Trl AOA„(s)p),

o(s) =T'(s) Tf+(s)

where the subscripts i and f indicate that the operators
act on the first and the second, respectively, of the two
states that combine to form a line. The superscript +
means complex conjugate, and is not to be confused
with the Hermitian conjugate superscript *. Tf+(s) is
the transpose of Tf*(s).

We need not repeat the discussion of Sec. 3. The re-
sults are the same. When the impact approximation is
valid, the average of O(s) is given by

OA„(s) =expL —i(Hp; —Hpf j3C)sj, (60)

which is the same as (13), except for the fact that all
operators are in line space. We must evaluate the
average of O~(s), and we do this in a way completely
analogous to the evaluation of the average of T(s) in

Sec. 3. We see that we may write

K is an operator in line space which cannot be decorn-
posed into the sum or the product of operators acting
on subspaces i and j separately. The matrices S, and
Sf are given by (23). The argument of Sec. 4 shows
that the conditions for validity of the approximation
are again (37), where d and w are the real part and the
negative of the imaginary part, respectively, of the
change in line energy produced by K, and v is a typical
collision time, i.e., the time during which the inter-
actions of the perturber with the initial and 6nal atomic
states are appreciably different, for a collision that
makes a significant contribution to X. As for the
density matrix, we shall assume that it does not vary
appreciably over the range of initial energies that enter
in a given group of overlapping lines, and therefore we
shall consider it as a constant.

The argument of Sec. 5 also carries through here.
The line shape is given by

Vip P(M) = 0 T1LE(M Hoj+Hpf iX) (62)

=—Trl h((u —Hp~+Hpf+ —K*) '

XX (~—Ho, +Hof+ —X)—']. (63)

We can also write this in terms of components, by
introducing the eigenstates and the eigenvalues of
Ho, —H of++Be,

(Ho' —Hof++~)
I v')) =( ' —~~')

I o '))

and the states (&x, I
such that

(&» I o '&) =~'f.

Then, we can show as before that

~p '~(~)=& &(x'l~lo'))
i (Qp

—Q)~) +2f'Jp

~(&x'I ~
I o ')), (66)

co—co; 2 zo;~

and we can make the same remark about the behavior
of the asymmetrical terms for large co. Far away in the
wings, (63) reduces to

m.p 'F(po)~ —Trl h(pp —Ho;+Hpf+) '
XK'(~—Ho+Hof+) 'j. (67)

This last expression has also been given by Kolb,"in a
completely different notation, for the case of perturba-
tion theory.

Anderson's results' for isolated lines (without de-
generacy) are obtained when it is permissible to solve
the eigenvalue problem (64) by first-order perturbation
theory. Then, we use states that are eigenstates of
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Hp; and Hp~+, and the spectrum becomes

~F((o) =Q p.
oa (to —go++ —d, ) +we

X ((an+
~
6

~
an+)), (68)

with

d..= (R((an+ [X ) an+)),

w..=—S((an+~5C[a +)),

(69a)

(69b)

(70)

d..= —
u) ((~+~SP,+~~+))dv

(a i Si a)(niS*[n)dv, (71a)

w. =(R I ((an+~1 —S,Sj+~an+))dv

(1—Gt(a
I Sl a)(a IS*I ~))d' (»b)

Using (61), we can express the shift and width in terms
of the collision matrix,

spherically symmetric manner, the same is true of X,,
Eq. (28). Hence, in the right side of (41) all operators
are spherically symmetric, and we can split the spec-
trum into a sum of spectra belonging to different values
of the quantum number j and of parity. In other words,
two overlapping levels with different parities or j
values may be treated as nonoverlapping. The eigen-
value problem for Hs+X becomes simplified in the
way customary for spherically symmetric perturbations.

There is one additional point concerning the calculation
of K by (28). Since we know that BC is going to be
spherically symmetric, it is useless to compute the
matrix elements of S between states of different j
values or parities, They will disappear anyway in the
integral over all types of collision. As to the matrix
elements between states of the same j and parity, it is
not necessary to calculate them for all possible orienta-
tions of a collision. It is sufficient to pick a particularly
simple orientation, for instance, impact vector in the
s direction, perturber path in the x direction. Those are
what Anderson calls the "collision axes." Then, in
order to average over all directions, instead of rotating
the perturber, we rotate the coordinate axes. The result
of this is to average over m the matrix elements between
states of the same ns, and it is 0 for the other matrix
elements. In other words, X is given by the following
equation (the subscript p is the parity),

If we call n,e '&' and nje '&f the diagonal elements of
S, as in (52), the shift and width become

(a@to ~X ~ fries) = $5j jb5moms5pops

X dv[&.s (2j+1)——'P„(am~ S, ~
brrt)$, (73)

d= ) n;nj sin(qo,—qoj)dv, (72a)

w= $1—n,nj cos(q;—q j)$dv. (72b)

'7. SIMPLIFICATIONS DUE TO SPHERICAL
SYMMETRY

In many problems the unperturbed Hamiltonian H0
is spherically symmetric and the effect of the collisions
is also spherically symmetric, i.e., there is no preferen-
tial direction for the velocities of the perturbers. This
spherical symmetry enables one to make some im-

portant simplifications in the answers that we have
obtained. Anderson4 did this for his theory of isolated
lines, and we shall do it in this section for the more
general case.

We shall consider first the one-state case, which is
rather trivial. We have already pointed out that D,
Eq. (12), is a spherically symmetric operator, i.e.,
it can have matrix elements only between states of the
same j, m, and parity. If the collisions happen in a

Again, these equations include as special cases the
results of the adiabatic theory of Lindholm' and of the
I.orentz" theory.

we shall write

1,0, 1
(75)

The proportionality relation that we just stated will

"This is the Wigner-Eckart theorem LSee M. E.. Rose, Ete
mentary Theory of Angular Momentum (John Wiley and Sons,
Inc. , New York, 1957), p. 85.$

where S. is the matrix S computed with the collision
axes.

Now, we shall take up the two-state cases, which is
the really interesting one. It is still true, of course, that
6 and X are spherically symmetric, but spherical sym-
metry in line space is an unusual notion which needs
some explanation. First, it is well known that the
matrix elements of the dipole moment are, as far as
their dependence on the magnetic quantum numbers
goes, proportional to certain Clebsch-Gordan coeK-
cients. "Instead of d„d„, d„we shall use

dp de) d, = (d,+idv)/—K—2, d i ——(d. id„)/W2, (—74)

as components of the dipole moment, and instead of
(see Sec. 6)
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be written

(am. l d„l nm. )= (al d In)(j.m. Iri Ij.m.),

where (a I
d

I n) is independent of m„m, and p, and

(76)

This is all subject to the condition that j, and j dier
by no more than one unit. Otherwise, the Clebsch-
Gordan coefficients vanish.

According to Anderson, the fact that X is spherically
symmetric has the consequence that we can write

((am,+m.n+I X
I bmbP+mp+))(j bmb

I p Ijpmp)
mbmp

= (j.m. Ir I j.m-)((«+ Ih I b&))

where ((an+lhlbp+)) is independent of any magnetic
quantum number, including IM. The proof of (83) goes
as follows: all we need to show is that both sides of the
equation transform in the same way under rotations,
since (j,m, lp, lj m ) is completely specified by its
behavior under rotations. When we do make a rotation,
3C in the left-hand side of the equation does not need
to be rotated, since it is spherically symmetric. We do
not need to rotate

I bmb) and (pmp I
either, since mb and

mp are being summed over. All we have to rotate is
(am, l, Inm ), and p, . When they are rotated, we get
certain linear combinations of other components. Those
are just the same linear combinations as when we rotate
(jamalp, I jama), q.e.d.

We shall consider ((an+IhlbP+)) as a matrix in
"reduced line space. " "Reduced space" is a function
space which has only one state in it for every set of
(2j+1) magnetic substates of ordinary atomic function
space. Thus, reduced space does not have any magnetic
quantum numbers, but the other quantum numbers are
the same as for ordinary space. Reduced space can be
doubled, like ordinary space. If we know K, the matrix
h can be computed by multiplying both sides of (83) by

(j.m. II Ij m )= (2j.+1)—&C(j 1j;m pm. ). (77)

C is a Clebsch-Gordan coeKcient in the notation of
Rose. ' lt is real. The complex conjugate of relations
(76) and (77) are

(nm-I d.*l am. ) = (nl d*l a)(j.m-lr *Ij.m.&, (78)

(j m Irblj m )=(2j +1)'*C(j'j. m pm. ).
It follows from the properties of Clebsch-Gordan coef5-
cients that

Z (j. ml plj. m-)(j-m-l r*l j.m'&
pma

= (2j +1) ibm m ', (80)

m
I
p*l jama)(jama Irbl g

= (2j.+1)-'b~.~. (81)

(j m,
l ply m )(j m Iri*lj m )=1 . (8 )

pmg mrx

2 ((am.n+m-+I f(X) I bmbP mp+&)(jbmb I~ I jpmp)
mfrmp

= V.m. l pl j-m-)((«'lf(b) lb'')) (83)

This can be proved by expanding f(X) in a power
series. Consider, for instance, the function X,".We have

2 ((am.n+m-+IX'I bmbP mp+))(j bmbl p Ij pmp)
mfrmp

((am.n+m. +
I
x

I cm,q+m, +))
mbmpcmaym~

X&(cm,y+m, +IXI bmbp+mp+))(j bmbl I Ijprep)

By Eq. (83), this can be written

((am.n+m. +
I
x

I cm,y+m, +)&
cmcpmy

X&j.m lr I j m.)((c~+II lb@)).

By a new application of (83), this is equal to

(j.m.
l p I j.m-&~" (&a +Ihlc~+)) ((c~'lblbP'))

=(j.m.
I p I j-m-)((«'I h'I bP')),

q.e.d.
The expression that we need to calculate in order to

obtain the line shape is the right-hand side of (62).
According to (56), (76), and (78), a matrix element of
6 can be written

((are.n+m +
I
6

I
bmbp+mp+))

=Ra (jamalp I
J'ama)j(pmple lj bmb&

x((an+I bib~)), (86)
with the definition

((«+I bl b&+)) = (al din) (0 I
d*lb) (87)

Since X, Ho;, Hof+ are all spherically symmetric, we
can apply the considerations of the last three para-
graphs when performing the sum over magnetic quan-
tum numbers in the trace in (62). Since an equation
similar to (84) holds for any function of any spherically
symmetric operator, the result is the following equation
for the line shape:

rrp '~(oo) =—& Trl b(oo —ho, +hof+ —h) '), (88)

where all operators are now in reduced line space. h
is given by (84), b is defined by (87), and bo; and hof+
are operators whose eigenvalues for a reduced state are
the same as those of Ho; and Hof+ for the (2j+1) states
from which the reduced state was derived. To obtain

(jamalp, *lj,m,) and summing over m„m, and ri.
According to (82), we get

(( +lblb~+))= Z
pmambmamp

X&(am.n+m. +IXI bmbp+mp+))(jbmblel jpmp) .(84)

If now we consider any function of X, f(X), it is also
true that we can write
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the line shape, we must now treat Eq. (88) in the
same way we treated (62). But (88) represents an
enormous simplification over (62) since we now have
only one state where we used to have (2j+1), and the
order of all matrices that enter into the calculation is
correspondingly reduced.

The matrix II defined by (84) vanishes whenever the
angular momenta j, and j differ by more than one
unit, whenever jt, and jp differ by more than one unit,
and whenever the product of the parities of a and o.

differs from that of fi and P. The matrix 5 defined by
(87) may be taken to vanish under exactly the same
circumstances and, in addition, it vanishes unless the
parities of a and n differ and those of fi and p differ too.
As a consequence, the only doubled reduced states that
need to be considered in the calculation of (88) are
those for which the angular momentum of the final
state does not differ by more than one unit from the

angular momentum of the initial state, and for which
the two parities are different. In other words, we only
need to consider doubled states that correspond to
actually observed lines in the spectrum of the atom.
Thus, the work of Sec. 6 is further simplified.

The "reduction to collision axes" is possible also here,
as in the one-state case. When we calculate 5C by (61),
it is not necessary to average over all possible orienta-
tions of the collision. It is sufhcient to compute X with
a convenient set of "collision axes."The summation in
(84) does the averaging over all directions for us. This
is because ((an+

~

h
~
bp+)) is independent of any magnetic

quantum number, and hence it will be the same for
any orientation of the collision. It is easy to see, with
the help of (80) and (81), that the two-state case of (61)
and (84) reduces to the one-state case of (28) and (73)
whenever one of the two components of a line is un-
affected by the collisions.
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Photodetachment Cross Section and the Electron AKnity of Atomic Oxygen*
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Experiments and theory on the continuous absorption of radiation by atomic-oxygen negative ions are
described and discussed. The absorption cross section for photon energies not too near threshold is obtained
directly from one of the experiments. Theory and experiment are combined to give the cross section in the
vicinity of threshold and a precise value of the electron affinity of atomic oxygen. The latter result is EA(O)
=1.465+0.005 ev. The data are used for computation of the radiative attachment coe%cient, and other
applications of the experimental results are discussed.

INTRODUCTION

HK absorption of continuous radiation by the 0
ion leads to the photodetachment of the extra

electron. ' ' This process is partially responsible for the
release of electrons and the destruction of negative
ions in the sunlit ionosphere, ' and provides a source of
opacity in certain spectral ranges for high-temperature
plasmas containing oxygen. ' The potential astrophysical
importance of 0 absorption is suggested by the
inQuence of H photodetachment on the solar con-
tinuous spectrum. ' Comparison of the experimental
photodetachment cross section with values calculated
using approximate atomic wave functions and potentials

*This work was supported in part by the OKce of Naval
Research.' H. S. W. Massey, XegatkJe Ions (Cambridge University Press,
New York, 1950), second edition, p. 84 ff,

2Lewis M. Branscomb, Advances in E/ectronics and E/ectron
Physics (Academic Press, Inc. , New York, 1957), first edition,
Vol. 9, p. 43.

3 D. R. Bates and H. S.W. Massey, J.Atmospheric and Terrest.
Phys. 2, 1 (1951).

4R. E. Meyerott, The Threshold of Space (Pergamon Press,
London, 1957), first edition, p. 259.

' R. Wildt and S. Chandrasekhar, Astrophys. J. 100, 87 (1944).

may be helpful in the theoretical study of related
processes less susceptible to experiment, for example,
elastic scattering of electrons by atomic oxygen. ' From
the photodetachment cross section one can compute
the radiative attachment cross section by the principle
of detailed balancing. Radiative attachment provides
the limiting rate for ion formation at low pressures.

The photon energy Eo at the threshold for continuous
absorption from the lowest state of 0 to the lowest
state of 0 is equal to the binding energy of the ion and
hence to the physical electron amenity of the oxygen
atom. Observation of this threshold then provides a
direct method for determining the oxygen amenity,
EA(O). An accurate value for this affinity is needed
both for the interpretation of physical processes
involving 0 and for determination of other thermo-
chemical constants numerically related to the oxygen
electron af5.nity.

Previous determinations of EA(O) from the photo-

~L. B. Robinson, Phys. Rev. 105, 922 (1957); Hammerling,
Shine, and Kivel, J. Appl. Phys. 28, 760 (1957); A. Temkin,
Phys. Rev. 107, 1004 (1957); T. Yamanouchi, Progr. Theoret.
Phys. (Japan) 2, 33 (1947).


