OPTICAL ABSORPTION IN p-TYPE GaAs

of the atomic p-functions of Ga, As, and Ge; these can
be estimated from atomic spectra to be 0.10, 0.30, and
0.20 ev for Ga, As, and Ge, respectively.® If we assume
the same normalization factor for gallium arsenide, as
seems appropriate for germanium in estimating the
spin-orbit splitting in the solid from the free-atom
value, we find that an electron at the top of the valence

6 We wish to thank E. O. Kane for these estimates.
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band at £=0 spends more time on an arsenic atom than
on a gallium atom.

Preliminary measurements of these bands as a func-
tion of temperature indicate the same qualitative
temperature dependence observed in germanium.!

We wish to thank D. A. Kramer for his assistance in
this work, E. O. Kane and F. Herman for valuable
discussions, and D. A. Jenny and K. Weiser for several
samples used in this investigation.
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Quantum mechanics is used to treat the motion of the perturbers broadening a line. Several simplifying
assumptions are made, such as the Born-Oppenheimer approximation, and the assumption of no degeneracy.
These assumptions can be removed. Also made is the “impact approximation,” which is essential for the
validity of the results and cannot be removed. With it, the line has a Lorentz shape, and its width and
shift are expressed in terms of the two scattering amplitudes of the perturbers by the atom in its upper
and lower state. The case where the perturbers do not interact appreciably with the lower state is particu-
larly simple. Then, the width and shift are proportional to the imaginary part and the real part of the
forward scattering amplitude, respectively. A quantity called the *‘collision volume” is defined. It is shown
that the impact approximation is valid only if the collision volume is much smaller than the volume per
perturber. There is a second validity condition, which has no classical analog.

1. INTRODUCTION

PRESSURE broadening of spectral lines arises when
an atom, molecule, or ion, which is emitting light
in a gas, is disturbed by its interactions with the other
constituents of the gas, such as other atoms, molecules,
ions, or electrons. The study of this phenomenon is
necessary .for accurate spectroscopic observations, and
it can in addition yield useful information about the
conditions and concentrations in the gas. With the
recent interest in high-temperature ionized gases, much
thought has been given to using pressure broadening
as a tool for measuring temperatures and ion or electron
densities inside the gas. The theory of these effects has
received a lot of attention in recent years.!! Most
theoretical work uses the ‘‘classical path approxima-
tion.” It assumes that the “perturbers,” i.e., the atoms,
molecules, ions, or electrons that disturb the light-
emitting object, move like classical particles, and, for
simplicity, their trajectories are usually taken. to be
straight lines. Their effect on the line is then calculated
using quantum mechanics. The classical path approxi-
mation is sometimes perfectly justified, particularly
when the perturbers are heavy (i.e., not electrons).

* Work sponsored by the U. S. Atomic Energy Commission.

1 See the following reviews: A. Unsold, Phystk der Sternatmos-
phiren (Springer-Verlag, Berlin, 1955), second edition, Chaps.
11 and 13; S. Ch’en and M. Takeo, Revs. Modern Phys. 29, 20
(1957); R. G. Breene, Jr., Revs. Modern Phys. 29, 94 (1957).

By a “quantum-mechanical theory,” we mean a
theory where the motion of the perturbers is treated by
quantum mechanics. The need for such a theory arises
whenever the classical path approximation breaks down.
This will happen, for instance, if the distance between
the atom? and the nearest perturber is of the same order
of magnitude as the wavelength of one or the other.
Then, it is not a good approximation to replace the
translational wave functions by wave-pockets moving
according to the laws of classical mechanics. For light
perturbers, like electrons, whose wavelength is therefore
relatively large, this breakdown may occur for a sizable
fraction of the total number of collisions. Thus, quan-
tum-mechanical effects are important for a theory of
electron broadening. Quantum mechanics must also be
taken into account whenever the collision of a perturber
with the atom is strongly inelastic, i.e., the energy
transfer is not small compared to the kinetic energy.
This will occur frequently in an ionized gas. Thus, it
appears desirable to have a fully quantum-mechanical
theory of pressure broadening, even if one is led to find
afterwards that, in many cases, the classical path
theory constitutes a good approximation to it.

The quantum-mechanical theory in this paper is
“simplified”’ because several important approximations
are made. These approximations are not really neces-

2 We shall usually call the light-emitting object in the gas
“the atom,” even though it may be an ion or a molecule.
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sary, and the author will publish at some later date a
general theory from which they will have been removed.
However, they are included here because they make the
whole exposition very much simpler, and enable one to
peer easily into the mechanism which generates the
line shape. All the essential ingredients of the quantum-
mechanical theory of pressure broadening are here.
The assumptions in question consist in taking the states
of the atom, between which the light is emitted, to be
either nondegenerate, or such that all degenerate sub-
states are affected by the perturbers in the same way.
It is also assumed that the perturbers cannot make
inelastic collisions with the atom, and that the elastic
interaction potential between a perturber and the atom
is a known function of the distance, which depends on
the state of the atom. Those are the same assumptions
that one usually makes in classical path calculations.?
Admittedly, they are rather drastic, especially since we
have mostly in mind electron perturbers. But consider-
ation of this simple case first, makes it very much
easier, later, to derive a theory that takes into account
degeneracy, especially rotational degeneracy, inelastic
collisions, and overlapping of lines.

There is one more approximation which is used in
most of this paper (from Sec. 5 on), and which will not
be removed in later work. It is the ‘“impact approxi-
mation.” It is a low-density or high-velocity approxi-
mation, consisting in saying that the average collision
is weak.* Alternatively, one may say that the time
interval between strong collisions is much longer than
the duration of such collisions. It may also be character-
ized as the approximation under which an isolated line
has a Lorentz shape. It is familiar in the classical path
theory,® where it constitutes the opposite extreme to the
“static approximation.”® In the quantum-mechanical
theory, on the other hand, there is no static approxi-
mation, and outside of the impact approximation very
little can be said that is simple except for a few cases
where the line turns out to have a Gaussian shape.
The impact approximation constitutes an important
limitation of our work, of course. We shall devote a
large fraction of our time to investigating its validity
conditions, a subject which has been very neglected.

3 Exceptions are L. Spitzer, Phys. Rev. 55, 699 (1939); 56, 39
(1939); 58, 348 (1940); P. W. Anderson, Phys. Rev. 76, 647
(1949); A. C. Kolb, University of Michigan Engineering Research
Institute, ASTIA Document No. AD 115 040 (unpublished).

41.e., the change in the atomic wave function due to the
collision is small.

5 E. Lindholm, Arkiv Mat. Astron. Fysik 28B, No. 3 (1941);
32A, No. 17 (1945); H. M. Foley, Phys. Rev. 69, 616 (1946);
P. W. Anderson, reference 3; Phys. Rev. 86, 809 (1952); T.
Holstein, Phys. Rev. 79, 744 (1950).

S By this we mean the approximation where one neglects the
effect upon the line of the motion of the perturbers, as in the work
of H. Holtsmark [Ann. Physik 58, 577 (1919); Physik. Z. 20,
162 (1919); 25, 73 (1924)] and H. Margenau [Phys. Rev. 40,
387 (1932); 48, 755 (1935); 82, 156 (1951)]. It is sometimes
called the “‘statistical approximation,” but this name does not
seem appropriate, since statistics are just as important for the
impact approximation as for this one.
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It turns out to be very often valid when electron
perturbers are involved.

The first use of quantum mechanics in pressure
broadening theory was made by Weisskopf.” He wrote
the wave function of the atom as the product of a
translational wave function and an electronic wave
function, and showed how the line shape resulted from
application of the Franck-Condon principle. But he
did not carry the quantum-mechanical theory any
further. Instead, he derived the classical path theory
from it, very elegantly, using a WKB approximation.
The main difference between his work and our starting
equations is that his translational wave function repre-
sents the motion of the atom only. Thus he considered
a moving atom among fixed perturbers. Our trans-
lational wave function, on the other hand, will be a
product of functions, one for each perturber. Our
starting equations, and the ideas behind them, bear
close similarity to the work of Jablénski.® But Jablénski,
again, made no attempt to stay with quantum me-
chanics. Moreover, his work is marred by unnecessary,
and sometimes inaccurate, approximations. The expres-
sions giving the width and shift of the line in terms of
quantum-mechanical phase shifts (Secs. 5 and 6) can
be found in the work of Lindholm,® and have been
quoted in the literature since. However, Lindholm’s
derivation is extremely sketchy. The present work is
believed to be the first where the subject is treated
completely, with particular emphasis put on the validity
conditions. Finally, no review of quantum-mechanical
theories of pressure broadening would be complete
without mention of the work of Margenau and his
collaborators.’® Their work differs considerably from
ours, in spirit as well as in some of the results. It is
hoped that both approaches will prove useful in
disentangling the complicated data on line shapes.

2. ASSUMPTIONS AND APPROXIMATIONS

We shall assume the atom fixed, with the perturbers
moving around it. This is a good approximation for
light perturbers, electrons for instance. The wave
function for the whole system will be assumed to be the
product of an internal wave function of the atom, and
of a function of the center-of-mass coordinates of the
perturbers. This type of wave function can be obtained
by the Born-Oppenheimer approximation, which is the
analog for this work of the adiabatic approximation in
the classical path theory. It consists in solving the
problem in two steps. First, we solve the Schrodinger
equation for the atom, while holding the perturbers
fixed at points xi, Xs, - - -xn. Call %(x4,X1, - -Xn) the
atomic wave function, where x4 stands for all the in-

7V. Weisskopf, Z. Physik 75, 287 (1932).

8 A. Jablénski, Phys. Rev. 68, 78 (1945), and earlier papers
quoted there.

9 E. Lindholm, Arkiv Mat. Astron. Fysik 28B, No. 3 (1941).

0 Kivel, Bloom, and Margenau, Phys. Rev. 98, 495 (1955);

B. Kivel, Phys. Rev. 98, 1055 (1955); R. E. Meyerott and H.
Margenau, Phys. Rev. 99, 1851 (1955).
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ternal coordinates of the atom. Call E+ Vr(x1,Xs," - - Xw)
the energy, where E is the unperturbed energy. Both the
wave function and the energy depend on X1, X%, - - -Xn as
parameters. In the second step, we solve the Schrédinger
equation for the motion of the perturbers in the po-
tential Vrp(X1,Xe,- - -Xy). Call Y(x1,Xs,- - -Xn) the wave
function, and er the energy for this problem. Then the
wave function for the total problem is taken to be
w(X4,X1, - -Xn)¥(X1," - -Xn), and the total energy E-+er.
Furthermore, we shall assume that the modifications
induced in the atomic wave function # by the perturbers
are small, and we shall neglect them. Thus, our wave
function becomes

M(XA)'//(XL' : 'XN)) (1)

where the first factor is the unperturbed atomic
function.

It is customary to say that the Born-Oppenheimer
approximation is not valid unless the particles whose
coordinates are X;, - --Xy are much heavier than the
internal constituents of the atom. This is not true if
the perturbers are electrons. In that case, we must say
that the wave function (1) agrees with the correct
wave function only when the electrons are sufficiently
distant from the atom. The near parts of the two
functions may differ considerably. But our theory will
still be valid if the line shape happens to be sensitive
mostly to the distant parts of the wave function. In
any event, this trouble will not arise in the complete
theory which will follow this one, since the Born-
Oppenheimer approximation will not be made there.

With respect to the potential Vg (xy,:--xn), which
determines the motion of the perturbers, we shall make
two assumptions. The first is that the perturbers do
not interact with each other. Each perturber interacts
only with the atom, and is otherwise uncorrelated with
the motion of the other perturbers. If we are talking
abeut charged perturbers, this is true only of those that
are inside the Debye radius, and we may have to
introduce later a correction to take into account the
mutual screening of the perturbers. The second assump-
tion is to write the total interaction Vr as a sum of
potentials, each of which involves only one perturber,

Vr(xyXe, - -Xn) =V (x1)+ - +V (xn). (2)

This “scalar additivity” assumption is known to be
correct for certain types of interactions, such as van
der Waals forces, but not so correct for some others,
such as Stark interactions. In the latter case, it is the
vector electric field which is a sum of contributions
from each perturber. We have two reasons for assuming
scalar additivity. The first is that it is the only simple
assumption that can be made. This is true also of the
classical path theories, where scalar additivity has
usually been taken for granted, except in the static
limit. The second reason is that we are interested
mostly in the impact limit of the theory, and the
complete discussion, to be published later, makes it
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- clear that the results of the impact approximation do

not depend at all on the type of additivity that is
assumed.

The determination of the potential V(x) between a
single perturber and the atom is a standard quantum-
mechanical problem, whose solution, for every case,
can be found in the literature. For instance, if the
perturber is an electron, its exact interaction with the
atom is the sum of Coulomb interactions with the
various atomic constituents. If the distance between
the atom and the perturber is fairly large, this can be
replaced by the interaction of the atom with the
electric field of the perturber, this field being assumed
constant over the volume of the atom. The interaction
energy is calculated using ordinary quadratic Stark-
effect theory. There results the potential

V(r)=—ke/r, 3)

k being the Stark constant, which depends on the state
of the atom and increases rapidly as one goes to higher
excited states. A more accurate potential can be derived,
if necessary, by treating the interaction more accurately.
Potential (3) is certainly incorrect for small 7, and
should be cut off appropriately near the atom.

3. THE LINE SHAPE

We shall compute the shape of the spontaneous
emission line. The line shapes for induced emission and
absorption can be deduced from it by the usual argu-
ment of Einstein! involving detailed balancing. It is
known'? that the lines resulting from the classical path
theory do not always satisfy the principle of detailed
balancing. But it can be shown!® that the present work
is in agreement with that principle.

The total power emitted in a dipcle transition from
initial state ¢ to final state f is given by the well-known

expression!
(4*/3¢%) [(fId]4)[%, )

where d is the dipole moment, ¢ the speed of light, and
w the Bohr frequency,'® w=E,—E;. Starting from (4),
one should be able, by considering all possible initial
and final states, to derive an expression for the power
radiated per unit frequency interval, P(w). As often
happens in line-shape problems, it is actually easier to
compute the Fourier transform of the line shape than
the line shape itself. We shall compute the Fourier
transform of (3¢%/4w*)P(w), which we call ®(s),

-+
B(s)= ]  (3/4u)P(w)e “sdw. (5

—00

11 A, Einstein, Physik. Z. 18, 121 (1917).

2 S. Bloom and H. Margenau, Phys. Rev. 90, 791 (1953).

13 M. Baranger, Rand Corporation Report No. RM-2118-AEC,
Sec. (ITI, 13) (unpublished).

1 1,, I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1955), second edition, p. 261.

15 We shall use a system of units such that Z=1. Thus, we shall
make no distinction between an energy and an angular frequency,
or between a momentum and a wave vector.
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P(w) may be obtained by the inverse formula
+o
(364/46) P (w) = F (&) = (2) 1 f B(s)eierds.  (6)

What we shall call the line shape is F(w), rather than
P(w) itself. Since F(w) must be real, ®(s) obeys the
equation

®(—s5)=d*(s). ©)

We shall always compute ®(s) for positive s only, and
use this condition to determine it for negative values
of s.

Our initial and final wave functions have the form
(1). With our assumption of scalar additivity, the
perturbers’ wave function y(xy,- - -Xx) is a product,

Y(x1, o xXn) =¢1(X)Pa(X0) - - ¥ (Xn). (8)

Each factor is a solution of a Schrédinger equation in
potential V. There are two potentials, V; and V/, one
for each state of the atom. The corresponding
Schrédinger equations are

(K1t Va(x1) = epir (x41), (9a)
(Ert+Vin(x)= e'Yr1(x1), (9b)

where K, is the kinetic energy of perturber 1, and ¢,
and e’ its toial energy in each case. Thus, the initial
wave function for the whole system is

ui(XA)¢ik1+(X1)¢ik2+(X2)' . "//ikN+(XN), (10a)
with energy
Eiteatet- - +ey, (11a)
while the final wave function is
(X)W st (XY (X2) - - -Yren* (xy),  (10Db)
with energy
Eite'+e’+---en'. (11b)

In the above, the subscripts ki, ki, -+ - stand for the
wave vectors of the plane wave parts of each function.
We have e;=£k2/2m, etc.-- -, m being the mass of a
perturber. The superscript + indicates that we chose
outgoing scattered waves. This choice is completely
arbitrary and does not affect the results. With these
wave functions, expression (4) becomes!®*

(4e'/36%) [ Cots [ d ] 0 [*] (hrier [ i) [ 2 - -

X[ @rent|pint)]?, (12)
and the frequency of the light emitted is
(EimEp)+(a—ea)+ -+ (ev—e’).  (13)

The factor |{u;|d|%;)|? in (12) is a constant, about
which we can forget if we confine our interest to the
shape of the line, and not its total intensity. The

15 Expressions related to (12) appear in the work of M. Rudkjo-

bing [Ann. astrophys. 12, 229 (1949)] and Kivel, Bloom, and
Margenau (reference 10, p. 498).
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important part of (12) is the overlap of the perturbers’
wave functions in the initial state with those in the
final state. It is seen that the reason why the frequency
of the light differs from its unperturbed value E;—E;,
is that some of the energy may be used for increasing
or decreasing the total kinetic energy of the perturbers.
Even if k differs from K/, ;™ and ¢4+ are not orthog-
onal, and their overlap determines the line shape. If V;
were identical to Vy, the overlap would be 0 unless k
were identical to k’, and then the frequency radiated
would always be E;—E; and the line would be sharp.

From now on, we shall take the unperturbed line as
the origin of frequencies, i.e., we shall forget about
(E;—Ey) in (13). In order to compute &(s), we do not
need to know P(w) explicitly. We may make a change
of variables of integration in (5), and, instead of
summing over w, we sum over all final states and average
over initial states.!® w is replaced by (e;—e/)+---
+ (ex—en’), and the power radiated is given by (12).
The probability of occurrence of a certain initial state
(i.e., the density matrix) is a product pyxipra: - pxn,
where each px is equal to a constant times the Boltz-
mann factor e~¢/*T. Thus, except for a factor, ®(s) is
given by

®(s)= Zk . 2 e ||ty 2
kl"' N l""kN’
X | Wrant i) |2 exp[—i(a— e+ - - +ev—en’)s].

®(s) turns out to be the Nth power of another function,
¢(s), which refers to a single perturber,

2(s)=Le(s) 1",

()= L pxlWret[ba) Peim .

(14)
(15)

This situation could have been anticipated, since, with
our assumption of scalar additivity, the perturbers
affect the atom independently, and the total frequency
shift is the sum of individual shifts due to each per-
turber. Each of these individual shifts has a probability
distribution, whose Fourier transform is given by (15).
To obtain the probability distribution of the total shift,
we can use the well-known theorem!” which states that,
if N independent random variables have the same
distribution, the Fourier transform of the distribution
of their sum is obtained by raising to the Nth power
the Fourier transform of an individual distribution.
Our aim must be, therefore, to compute ¢(s), the
Fourier transform of the line shape due to a single
perturber. Since, most of the time, this perturber is
very far away from the atom and does not influence it,
this line shape must consist mainly of a & function at
the origin. But there is a small correction, of order V!,
U being the volume of the container, assumed to be
very large. This correction arises in those rare times
16 All states are normalized to unity.

" H. Cramér, Mathematical Methods of Statistics (Princeton
University Press, Princeton, New Jersey, 1946), p. 188.
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when the perturber happens to be close to the atom.
Thus, ¢(s) must have the form

o(s)=1—07g(s). (16)

To get ®(s), we raise ¢(s) to the Nth power. If we call
» the number of perturbers per unit volume (#=NU™),
we obtain

®(s) =exp[ —ng(s)]. an

We must therefore put ¢(s) in the form (16). F(w)
will follow from (17) by a Fourier transformation. This
very simple way of going from a one-perturber line
shape to a many-perturber shape is also applicable to
the classical path theory.

Let us introduce the notations,

H,=K+V; (18a)
H;=K+4V,. (18b)
H; and H; are the Hamiltonian of the perturber, when
the atom is in its initial and final state, respectively.

Using them, we can eliminate the final states explicitly
from (15), in the following way:

@(8) =2 ww puldact Y )etd W [Yathe i
=Zk Pk<¢ik+ | eilssg—iHis ill/ik+>- (19)

It is instructive to note the connection between (19)
and the corresponding equation in the classical path
theory, which is!®

st (o] i [ avioa])

\

(20)

with -
AV = V,“—' Vf=H."—H/.

One can show the following relation

(21)

eiHlrsgmiHis= | exp[—if AVH(t)dt], (22)

0

where AV g is the Heisenberg operator associated with
AV,
AVH(’%) =65H“AV6"'H“,

and €, is the “anti-time-ordering operator,” which
orders operators according to the time in their argu-
ment, with time increasing from left to right. With the
transformation (22), (19) and (20) become very
similar, and it is evident how (19) becomes (20) if the
classical approximation is valid, and one can replace
the wave function of the perturber by a small wave
packet. Another way of deriving the classical result is
through the WKB approximation, as Weisskopf?” did.
In all the preceding, we have never mentioned the
natural width of the lines, i.e., we have neglected the
reaction of the radiation on the system. It actually
turns out, in the overwhelming majority of experimental

18 P, W. Anderson, Phys. Rev. 86, 809 (1952).
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cases, that the pressure-broadened width is much larger
than the natural width. Hence, we shall neglect the
latter in all this work. Moreover, one can give the
following argument to show that, in all cases where we
observe the absorption or emission of light by a system
in thermal equilibrium, the pressure broadening must
be much more important than the natural broadening.
If we are actually able to observe something besides
the blackbody spectrum, it must mean that radiation
is not in thermal equilibrium with the system. If it is
not radiation that keeps the system in thermal equi-
librium, it must be something else, namely interactions
through collisions. And these interactions have to be
strong enough to keep the system in thermal equi-
librium, in spite of the disruptive effect of the non-
equilibrium radiation. Therefore, they broaden the line
much more than the radiation does.

4. EXPRESSION OF ¢(s) IN TERMS OF AN INTEGRAL
FREE FROM SINGULARITIES

In order to simplify the writing, we shall often omit
from (19) the average over initial states, in the remain-
der of this paper. This does not mean that we think
this average unnecessary or unimportant. Actually, one
can dispense with it only for a rough estimate. But the
average always comes at the very end of a calculation.
Whenever a result depends on the energy of the
incoming perturber, it should be averaged with the
Boltzmann factor, ¢~¢/*7. We shall sometimes remind
the reader of this by writing a subscript Av on the
important expressions.

Our first task is to put ¢(s) in the form (16). In
(19), the wave function is normalized to unity. But it
is more usual, for scattering wave functions, to normal-
ize them to the volume of the container, V. We do
this, and write

@ (S) — 'U—l("//ik+ | eiHfsg—iH ;s I ¢ik+>-

Then, we transform ¢(s) by using the integral equation?

(23)

eHrogiHis=1—j f dt eHIAVeHst, (24)
0

To prove this equation, note that it is true for s=0,
and that the derivatives of both sides with respect to
s are equal. After substituting in (23) and taking
e it gut of the matrix element, we find

o(s) =1—401 f d iyt | eHIA | Put). (25)
0
Hence we have, in the notation of the previous section,
g(s)=1 f dt et e HIAY [Pt (26)
0

1 R. P. Feynman, Phys, Rev. 76, 749 (1949).
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In order to express g(s) in terms of an integral free
from singularities, we substitute for {(¢:;s+| the expres-
sion?

<‘/’ik+| =<‘//fk+[ +@at|AV (e—H—in)™t.  (27)

This can be proved by multiplying to the right by
(e—Hy). n is an infinitesimally small number, whose
role is to insure that the right-hand side of (27) contains
only outgoing scattered waves. With this transforma-
tion, g(s) becomes

g(s) =if di e~ Yt | e HIAV [Yat)

0
+1,f di e_i"<¢ik+
0

In the first term, ¢*#/* may be taken out of the matrix
element, and cancels ¢ % In the second term, we
introduce a complete set of intermediate states y¥su-,
eigenstates of H; and normalized per unit volume (the
boundary condition at infinity need not be specified),
and we rewrite the matrix element in the following
form:

eiH_/t
AV———AV
e*Hf—’L"I]

¢ik+>. (28)

i€’ t

k'
f'é‘“;(‘//ik‘L | AV [Ypiy————W i | AV [ i)

€e—€e—1y

We have assumed that the Hamiltonian H; does not
have any bound states. If there are some, they should
be included in the summation. Finally, we perform
the integration over ¢. The result is

g(s)=isnt | AV [Yut)
AV [ |2

fd"'k’
+ nf;'ﬂ(‘hk' (e—e')(e—e'—in)'

For reasonably behaved potentials, the matrix elements
occurring in this expression are free from singularities
for all values of k and K’. Hence, if we know the wave
functions, we can in principle compute g(s), and hence
the line shape, without meeting any unforeseen diffi-
culties. The computational difficulties, however, will
in general be tremendous. Fortunately, in most cases
involving electrons as perturbers, the impact approxi-
mation can be made. We shall study it in the next
section. But we wanted to show how the general
problem could be solved completely, in the quantum-
mechanical formulation, if one had sufficient incentive
to go through the calculations. It is possible to write
(29) in the form of a sum over partial waves, which
makes it slightly simpler and contains only one-
dimensional integrals.

In the classical path theory, there exists a simple
approximation to ¢(s) when s is small. One replaces
Jo*AV (#)dt in the exponential in (20) by sAV. This is

2 B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950);
M. Gell-Mann and M. L. Goldberger, Phys. Rev, 91, 398 (1953).

_e—'i(e—e’).s

(29)
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the static approximation. Nothing comparable seems
to exist in the quantum-mechanical theory. There is
no particularly simpler form of (29) valid for small s,
except a Taylor expansion. For the static approxi-
mation to be valid, the classical approximation must
first be possible. One can show readily, then, that an
approximation to the second term of (29) by stationary
phase integration yields the result of the classical static
theory, while the first term of (29) is negligible.

5. THE IMPACT APPROXIMATION

In order to make easier a physical understanding of
the impact approximation, we shall first restrict our
considerations to the case where the potential V;
vanishes. This is very often true in practice. The atom
is smaller, more tightly bound, and less polarizable in
its lower state than in the upper one, and V; often
turns out to be much smaller than V. Since V; vanishes,
we shall drop the subscript ¢ on V,, H,, and |¢uct),
and we shall replace (¢;xt| by (k|, since it is a simple
plane wave.

Let us start again from Eq. (26):

g©=i [ dreplony iy, (30
0

Now, (¥i+|eiEt is the result of letting (Yi+| propagate
for time ¢ with the free Hamiltonian K. During this
propagation, the scattered wave will recede from the
origin, and no new scattered wave will be formed, so
that (@xt|e®* looks very much like (k|ei, at least
near the origin. At large distances, the two functions
do not look alike, because the scattered wave has not
had time to disappear. But we really want (Yy*|eiX¢
multiplied by V|¢«t), and V|¢yt) is a function that
vanishes except near the origin. Hence, for large enough
1, Wit e EV i) will look just like eiet(k| V|yyt). Tt
follows that, if s is large enough, g(s) can be approxi-
mated by

g(s)~>is(k| V[yut), (31)

which is just the first term of (29). Exactly how large
s has to be, is a question which we shall answer later.
And if the values of s that are important for the
calculation of F(w) happen to be those for which (31)
is true, F'(w) will have a Lorentz shape. We shall devote
the later sections of this paper to a rigorous examination
of the conditions under which this is a good approxi-
mation. In the meantime, we shall look into the
significance of (31) with more detail.
According to (17), ®(s), for positive s, is given by

®(s) =exp(—indk| V|¢it)s). (32)
The corresponding line shape is
Fw)= (w/m)[(0—d)+w?]7, (33)
with
d=n®k|V|¢it), (34a)

w=—ndk|V|¥h). (34b)
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The symbols ® and J stand for “real part” and “imagi-
nary part,” respectively. The quantity (k|V|¢y*) is,
except for a factor, the forward scattering amplitude.
The exact relation between the scattering amplitude
f(8,¢) and the matrix element (k'|V|y¢yt), where k'
has the length of k and makes angles 6 and ¢ with it, is?

1(6,0)=— (m/2m){K | V [, (35)

Hence, the shift d is proportional to the real part of
the forward scattering amplitude, and the width w to
its imaginary part,

d=—(2mn/m)RLf(0)In,
w= (2an/m) 9 £(0) Jn.

The Boltzmann average must be taken.

It should not be surprising that our result is expressed
in terms of the forward scattering amplitude. If we
look at the original expression (23) for ¢(s), which
becomes here

Vo(s) =Wt |eHeHe|yt), 37)

and if we imagine that, instead of taking a stationary
state |¢it), we take a wave packet, then e |y t)
represeats the wave packet propagated in potential V
for time s, while (Yt |e*X* is the wave packet propa-
gated for the same time freely. When s is large, the
inner product of the two should be very similar to the
forward element of the scattering matrix. Indeed, the
S matrix is 2

(36a)
(36b)

(&' [.S[k) = (k' | l)— 2w (e— &)k | V [¥it),  (38)
while our result for (37) is
V—istk| V [yuit). (39)

The difference consists in replacing (k|k) by U, and
278(e—e€) by s, which is just what would happen if we
were to restrict the integration in the calculation of
the S-matrix to a finite volume U and a finite time s.
Again, the question, how large must s be before this
becomes a good approximation, will be answered later.

The width can also be expressed in terms of the total
cross-section ¢, by virtue of the optical theorem,?
which can be written (Q is the solid angle)

9/(0)= (k/4n) f 09| /@ |2= (k/Am)s. (40

Thus,
(36¢)

w=(3nv0)n,

where v is the velocity of the perturbers, v=*%/m.

This result for the width must be compared with
that of the old Lorentz theory,” which says that the
width is equal to the average collision frequency, i.e.,

21 D. Bohm, Quantum Theory (Prentice-Hall, Inc., New York,
1951), p. 545.

227,. I. Schiff, reference 14, p. 105.
( = H) A. Lorentz, Proc. Roy. Acad. Sci. (Amsterdam) 8, 591
1906).
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w=(nve)n. In spite of appearances, the two results
do not contradict each other. The Lorentz theory is
valid when the atom has a sharp boundary. If a per-
turber goes inside the boundary, it interacts very
strongly and interrupts the radiation completely. If it
stays outside, it does not disturb anything. Under
these conditions, it is well known that, in the classical
limit, the quantum-mechanical cross section equals
twice the classical cross section, because it contains in
addition the diffraction cross sectiocn. Hence, the two
results are really identical.

The fact that, when the impact approximation is
valid, the width and shift of the line can be expressed
in terms of the forward scattering amplitude and the
cross section, means that, if it should become possible,
some day, to measure the scattering of electrons by
excited atoms, one could predict the width and shift in
terms of experimental data very easily. In the mean-
time, we may take the observed values of electron-
induced widths and shifts as indirect measurements of
the total and the forward differential cross sections.
We shall show, in a later publication, that relations
(36a, b) between the shift and width and the elastic
forward scattering amplitude remain true when inelastic
collisions can take place. Equation (36¢) is also true,
with ¢ the total cross section.

If V is spherically symmetrical, the scattering ampli-
tude can be written, in a well-known fashion,” in
terms of the scattering phase shifts, §;, for the individual
angular momenta,

F0) = (2ik)™ X1(2+1) (¢ —1) Py(cosb).

For the forward scattering amplitude, we replace every
Legendre polynomial by unity. Written in terms of the
phase shifts, the shift and width become

d=—[(zn/mk)Y_1(2141) sin26;n, (42a)
w=[ (rn/mk)Y_1(2+1)(1—cos28;) Jn.  (42b)

These are the equations that were given by Lindholm.?
They bear a striking resemblance to the result of the
classical impact theory, which is*

d= f sinpdv,

w= f (1—cosp)dy.

(41)

(43a)

(43b)

In the above, the integral is taken over all possible
kinds of collisions, 1.e., every possible impact parameter,
energy, etc. The differential dv is the frequency with
which a particular kind of collision occurs. The angle ¢
is given by the following integral, taken along the
classical trajectory,

+o0
o= f V(#)at. (44)
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A calculation of §; by the WKB approximation yields
just —¢/2. To bring out the resemblance between
(42) and (43), we may write (42) in the form

d=[% m2r(I+ k2 sin(—26) o (45)

In this equation, #v2r (I+%)%~2 represents the frequency
of arrival of perturbers with angular momentum /,
since 2w (lI4-3)k? is approximately equal to the area
between two circles of radii //k and (I4-1)/k, respec-
tively. Thus (45) constitutes the natural extension of
(43a), when one wishes to take into account the fact
that, in quantum mechanics, angular momentum is
quantized.

6. IMPACT APPROXIMATION WHEN BOTH ATOMIC
STATES INTERACT WITH THE PERTURBERS

Now, we return to the general case where both V;
and V; are important, and derive the impact result for
it. We start again from (26). (yut| e/t is the result of
propagating the wave ({;*| for time ¢ with the Hamil-
tonian H;. During this propagation, the scattered part
of the wave function gradually changes, and starts to
look more and more like the scattered part of (Ysi*],
at least near the origin. At large distances, the scattered
wave is still that of (Y.xt|, as long as ¢ is finite. But
since this has to be multiplied by AV|¢.ct), which
vanishes at large distances, the matrix element
Wt | e HIUAV |st)  becomes practically equal to
W@sit| e tAV |ty for large enough £ When it is so,
g(s) takes the form

g()~is(W | AV [ac™), (46)

and the line has a Lorentz shape, with the following
shift and width:

d=n®W | AV [Yixm, (47a)
w=—nIW| AV |Yat)n. (47b)

We shall see later how large s has to be before (46)
becomes true.

These results can be expressed in terms of the
scattering amplitudes f; and f; for the potentials V;
and V;, respectively. To show this, we need the fol-
lowing equations,?® valid for any potential V' (p.v.
denotes the principal value)

[Yit) = k)4 (e— K+in)V [¥i?), (48a)
Wit =(k|+Wut|V(e—K—in)™, (48b)
(e—K+in)t=p.v.(e—K)'—imd(e—K), (49a)
(e—K—in)t=p.v.(e—K)'+imd(e—K). (49b)

We write our matrix element as the difference of two
terms,

WAV [Yact) = @nct | Vil — @t | Vil ac®).

In the first term, we use (48b), applied to ¢ s*. In the
second term, we use (48a), applied to ¥:t. Then we
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use (49). The result is

Wat|AV [Yut) =&| Vilgut) =@t | VK
+2ri it | V 8 (e— K) Vil ™).

The last matrix element may be written

(50)

Q2m)3 | SR Wit | Vi K)o (e— )& | Vil uct),

and we can perform the integration over the length of
K/, by writing
a3k’ =mk'de dQ, (51)

thus leaving only an integral over solid angle Q. Then,
we use (35) and obtain (the star means complex
conjugate):

Wt | AV [t = — QCa/m)[ f:(0)— f7%(0)]
Fiv f 4 (60,0)fi6,0). (52)

The shift is gotten from the real part of this expression:

i= { — (2mn/m) OL1i(0) = 1(0)]

sins [ 1@ 5@~ 5@ 12@1| . (53)

Av
The width is gotten from the imaginary part, which is

S| AV Yt = — (2 /m) STS(O)+ ,(0)]
o f 4L f*(@) Q)+ 1) 4@,

but this can be transformed by use of the optical
theorem (40), and one obtains

w={ s [ dli@- @) . ()

Av

Equations (53) give the shift and width of the line in
terms of the two scattering amplitudes. This time, it is
necessary to know  the scattering amplitudes at all
angles, not only in the forward direction. The width is
still of the form nvs/2, but the effective cross section o
that enters is obtained by taking the difference of the
two scattering amplitudes, then squaring and inte-
grating over angles. If f; and f, are identical, both
shift and width vanish. If f; vanishes, the results of
the previous section are obtained.

Again we must point out the similarity between our
results and expressions involving scattering matrices.
We are trying to evaluate (23). Imagine that we take
for wave functions some sort of wave packet. Then,
we are asking for the inner product of the wave propa-
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gated for time s with the Hamiltonian H;, and of the
same wave propagated for time s with the Hamiltonian
H/. The answer, for large s, must be the overlap of the
two S matrices. The S matrices are?® (we are taking
the Hermitian conjugate of one of them)

K| S:| k) =(K'| k)— 2736 (e— & )(K'| V| ax™),
(k| S/t |K)=(k|K)+27id (e— )W sict| V| K).
Their product is

(54a)
(54b)

f (@ /83K | S, [ KK S:] k)
(K k>—zm'a<e~e>[<k1 Vo) — nct| V1K
+2mi f (@ /8% Wt | V| )

xa<e—e'><k'lv,~wik+>]. (55)

But, from (46) and (50), one sees that our result for
Ve(s) is precisely the same as the right-hand side of
(55), except for the replacement of (k|k) by U and of
2m8(e—e) by s.

The shift and width given by (53) can be expressed
in terms of the two sets of scattering phase shifts, 8,
and d;;, by means of Eq. (41). However, using the
considerations of the last paragraph about .S matrices,
we can guess what the result is going to be. The S
matrix for an individual partial wave is €2%¢ i.e., if we
send in the same ingoing wave as in a plane wave, we
get out €% times the outgoing wave in a plane wave.
The product of S; and S;t is just 2¢@u=D_ for a given
partial wave. Hence, we guess that the results will be
the same as in the one-potential case, Sec. 5, except
that the phase shift that appears there should be
replaced by the difference between the two phase
shifts. This is indeed what turns out. We obtain
Lindholm’s equations®:

d=—{(mn/mk)Y>_1(214+1) sin2(8::—871) } w, (56a)
w={ (mn/mk)Y_1(2l4+1)[1—cos2(8:—8;1) J}a. (56b)

Again, these results constitute the natural quantum-
mechanical extension of the classical results, which are
again given by (43), but with ¢ defined by

-0
o= f AV (D)L,

0

(57)

7. THE COLLISION VOLUME

We shall devote most of the remainder of this paper
to an investigation of the validity conditions of the
impact approximation. The question which we really
wish to answer is “When does the line have a Lorentz
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shape?” Whenever the shape is almost Lorentzian,
we shall consider the impact approximation valid. In
other words, we want the neglected terms to be small
compared to the widih of the line, not to the shift.
If the shift is of the same order of magnitude as the
width, or larger than it, it will also be given correctly
by the approximation. If the shift calculated by the
impact approximation turns out to be much smaller
than the width, then it is not reliable, since there could
be corrections of the same order of magnitude. But,
in such a case, the shift is not interesting anyway.

Most of our considerations will be given for the case
where one of the two potentials vanishes, as in Sec. 5.
The general case is just as simple analytically, but is
harder to picture in physical terms.

The nature of the validity condition is very simple.
In Sec. 5, we saw that (31) could be expected to be
true if s was large enough. This restriction on s will be
written in the form : ‘

s>, (58)

and we shall call 7 the “collision time.” If the values
of s that are important in determining the line shape
happen to be much larger than =, then the impact
approximation is valid. Now, according to the impact
approximation, the real exponential factor in ®(s) is
exp(—nvos/2) [see Eq. (36c)]; hence the values of s
that are important are of order (2/nves). Therefore,
we want

2/nve>>T, (59)
or
ULn, (60)
with
U=%vor. (61)

We shall call U the “collision volume.” The validity
condition, (60), can be stated: the collision volume
must be much smaller than #!, the volume per per-
turber. We shall derive an explicit expression for U in
the next section. Another way of stating the condition,
according to (59), is: the width of the line, computed
in the impact approximation, #nvs/2, must turn out to
be much smaller than the inverse of the collision time.
In this form, the validity condition is the same as in
the classical path theory. Indeed, the collision time 7,
as we shall calculate it, corresponds well in most cases
to one’s intuitive idea of a collision time.?

There is an additional validity condition, this one
without classical analog. To show qualitatively how it
arises, we imagine that we try to build a wave packet
and to define a collision time in the classical manner.
The smallest wave packet that can be built, without
mixing waves of radically different energies, has a
radius of order X, the wavelength divided by 2. Thus,
a lower limit to the collision time is 2A/v, and a lower

2¢ However, 7 may become infinite, if the cross-section ¢ happens
to go through 0, as in the Ramsauer-Townsend effect. U, on the
other hand, is always finite. For a definition of = independent of
that of U, see reference 13, Sec. (III, 9).
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limit to the collision volume is ¢X. Hence we have the
validity condition

oAKn Y, (62)

which we shall derive more rigorously in the next
section.

Before deriving explicitly the expression for U, we
want to try to guess at it. U must be positive, and
can vanish only for a plane wave. It must give an idea
of the volume in which the collision takes place, i.e.,
of the volume inside which the wave function propa-
gates differently from that of a free particle of energy e.
An expression that fulfills these conditions is

U= fdax [Yit(x)— it (x) |3, (63)

where ¥t (x) is the “asymptotic wave function.” This
has the dimensions of a volume, since the plane wave
part of ¢ is normalized per unit volume. But what
should we take for the asymptotic function? It seems
too crude to take ei*'*+ f(6,¢)e*"/r. On the other
hand, if we take ¥, (x) to be a function satisfying the
Schrédinger equation for a free particle with energy e
everywhere except the origin, and equal to ¥, (x) at
very large distances, then the integral in (63) does not
converge near the origin, except for s waves. We solve
this dilemma by going to momentum space. Call
Uit (k) and ¢ (k') the Fourier transforms of i (x)
and ¢t (x), respectively. Then, we also have

U= f (@ /35) (oK) — B D) % (64)
¥t (k') has the following form?:
Pt (K) =K | )4 (e— & in) K | V| sch). (65

(K'| V]|¥i™) is a smooth function of k', which vanishes
for large |k’|. The part of it that is “on the energy
shell,” i.e., for which |k’| =]k|, determines the form
of Y17 (x) at large distances, i.e., the scattering ampli-
tude. The off-shell part of (k'| V| «") determines ¥+ (x)
at finite distances. We shall define ¢t (k') by

Pict (K) =K' [ k)4 (e— €' +in) (K" | V[¢ih),

where k”’ is a vector whose direction is that of k', but
whose length is the same as that of k. Thus, ¢* is
determined solely by the scattering amplitude, and can
fairly be called the asymptotic wave function. We
obtain ¢yt (x) from

(66)

it ()= f (@8 p ). (67)

Near the origin, its singularity is only of order 1/7, and
hence the integral in (63) is convergent.
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8. THE VALIDITY CONDITIONS

In this section, we shall verify that the collision
volume given by (63), (64), (66), is indeed such that,
when (60) is true, the impact approximation is valid.
We shall start from the exact expression for g(s) [see
Eq. (29)],

g(8)=is(k| V]t

AT
+f—§;;|< Vil (69)

e—e)(e— e'—in)’

and we shall examine under what conditions it can be
replaced by its first term, as in (31).

First, we shall compare the real parts of (68) and
(31). According to the optical theorem, (40), the real
part of (31) is

—s9(k| V| =1%vos
- f (@ /855) | (K| V |9 [Prsd(e— ). (69)

On the other hand, one sees easily, using (49b), that
the real part of (68) is equal to

f (@ /359 | (6| V |9 |2 (e— )2 sin?(e— ¢)s/2. (70)

Therefore, the question is: can we replace 2(e—¢’)?
Xsin2(e—¢€')s/2 by wsd(e—¢€')? The two functions are
indeed very similar. The first one is strongly peaked
near e—¢ =0, and integrates to ws (s is positive). Its
width is of order s~'. The replacement is legitimate if
[(k'| V |¢T)|? does not vary very much when € changes
by amounts of order s, near the energy shell. If we call
de the amount by which ¢ must differ from e before
[(k’'| V|¢xt)|? has changed by an appreciable fraction
of itself, 8¢ ! must therefore be our collision time.

But we wish to give a more precise argument. We
shall take the difference between (69) and (70), and
require that it be small compared to (69). With k”
defined in the same way as in the last section, the
right-hand member of (69) may be written

f (@ /853 | (K| V |9 22— &) 2 st (e— €)5/2],
(1)

since the matrix element is not involved in the integral
over ¢. This is true with one reservation, namely that
e be much larger than s~.. This is because 2(e—¢')™2
Xsin?[ (e—¢€’)s/2] integrates to s only when ¢ goes
from —w to 4. In (71), it goes only from 0 to .
In order to insure that most of the contribution to
(71) comes from positive ¢, we require

s>l (72)
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The difference between (70) and (71) can be written
[ @i VI - 16 Vg

XCKK | Vg |+ K[ V]| ]
X2(e—€)2 sin?[ (e—€')s/2].

According to Schwartz’s inequality, this is smaller than

[jfﬂwwwwuwwmwvme2
873

xfTi@ff@ﬂ{f—{umvwc»

(e—¢€)?

2 sin? (e—¢')s/2]}
+|<k"|V|t//k+)|]2"SIL([€(_—,);—/—j}'-

For the integral in the first curly bracket, we may
replace 2 sin?[ (e—¢')s/2] by its average value, 1, since
the rest of the integrand does not have any singularity
for e—¢=0. The integral in the second curly bracket
is the sum of (70), (71), and a cross term. In it, we can
replace 2(e—¢')2 sin?[ (e—¢€')s/2] by wsé(e—¢') for an
estimate of the error. It is then equal to four times (69).
Thus, the difference between the exact expression,
(70), and the approximate one, (69) or (71), is smaller
than

il

This must be much smaller than one of them, say (69).
Hence we require

FF (& V4| = WV N vos
ol )<

&k

KVt | = [R V[ \2
8w e—¢€ ) J

(73)

(74)

€— 6,

Before discussing the significance of this, we shall
compare the imaginary parts of (68) and (31). Their
difference is the imaginary part of the second term in
(68), which is

waBﬂKMVWﬁW

Xp.v.(e—€)2sin[(e—€)s]. (75)
We require that this be much smaller than the real
part of (31), i.e., (69), since we want the corrections to
be small compared to the width of the line. The pro-
cedure will be very similar to the one followed in case
of the real parts. We may write, if condition (72) is
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satisfied,

[ @i vive:
Xp.v.(e—€)2sin[ (e—€)s]=0, (76)

since the integrand is an odd function of (e—¢').
Thus, (75) can be written

d‘"'k’ i(k’[Vl¢k+>|—l<k"lV{¢k+>l)

/
€E—E€

(l(k’l VI |+ || V]t
X

/
€—E€

sinf (= ¢)5]).

According to Schwartz’s inequality, this is smaller than

U{_k’(Kk’lleN)I—!(k”lVlrlfﬁ)l)?}*

8l e—¢e

>4j§§ymvwwn
mﬂ&—@ﬂr

KV I, 2

VIV 3

In the second curly bracket, we shall approximate

(e—¢€)2sin?[ (e—¢')s] by wsd(e—¢'), since both func-

tions have the same integral. Then, our estimate for

the difference between the imaginary parts becomes

identical with (73), the estimate for the difference
between the real parts.

Thus, the two conditions that make (31) a good
approximation to (68) are (72) and (74). We saw in
Sec. 7 that the values of s that are of importance are
of order 2/nvs; hence we substitute this in our condi-
tions. (72) becomes vs/2e%™!, which is the same as
(62), since e=k?/2m=v/2X. Condition (74) becomes

.fﬁ(umvwvww&wwmﬂ

e—¢€

) Ln™Y; (77)

therefore the left-hand side must be the collision
volume. The use of Schwartz’s inequality in deriving
(77) implies that our collision volume is an overesti-
mate. It can be shown that, in certain cases, the factor
4 on the left-hand side of (77) is not necessary. On the
other hand, there are other cases where it must be kept.
Since (77) must be understood as a strong inequality
anyway, this slight arbitrariness is not of too great
importance. In many of the qualitative discussions,
later in this work, we shall omit the 4. But we should
put it in if we want to be on the safe side. We shall
modify the collision volume further, by replacing the
difference of the absolute values by the absolute value
of the difference. The result is always larger, but much
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more tractable. Thus, U will be defined by
&R |(K |V [Yich) — (K| V] ) |2

8xd e—¢

)

which is the very definition we gave in Sec. 7. Then,
the second validity condition is

AUKn, (79)

which is the same as (60), except for the factor 4.

9. ANALYSIS IN PARTIAL WAVES

When the potential V is spherically symmetric, the
collision volume can be written as a sum of contributions
from the various partial waves,

UZZZ U..

The transformations that lead from the plane wave
representation to the partial wave representation are
completely standard, and therefore we shall only give
the result, which is

(80)

U= 4% (2141) f PP . (81)

In this, Fi(r) is the radial wave function for the /th
partial wave, according to the expansion

Yt (x) =2 1(2041) 3t Py(cosh) (kr)~F (7).

Fy(r) vanishes at the origin, and outside of the region
of interaction it is equal to

cosd; fi(kr)—sind; gi(kr),

(82)

(83)

where f; and g; are defined in terms of spherical Bessel
and Neumann functions,?® j; and #;, by

Ji(x) =xju(x),

On the other hand, #;(r) is what we called the asymp-
totic wave function, and it is equal, for all radii, to

cosd; fi(kr)—sind; §i(kr), (85)

gi(x) =anm(x). (84)

where §; is defined by
gi=2pv. [ =)y (80)
0

gi(x) is approximately equal to g;(x) for large x. But
for small x, while g; blows up like «7, §; stays finite.
For even I, the difference between §; and g; is a
polynomial in x~2, which just removes the singularity
of g; at the origin. For odd /, the relation between the
two functions is more complicated.

We may define a “collision range,” p;, as the ratio
of U; to o¢;, the partial cross section, which is

25 L. I. Schiff, reference 14, p. 77.
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47X2(2141) sin?;:

p1=U1/o1= (sindy)? f [Fi(r)—Fi(r) TPdr.  (87)

0

This range bears some resemblance to the “effective
range” of nuclear physicists.?® However, it differs from
it by the fact that we are using the square of the
difference between the two functions, while they use
the difference of the squares. Our range vanishes only
when the potential vanishes, while the effective range
may vanish in other cases.

In an actual problem, if the number of angular
momenta that contribute to the scattering is small, or
if there are some important resonances, one must
estimate U by looking separately at every angular
momentum. In going through a resonance, in particular,
the amplitude of the wave function inside the potential
increases sharply, and the collision volume is corre-
spondingly increased. But if a large number of angular
momenta are effective, it is often possible to make
some simple, general statements.

Such is the case when there are many angular
momenta for which the phase shift is very large. This
may happen, for instance, with the potentials propor-
tional to a negative power of 7, that are often used in
pressure broadening work. Let us say that the phase
shift is large for all angular momenta smaller than
ro/A. Then, one can show that these angular momenta
contribute 4773/3 to the collision volume, which is
just what one would expect. There is still a small
contribution from larger angular momenta, but this is
never very large with the type of potential that we
mentioned. Hence we want 477¢*/3 to be much smaller
than #% In other words, the impact parameter for
which the phase shift if unity must be much smaller
than the radius of a sphere of volume #~*. This is the
same as the classical validity condition. Indeed, this
is a classical problem. Condition (62) is redundant in
that case, since ¢ is of order ¢, and A is certainly much
smaller than 7.

Another important case is that in which many
angular momenta are effective but the phase shifts are
all small. This might happen, for instance, if the

, potential is of the ““finite range” variety, for instance

exponential or square well, with a range much larger
than the wavelength. Since all phase shifts are small,
the Born approximation is valid, and we can replace
the matrix element (k| V|¢yt), in the definition of the
collision volume, by (k’|V|k). It follows from the
properties of Fourier transforms that this varies by an
appreciable fraction of itself when &’ varies by amounts
of order a7!, where a is the range of the potential. The
corresponding variations in € are of order v/a. We saw
at the beginning of Sec. 8 that this was the inverse of

26 H. A. Bethe and P. Morrison, Elementary Nuclear Theory
(_Toslgn Wiley and Sons, Inc., New York, 1956), second edition,
p. S55.
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the collision time. Hence, the collision volume is
U=w07/2=0a/2, and validity condition (79) becomes
20anL. (88)

Condition (62) is redundant again, since ¢ must be
much larger than A.

10. VALIDITY OF THE IMPACT APPROXIMATION
WHEN V; DOES NOT VANISH

When V; is not negligible, the analysis of the last
three sections can still be followed, with only minor
changes. The validity conditions are still (62) and
(79), but ¢ and U must now be defined as follows:

o=—=2"19Wnt| AV [Yut)

=2w/nv=fd9| fi( @) — f+(@) |2

=47R Y1 (2041) sin?(8:,—8;1), (89)
U—fdsk/ Wre | AV [Yat) = @ | AV [ ) |2
8=t e—¢
=2voT. (90)

The last line defines 7. We have assumed that V, did
not have any bound states. If it does, they should be
included in the summation over k.

In order to understand these results, we must realize
that it is only the difference between the two potentials,
AV, that is effective in broadening or shifting the line.
Hence, o is the cross section that one would compute
starting from the difference between the two scattering
amplitudes, or the difference between the two phase
shifts. We might call it the “effective collision cross
section,” or the “optical cross section.” It may be
much smaller than the individual cross sections ¢; and
oy, for potentials V,; and Vy, respectively. Similarly,
U may be much smaller than U; or U,, computed
according to Sec. 8. This is because U is not the volume
of space where ¥, differs appreciably from a free
wave function, but only the volume where it differs
appreciably from an eigenfunction of H;. The situation
with respect to the collision times is different. A little
reflection will show that = can be expected to be of the
same order of magnitude as 7; or 7;, whichever is
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larger. From this estimate of 7, one obtains a convenient
estimate of U, through multiplication by vs/2.

It may happen that 7, 7, U;, Uy, 04, and o5 cannot
be defined, while 7, U, and ¢ exist. This is the case,
for instance, if the line is emitted by an ion. Both V;
and V; contain the long-range Coulomb interaction
between the ion and the charged perturbers. But the
expressions for ¢ and U still converge to finite results,
although more care is needed in making simple esti-
mates.

11. CONCLUSION

We hope to have shown by this work, that it is
possible to make a quantum mechanical theory of
pressure broadening, along the same lines as the classical
path theory. Even if our initial approximations were
not absolutely accurate, they were worth making in
order to show the basic simplicity of the theory, and
its similarity with well-known classical theories based
on equivalent assumptions. They can be removed, and
this will be done in another paper.

We also hope to have given the reader a feeling for
the impact approximation and its region of validity.
One last word is called for here. Conditions (60) or
(79) state that the collision volume is much smaller
than the volume per perturber. Hence, at any given
time, the average number of perturbers inside the
collision volume is much smaller than unity. This seems
to imply that the collisions occur one at a time, and
are separated by large time intervals. This is true,
provided that, by the word “collisions,” we mean
“strong collisions.” Otherwise, it is a very misleading
statement, because weak collisions, i.e., those with
small phase shifts, do not make a full contribution to
the collision volume, and it is perfectly possible to have
several weak collisions going on at the same time,
without necessarily endangering the validity of the
impact approximation. It remains true, however, that
this approximation is a low-density limit, and if # is
increased too much it will eventually stop being valid.
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